
Part1 – C# Introduction

Introduction – What is c#
 The C# programming language is used for many kinds of applications, including

websites, cloud-based systems, IoT devices, machine learning, desktop applications,

embedded controllers, mobile apps, games, and command-line utilities

 .NET is cross-platform and open source

 .Net framework and .Net Core (.Net)

 Why c#: range of programming techniques it supports. For example, it offers object-

oriented features, generics, and functional programming. It supports both dynamic and

static typing. . It provides powerful list- and set-oriented features, thanks to Language

Integrated Query (LINQ). It has intrinsic support for asynchronous programming. C#

provides options for balancing ease of development against performance. built-in class

libraries, and extensive third-party library support.

in 2014, the .NET Foundation was created to foster the development of open source projects in

the .NET world. The runtime has always provided a garbage collector (GC) that frees developers

from much of the work associated with recovering memory that the program is no longer using.

CLR – Common Language Runtime
 It supports not just C# but any

 The CLR has a Common Type System (CTS) that enables code from multiple languages

to interoperate freely, which means that .NET libraries can normally be used from any

.NET language—F# can consume libraries written in C#, C# can use Visual Basic

libraries, and so on.

 There is an extensive set of class libraries built into .NET. These have gone by a few

names over the years, including Base Class Library (BCL), Framework Class Library,

and framework libraries, but Microsoft now seems to have settled on runtime libraries as

the name for this part of .NET.

.NET language. Microsoft also offers Visual Basic, F#, and .NET extensions for C++, for

example.

For years, the most common way for a compiler to work was to process source code and to

produce output in a form that could be executed directly by the computer’s CPU.

Compilers would produce machine code—a series of instructions in whatever binary format was

required by the kind of CPU the computer had. Many compilers still work this way, but the C#

compiler does not. Instead, it uses a model called managed code.

Managed Code
 With managed code, the compiler does not generate the machine code that the CPU

executes.

 CLR uses an approach called just-in-time (JIT) compilation, in which each individual

function’s machine code is generated the first time it runs.

Common Language Runtime
 CLI: Common Language Infrastructure (CLI)

 CLR is responsible for providing common syntax, automatic memory management, and

common data type. Also, the responsibility of CLR is generating native code from MSIL

Code.

 CLS (Common Language Specification): each and every language in dotnet has their own

syntax for writing code and one language does not support the syntax of another

language. That means .NET has features of common syntax which are supported by all 63

programming languages.

 CTS (Common Type System) : each and every language int dotnet has their own data

type system and One language does not support data type of another language. That

means .NET has features of Common Data type which is supported by all 63

programming languages.

BCL: Base class library also known as a Class Library (CL). BCL is a subset of the Framework

class library (FCL)

CTS (Common Type System) Example.

int i = 123; // There is integer data type in C# .NET

Dim I As Integer // There is Integer data type in J# .NET

As we are looking both languages have their own data type system. But these languages will

support the common data type of .NET which is: Int 32

Common Type System
This provides guidelines for declaring, using and managing data types at runtime. It offers cross-

language communication. For example, VB.NET has an integer data type, and C# has an int data

type for managing integers. After compilation, Int32 is used by both data types. So, CTS

provides the data types using managed code. A common type system helps in writing language-

independent code.

Common type system provides two categories of types

1. Value Type: A value type stores the data in memory allocated on the stack or inline in a

structure. This category of Type holds the data directory. If one variable’s value is copied

to another, both variables store data independently. It can be of inbuilt-in types, user-

defined, or enumerations types. Built-in types are primitive data types like numeric,

Boolean, char, and date. Users in the source code create user-defined types. An

enumeration refers to a set of enumerated values represented by labels but stored as a

numeric type.

2. Reference Type: A Reference type stores a reference to the value of a memory address

and is allocated on the heap. Heap memory is used for dynamic memory allocation.

Reference Type does not hold actual data directly but holds the address of data.

Whenever a reference-type object is made, it copies the address and not the actual data.

Therefore two variables will refer to the same data. If the data of one Reference Type

object is changed, the same is reflected for the other object. Reference types can be self-

describing types, pointer types, or interference types. The self-describing types may be

string, array, and class types that store metadata about themselves.

Common Language Specification
Common Language Specification (CLS) contains a set of rules to be followed by all NET-

supported languages. The common rules make it easy to implement language integration and

help in cross-language inheritance and debugging. Each language supported by NET Framework

has its own syntax rules. But CLS ensures interoperability among applications developed using

NET languages.

Assemblies
An assembly is a fundamental unit of physical code grouping. It consists of the assembly

manifest, metadata, MSIL code, and a set of resources like image files. It is also considered a

basic deployment unit, version control, reuse, security permissions, etc.

Components of the .NET Runtime
 Garbage Collector is responsible for automatic memory management of objects. Also,

the responsibility of the garbage collector is removing the object from memory that has

no use.

 JIT Compiler is responsible for compiling the MSIL Code and generate the Native

Code. There are the following 3 types of JIT compiler,

 Normol Jitter: Normal jitter is a Default jitter that compiles the code line by line

and it stores the cache of compiled code.

 Echono Jitter: Echono jitter compiles the selected line of code and it does not

contain the cache of compiled code.

 Pre Jitter: Pre Jitter Compile the code from top to button and also it stores the

cache of compiled code.

Garbage Collector
In Garbage Collector Memory divided into 3 generation:

• When a new object creates it gets stored in Generation 0 and the process gets repeated till

generation 0 is full.When Generation 0 size gets full then there 2 processes will be

performed.

o First Process is marking the object which is not reachable for a long time.

o And in the Second process object will remove from the memory that has marked

early and the remaining object will get transferred to Generation 1.

• This process will repeat also for Generation 2. There are 3 methods for removing objects

from Memory. These methods are (1) Dispose () (2) Finalize () (3) gc.Collect ().

o Dispose Method: Dispose method is used to remove the object from memory that

has no reference this method gets called by the User.

o Finalize Method: Finalize method is used to clean up the object from memory.

This method gets called by System.

o Gc.Collect Method: This method is used for removing the object from memory

forcefully.

GC Steps
 1- Suspension: It suspends the execution of your ENTIRE application. your application

is frozen completely when the GC execution starts.

 2- Sweeping/Marking: The GC starts scanning the heap looking for objects that have

lost their references and, therefore, will no longer be needed by your application and

starts removing them.

 3-Shrinking: At this step, the GC starts removing all the spaces, moving all these objects

in memory (and this is very expensive but necessary) so that the spaces that were in the

middle are moved after the last allocated object, and allocation of new objects can be

sequential.

 4-Resume: Finally our application unfreezes and things begin to run again.

Reference Type and Value Type
 The Stack is the part of memory which in essence keeps track of everything

that is executed (ran) in our code, and value types.

 Heap is responsible for keep track of our objects and structures (reference types).

 Rules:

 1. A Reference Type always goes on the Heap

 2. Value Types always go on the Stack - Unless, they're declared within a

Reference Type, then they go on the Heap.

 3. Pointers to the reference type are stored on the Stack.

 4. Global variables will be stored on the Heap as they need to be available to

everything.

Value types Reference

types

• Bool

• Byte

• char

• decimal

• double

• enum

• float

• int

• long

• sbyte

• short

• class

• interface

• delegate

• object

• string

• struct

• uint

• ulong

• ushort

Heap and Stack
Stack memory Heap memory

Stores temporary data by functions and

procedures

Stores data not tied to a specific function or

procedure

LIFO data stracture No specific structure

Automatic allocation and deallocation

by the program

Dynamic allocation and deallocation during

runtime

Limited, fixed size Dynamically adjusted size

Easy to manage More challenging to manage

Faster access Slower access

Used for small amounts of data Used for large, comlex data structures

Anatomy of a Simple Program
 Install Dotnet Sdk 6+

 Extenstion: C# Dev Kit

 Dotnet CLI: command-line interface

 dotnet new console

 top-level statements

 int x = 12 * 30;

 Console.WriteLine (x);

 dotnet run

 Without top-level statements, a simple console or Windows application looks like this:

using System;
class Program
{

static void Main() // Program entry point
{
 int x = 12 * 30;
 Console.WriteLine (x);
}

}

Namespaces
 Most .NET types are defined in a namespace. There are certain conventions for

namespaces that you’ll see a lot. For example, types in .NET’s runtime libraries are in

namespaces that start with System.

 Using

 Resolving ambiguity with aliases

 using IoPath = System.IO.Path;

 using WpfPath = System.Windows.Shapes.Path;

 Nested namespaces

The .NET runtime libraries contain a large number of types, and there are many more out there in

third-party libraries, not to mention the classes you will write yourself. There are two problems

that can occur when dealing with this many named entities. First, it becomes hard to guarantee

uniqueness. Second, it can become challenging to discover the API you need; unless you know

or can guess the right name, it’s difficult to find what you need from an unstructured list of tens

of thousands of things. Namespaces solve both of these problems.

As you’ve already seen, the .NET runtime libraries nest their namespaces, sometimes quite

extensively, and you will often want to do the same. There are two ways you can do this.

Part 2 - Basic Coding in C#

Local Variables
 C# is a statically typed language, which is to say that any element of code that represents

or produces information, such as a variable or an expression, has a data type determined

at compile time. This is different than dynamically typed languages, such as JavaScript,

in which types are determined at runtime.

 [datatype] [variableName]=[initialValue];

 var [variableName]=[initialValue];

 A variable declared with var behaves in exactly the same way as the equivalent explicitly

typed declaration

 Multiple variables in a single declaration

 Keyword default: initialize a variable of any type: value of zero, false, or null.

1- The name must begin with either a letter or an underscore, which can be followed by any

combination of letters, decimal digits, and underscores. (At least, those are the options if you

stick to ASCII.

2- These same rules determine what constitutes a legal identifier for any user-defined entity in

C#, such as a class or a method.

3- You can let the compiler work it out for you by using the keyword var in place of the data

type. var does not work the same way in C# as in JavaScript: these variables are still all statically

typed. All that’s changed is that we haven’t said what the type is—we’re letting the compiler

deduce it for us. It looks at the initializers and can see that the first two variables are strings,

whereas the third is an integer.

 If you try to use the var keyword without an initializer, you’ll get a compiler error.

4 – Var may cause to reduce readability for next code review. So it recommended to use var in

two situations not for all:

 a) when you are repeating type in two sides: List<int> data=new List<int>();

 b) when you are using anonymous types (In fact, the var keyword was introduced to C#

only when anonymous types were added.)

Scope
 A variable’s scope is the range of code in which you can refer to that variable by its

name.

 a variable’s scope starts at its declaration and finishes at the end of its containing block.

 A block is a region of code delimited by a pair of braces ({}).

 a variable defined in one method is not visible in a separate method, because it is out of

scope.

 where a nested block starts, everything that is in scope in the outer block continues to be

in scope inside that nested block.

Variables are not the only things with scope. Methods, properties, types, and, in fact, anything

with a name all have scope.

Variable Name Ambiguity
 C# tries to prevent ambiguity by disallowing code where one name might refer to more

than one thing in scope.

Statements
 When we write a C# method, we are writing a sequence of statements.

 It might be tempting to think of a statement as an instruction to do one thing (such as

initializing a variable or invoking a method).

 Or where anything ending in a semicolon is a statement.

 Some categories of statements: declaration, iteration,jump, try/catch/finally, , selection,

expression, …

it’s the semicolons that are significant here, not the line breaks, by the way.

The first three lines of Example are declaration statements, statements that declare and optionally

initialize a variable. The fourth and fifth lines are expression

Statements

When you write a loop, that’s an iteration statement. When you use the if or switch mechanisms

to choose between various possible actions, those are selection statements.

Expressions
 a sequence of operators and operands.

 The simplest expressions are literals, where we just write the value we want

 You can use the name of a variable as an expression.

 Expressions can involve operators, which describe calculations or other computations to

be performed.

 Operators have some fixed number of inputs, called operands.

 Some take a single operand, such as +.

 Operators also have evaluation order. Ex: (2+2*3/4^2)/(4+2*0)

The fixed values are called as Literal. Literal is a value that is used by the variables.

// Here 100 is a constant/literal.

int x = 100;

Comments and Whitespace
 allow source files to contain text that is ignored by the compiler. two styles of comments:

single-line (//), delimited comments (/* */)

 C# ignores extra whitespace for the most part.

Preprocessing Directives
 The preprocessor directives give instruction to the compiler to preprocess the information

before actual compilation starts.

 All preprocessor directives begin with #, and only white-space characters may appear

before a preprocessor directive on a line.

 Preprocessor directives are not statements, so they do not end with a semicolon (;).

 In C# the preprocessor directives are used to help in conditional compilation.

Compilation Symbols
 C# offers a #define directive that lets you define a compilation symbol.

 These symbols are commonly used in conjunction with the #if directive to compile code

in different ways for different situations.

 You can open up the .csproj file and define the values you want in a <DefineConstants>

element of any <PropertyGroup>.

For example, you might want some code to be present only in Debug builds, or perhaps you need

to use different code on different platforms to achieve a particular effect.

 The .NET SDK defines certain symbols by default. It supports two configurations, Debug

and Release. It defines a DEBUG compilation symbol in the Debug configuration,

whereas Release will define RELEASE instead.

 conditional method: indicate that the annotated method should be used only when the

DEBUG compilation symbol is defined.

If you write code that calls a method that has been annotated in this way, the C# compiler will

omit that call in builds that do not define the relevant symbol.

So if you write code that calls this ShowDebugInfo method, the compiler strips out all those calls

in non-Debug builds.

 #error and #warning: generate compiler errors or warnings.

 These are typically used inside conditional regions.

 #line: If want to change some info for error and warning.

When the compiler produces an error or a warning, it states where the problem occurred,

providing the filename, a line number, and an offset within that line.

 #pragma provides two features:

 it can be used to disable selected compiler warnings,

 You should generally avoid disabling warnings.

 be used to override the checksum values the compiler puts into the .pdb file it

generates containing debug information.

 #region and #endregion: do nothing. the only thing the compiler does is ensure that they

have corresponding #endregion directives.

 These directives exist entirely for the benefit of text editors that choose to recognize

them.

Fundamental Data Types
 .NET defines thousands of types in its runtime libraries, and you can write your own, so

C# can work with an unlimited number of data types.

Numeric Types
 C# supports integer and floating-point arithmetic. There are signed and unsigned integer

types, and they come in various sizes

 The most commonly used integer type is int

C#

type

CLR name Signed Size in

bits

C# type

Byte System.Byte No 8 0 to 255

Sbyte System.Sbyte Yes 8 −128 to 127

ushort System.UInt16 No 16 0 to 65,535

Short System.Int16 Yes 16 −32,768 to 32,767

uint System.UInt32 No 32 0 to 4,294,967,295

int System.Int32 Yes 32 −2,147,483,648 to

2,147,483,647

ulong System.UInt64 No 64 0 to

18,446,744,073,709,551,615

long System.Int64 Yes 64 −9,223,372,036,854,775,808

to

9,223,372,036,854,775,807

nint System.IntPtr Yes Depends Depends

nuint System.UIntPtr No Depends Depends

 C# also supports floating-point numbers.

 Decimal is not just a bigger version of double.

C# type CLR name Size in

bits

Precision Range

float System.Single 32 23 bits (~7

decimal

digits)

1.5 * 10-45 to 3.4*1038

double System. Double 64 52 bits (~15

decimal digits)

5.0 * 10-324 to 1.7*10308

decimal System.Decimal 256 28-29 digits 1.0 * 10-28 to

7.9228 *1028

Numeric conversions
 Each of the built-in numeric types uses a different representation for storing numbers in

memory. Converting from one form to another requires some work

 when you perform arithmetic calculations that involve a mixture of numeric types, C#

will pick the type with the largest range and promote values of types with a narrower

range into that larger one before performing the calculations.

 Implicit casting(automatically) is done automatically when passing a smaller size type to

a larger size type: char -> int -> long -> float -> double

 Explicit Casting (manually) - converting a larger type to a smaller size type: double ->

float -> long -> int -> char

Checked contexts
 This means that certain arithmetic operations, including casts, are checked for range

overflow at runtime. If you cast a value to an integer type in a checked context and the

value is too high or low to fit, an error will occur—the code will throw a

System.OverflowException.

Booleans
 C# defines a type called bool, or as the runtime calls it, System.Boolean.

 This offers only two values: true and false.

Strings and Characters
 Char type (System.Char) is a 16-bit value representing a single UTF-16 code unit.

 The string type (synonymous with the CLR System.String type) represents text.

 A string is a sequence of values of type char

Immutability of strings
 .NET strings are immutable.

 They can't be changed after they're created. All of the String methods and C# operators

that appear to modify a string actually return the results in a new string object.

 If you need to do work that performs a series of modifications to a string, you can use a

type called StringBuilder

String manipulation methods
 The string type has numerous instance methods for working with strings.

 ToUpper and ToLower

 IndexOf and LastIndexOf

 StartsWith and EndsWith: return a bool indicating whether the string starts or ends with a

particular character or string

 Split: takes one or more separator characters (e.g., commas or spaces) and returns an

array with an entry for each substring between the separators

 Substring: remove before starting position and return remained text.

 Insert: forms a new string by inserting one string into the middle of another.

 Replace: returns a new string formed by replacing all instances of a particular character

or string with another

 Trim: remove unwanted leading and trailing characters such as whitespace

Formatting data in strings
 syntax that makes it easy to produce strings that contain a mixture of fixed text and

information determined at runtime.

 The official name for this feature is string interpolation.

Verbatim string literals
 you can prefix a string literal with the @ symbol like so: @"Hello".

 they can improve the readability of strings containing backslashes, and they make it

possible to write multiline string literals.

Dynamic
 C# defines a type called dynamic. This doesn’t directly correspond to any CLR type—

when we use dynamic in C#, the compiler presents it to the runtime as object.

 With dynamic, the compiler makes no attempt at compile time to check whether

operations performed by code are likely to succeed.

Object
 The last data type to get special recognition from the C# compiler is object (or

System.Object, as the CLR calls it).

 This is the base class of almost all C# types.

 There are some specialized exceptions, such as pointer types.

Operators
Name (arithmetic

operations)

Example

Unary plus (does

nothing)

+x

Negation (unary

minus)

-x

Postincrement x++

Postdecrement x--

Preincrement ++x

Predecrement --x

Addition x + y

Subtraction x - y

Multiplication x * y

Division x / y

Remainder x % y

Name (binary

operations)

Example

Bitwise

negation

~x

Bitwise AND x & y

Bitwise OR x | y

Bitwise XOR x ^ y

Shift left x << y

Shift right x >> y

Name

(operators for

bool)

Example

Logical

negation (also

known as

NOT)

!x

Conditional

AND

x && y

Conditional

OR

x || y

Name

(Relational

operators)

Example

Less than x < y

Greater than x > y

Less than or

equal

x <= y

Greater than

or equal

x >= y

Equal x == y

Not equal x != y

Flow Control
 Conditional:

 if: decides whether or not to run some particular statement depending on the value

of a bool expression

 switch: Multiple Choice with switch Statements

 Loop:

 while

 do-while

 For

 Foreach: for Collection Iteration

 foreach (item-type iteration-variable in collection) body

 break and continue

If
 Single Statement

 Multi Statement (Needs block)

 If else

 If else if

Multiple Choice with switch Statements
 A switch statement defines multiple groups of statements and either runs one group or

does nothing at all, depending on the value of an input expression.

 You can also write a default section, which will run if none of the cases apply.

 break statements, which causes execution to jump to the end of the switch statement.

 This is not the only way to finish a section—strictly speaking, the rule imposed by the C#

compiler is that the end point of the statement list for each case must not be reachable, so

anything that causes execution to leave the switch statement is acceptable.

 You could use a return statement instead, or throw an exception, or you could even use a

goto statement.

while and do
 This takes a bool expression. It evaluates that expression, and if the result is true, it will

execute the statement that follows.

 The body of the loop may decide to finish the loop early with a break statement.

 continue terminates the current iteration, but unlike break, it will then reevaluate the

while expression, so iteration may continue.

 continue and break are also available for all of the other loop styles I’m about to show.

this is just like an if statement, but the difference is that once the loop’s embedded statement is

complete, it then evaluates the expression again, and if it’s true again, it will execute the

embedded statement a second time. It will keep doing this until the expression evaluates to false.

As with if statements, the body of the loop does not need to be a block, but it usually is.

It does not matter whether the while expression is true or false—executing a break statement will

always terminate the loop.

Both continue and break jump straight to the end of the loop, but you could think of continue as

jumping directly to the point just before the loop’s closing }, while break jumps to the point just

after.

For loop
 for (initializer; condition; iterator) body

 This is similar to while, but it adds two features to that loop’s bool expression:

 it provides a place to declare and/or initialize one or more variables that will

remain in scope for as long as the loop runs,

 it provides a place to perform some operation each time around the loop (in

addition to the statement that forms the body of the loop).

Foreach
 Foreach loop is designed for iterating through collections.

 foreach (item-type iteration-variable in collection) body

 The collection is an expression whose type must match a particular pattern recognized by

the compiler.

 The runtime libraries’ IEnumerable<T> interface matches this pattern.

Patterns
 A pattern describes one or more criteria that a value can be tested against.

 There are many kinds of patterns, and they aren’t just for switch statements.

 1- Constant patterns: With these, you specify just a constant value, and an expression

matches this pattern if it has that value.

 all used one of the simplest pattern types: they were all constant patterns.

 2- Declaration patterns: An expression matches a declaration pattern if it has the specified

type.

 3- Type patterns: looks and works like a declaration pattern without the variable

 4- positional pattern: matches any tuple containing a pair of int values and extracts those

values into two variables, x and y.

 5- Property pattern: they are members of a type that provide some sort of information,

such as the string type’s Length property, which returns an int telling you how many code

units the string contains

Combining and Negating Patterns
 C# offers three logical operations for use in patterns: and, or, and not.

 Not lets you invert the meaning of a pattern.

Relational Patterns
 Patterns can use the <, <=, >=, and > operators when the pattern’s type supports these

kinds of comparison.

Pattern with when clause

