

Programming C# 10
Build Cloud, Web, and Desktop Applications

Ian Griffiths

Programming C# 10
by Ian Griffiths Copyright © 2022 Ian Griffiths. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn

Development Editor: Corbin Collins

Production Editor: Elizabeth Faerm

Copyeditor: Kim Cofer

Proofreader: Piper Editorial Consulting, LLC

Indexers: WordCo Indexing Services, Inc. and Sue Klefstad

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

August 2022: First Edition

Revision History for the First Edition

2022-08-05: First Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781098117818 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Programming C# 10, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-11781-8

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098117818

Dedication
I dedicate this book to my excellent wife, Deborah, and to my wonderful
daughters, Hazel, Victoria, and Lyra. Thank you for enriching my life.

Preface

C# has now existed for around two decades. It has grown steadily in both
power and size, but Microsoft has always kept the essential characteristics
intact. Each new capability is designed to integrate cleanly with the rest,
enhancing the language without turning it into an incoherent bag of
miscellaneous features.

Even though C# continues to be a fairly straightforward language at its
heart, there is a great deal more to say about it now than in its first
incarnation. Because there is so much ground to cover, this book expects a
certain level of technical ability from its readers.

Who This Book Is For
I have written this book for experienced developers—I’ve been
programming for years, and I set out to make this the book I would want to
read if that experience had been in other languages, and I were learning C#
today. Whereas earlier editions explained some basic concepts such as
classes, polymorphism, and collections, I am assuming that readers will
already know what these are. The early chapters still describe how C#
presents these common ideas, but the focus is on the details specific to C#,
rather than the broad concepts.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.
In examples, highlights code of particular interest.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://oreil.ly/prog-cs-10-repo.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:

https://oreil.ly/prog-cs-10-repo
mailto:bookquestions@oreilly.com

“Programming C# 10 by Ian Griffiths (O’Reilly). Copyright 2022 by Ian
Griffiths, 978-1-098-11781-8.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

mailto:permissions@oreilly.com
http://oreilly.com/
http://www.oreilly.com/

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/prgrmg-
c-10.

Email us with comments or technical questions at
bookquestions@oreilly.com.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
Many thanks to the book’s official technical reviewers: Stephen Toub,
Howard van Rooijen, and Glyn Griffiths. I’d also like to give a big thank-
you to those who reviewed individual chapters or otherwise offered help or
information that improved this book: Brian Rasmussen, Eric Lippert,
Andrew Kennedy, Daniel Sinclair, Brian Randell, Mike Woodring, Mike
Taulty, Bart De Smet, Matthew Adams, Jess Panni, Jonathan George, Mike
Larah, Carmel Eve, Ed Freeman, Elisenda Gascon, Jessica Hill, Liam
Mooney, Nehemiah Campbell, and Shahryar Saljoughi. Thanks in particular
to endjin, both for allowing me to take time out from work to write this
book and for creating such a great place to work.

Thank you to everyone at O’Reilly whose work brought this book into
existence. In particular, thanks to Corbin Collins for his support in making
this book happen, and to Amanda Quinn for her support in getting this
project started. Thanks also to Elizabeth Faerm, Cassandra Furtado, Ron

https://oreil.ly/prgrmg-c-10
mailto:bookquestions@oreilly.com
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Bilodeau, Nick Adams, Kate Dullea, Karen Montgomery, and Kristen
Brown, for their help in bringing the work to completion. Further thanks to
Sue Klefstad and WordCo Indexing Services, Inc. for their work on the
index. Thanks also to Kim Cofer for her thorough and thoughtful copy
editing and to Kim Sandoval for her diligent proofreading. Finally, thank
you to John Osborn, for taking me on as an O’Reilly author back when I
wrote my first book.

Chapter 1. Introducing C#

The C# programming language (pronounced “see sharp”) is used for many
kinds of applications, including websites, cloud-based systems, IoT devices,
machine learning, desktop applications, embedded controllers, mobile apps,
games, and command-line utilities. C#, along with the supporting runtime,
libraries, and tools known collectively as .NET, has been center stage for
Windows developers for over 20 years. Today, .NET is cross-platform and
open source, enabling applications and services written in C# to run on
operating systems including Android, iOS, macOS, and Linux, as well as on
Windows.

The release of C# 10.0 and its corresponding runtime, .NET 6.0, marks an
important milestone: C#’s journey to becoming a fully cross-platform, open
source language is now complete. Although open source implementations
have existed for most of C#’s history, a sea change began in 2016 when
Microsoft released .NET Core 1.0, the first platform fully supported by
Microsoft for running C# on Linux and macOS as well as Windows.
Library and tool support for .NET Core was initially patchy, so Microsoft
continued to ship new versions of its older runtime, the closed-source,
Windows-only .NET Framework, but six years on, that old runtime is
effectively being retired, now that the cross-platform version has
comprehensively overtaken it. .NET 5.0 dropped the “Core” from its name
to signify that it is now the main event, but it is with .NET 6.0 that the
cross-platform version has really arrived, because this version enjoys full
Long Term Support (LTS) status. For the first time, the platform-
independent version of C# and .NET has superseded the old .NET
Framework.

C# and .NET are open source projects, although it didn’t start out that way.
In C#’s early history, Microsoft guarded all of its source code closely, but in
2014, the .NET Foundation was created to foster the development of open
source projects in the .NET world. Many of Microsoft’s most important C#

1

https://oreil.ly/vYiMY

and .NET projects are now under the foundation’s governance (in addition
to many non-Microsoft projects). This includes Microsoft’s C# compiler
and also the .NET runtime and libraries. Today, pretty much everything
surrounding C# is developed in the open, with code contributions from
outside of Microsoft being welcome. New language feature proposals are
managed on GitHub, enabling community involvement from the earliest
stages.

Why C#?
Although there are many ways you can use C#, other languages are always
an option. Why might you choose C# over those? It will depend on what
you need to do and what you like and dislike in a programming language. I
find that C# provides considerable power, flexibility, and performance and
works at a high enough level of abstraction that I don’t expend vast
amounts of effort on little details not directly related to the problems my
programs are trying to solve.

Much of C#’s power comes from the range of programming techniques it
supports. For example, it offers object-oriented features, generics, and
functional programming. It supports both dynamic and static typing. It
provides powerful list- and set-oriented features, thanks to Language
Integrated Query (LINQ). It has intrinsic support for asynchronous
programming. Moreover, the various development environments that
support C# all offer a wide range of productivity-enhancing features.

C# provides options for balancing ease of development against
performance. The runtime has always provided a garbage collector (GC)
that frees developers from much of the work associated with recovering
memory that the program is no longer using. A GC is a common feature in
modern programming languages, and while it is a boon for most programs,
there are some specialized scenarios where its performance implications are
problematic, so C# enables more explicit memory management, giving you
the option to trade ease of development for runtime performance but
without the loss of type safety. This makes C# suitable for certain

https://github.com/dotnet/roslyn
https://github.com/dotnet/runtime

performance-critical applications that for years were the preserve of less
safe languages such as C and C++.

Languages do not exist in a vacuum—high-quality libraries with a broad
range of features are essential. Some elegant and academically beautiful
languages are glorious right up until you want to do something prosaic,
such as talking to a database or determining where to store user settings. No
matter how powerful a set of programming idioms a language offers, it also
needs to provide full and convenient access to the underlying platform’s
services. C# is on very strong ground here, thanks to its runtime, built-in
class libraries, and extensive third-party library support.

.NET encompasses both the runtime and the main class libraries that C#
programs use. The runtime part is called the Common Language Runtime
(usually abbreviated to CLR) because it supports not just C# but any .NET
language. Microsoft also offers Visual Basic, F#, and .NET extensions for
C++, for example. The CLR has a Common Type System (CTS) that enables
code from multiple languages to interoperate freely, which means that .NET
libraries can normally be used from any .NET language—F# can consume
libraries written in C#, C# can use Visual Basic libraries, and so on.

There is an extensive set of class libraries built into .NET. These have gone
by a few names over the years, including Base Class Library (BCL),
Framework Class Library, and framework libraries, but Microsoft now
seems to have settled on runtime libraries as the name for this part of .NET.
These libraries provide wrappers for many features of the underlying
operating system (OS), but they also provide a considerable amount of
functionality of their own, such as collection classes and JSON processing.

The .NET runtime class libraries are not the whole story—many other
systems provide their own .NET libraries. For example, there are libraries
that enable C# programs to use popular cloud services. As you’d expect,
Microsoft provides comprehensive .NET libraries for working with services
in its Azure cloud platform. Likewise, Amazon provides a fully featured
development kit for using Amazon Web Services (AWS) from C# and other
.NET languages. And libraries do not have to be associated with particular

services. There’s a large ecosystem of .NET libraries, some commercial and
some free, including mathematical utilities, parsing libraries, and user
interface (UI) components, to name just a few. Even if you get unlucky and
need to use an OS feature that doesn’t have any .NET library wrappers, C#
offers various mechanisms for working with other kinds of APIs, such as
the C-style APIs available in Win32, macOS, and Linux, or APIs based on
the Component Object Model (COM) in Windows.

In addition to libraries, there are also numerous applications frameworks.
.NET has built-in frameworks for creating web apps and web APIs, desktop
applications, and mobile applications. There are also open source
frameworks for various styles of distributed systems development, such as
high-volume event processing with Reaqtor or high-availability globally
distributed systems with Orleans.

Finally, with .NET having been around for over two decades, many
organizations have invested extensively in technology built on this
platform. So C# is often the natural choice for reaping the rewards of these
investments.

In summary, with C# we get a strong set of abstractions built into the
language, a powerful runtime, and easy access to an enormous amount of
library and platform functionality.

Managed Code and the CLR
C# was the first language designed to be a native in the world of the CLR.
This gives C# a distinctive feel. It also means that if you want to understand
C#, you need to understand the CLR and the way in which it runs code.

For years, the most common way for a compiler to work was to process
source code and to produce output in a form that could be executed directly
by the computer’s CPU. Compilers would produce machine code—a series
of instructions in whatever binary format was required by the kind of CPU
the computer had. Many compilers still work this way, but the C# compiler
does not. Instead, it uses a model called managed code.

https://reaqtive.net/
https://oreil.ly/kxaEg

With managed code, the compiler does not generate the machine code that
the CPU executes. Instead, the compiler produces a form of binary code
called the intermediate language (IL). The executable binary is produced
later, usually, although not always, at runtime. The use of IL enables
features that are hard or even impossible to provide under the more
traditional model.

Perhaps the most visible benefit of the managed model is that the
compiler’s output is not tied to a single CPU architecture. For example, the
CPUs used in most modern computers support both 32-bit and 64-bit
instruction sets (known, respectively, for historical reasons as x86 and x64).
With the old model of compiling source code into machine language, you’d
need to choose which of these to support, building multiple versions of your
component if you need target more than one. But with .NET, you can build
a single component that can run without modification in either 32-bit or 64-
bit processes. The same component could even run on completely different
architectures such as ARM (a processor architecture widely used in mobile
phones, newer Macs, and also in tiny devices such as the Raspberry Pi).
With a language that compiles directly to machine code, you’d need to build
different binaries for each of these, or in some cases you might build a
single file that contains multiple copies of the code, one for each supported
architecture. With .NET, you can compile a single component that contains
just one version of the code, and it can run on any of them. It would even be
able to run on platforms that weren’t supported at the time you compiled the
code if a suitable runtime became available in the future. (For example,
.NET components written years before Apple released its first ARM-based
Macs can run natively, without relying on the Rosetta translation
technology that normally enables older code to work on the newer
processors.) More generally, any kind of improvement to the CLR’s code
generation—whether that’s support for new CPU architectures or just
performance improvements for existing ones—is instantly of benefit to all
.NET languages. For example, older versions of the CLR did not take
advantage of the vector processing extensions available on modern x86 and
x64 processors, but the current versions will now often exploit these when
generating code for loops. All code running on current versions of .NET

https://oreil.ly/MO6W1

benefits from this, including components that were built years before this
enhancement was added.

The exact moment at which the CLR generates executable machine code
can vary. Typically, it uses an approach called just-in-time (JIT)
compilation, in which each individual function’s machine code is generated
the first time it runs. However, it doesn’t have to work this way. One of the
runtime implementations, called Mono, is able to interpret IL directly
without ever converting it to runnable machine language, which is useful on
platforms such as iOS where legal constraints may prevent JIT compilation.
The .NET Software Development Kit (SDK) also provides a tool called
crossgen, which enables you to build precompiled code alongside the IL.
This ahead-of-time (AoT) compilation can improve an application’s startup
time. There’s also a whole separate runtime called .NET Native that only
supports precompilation and which is used by Windows Store Apps built for
the Universal Windows Platform (UWP). (Be aware that Microsoft has
announced that the Windows-only .NET Native runtime is likely to be
phased out and replaced by NativeAOT, its cross-platform successor.)

NOTE
Even when you precompile code with crossgen, generation of executable code can still
happen at runtime. The CLR’s tiered compilation feature may choose to recompile a
method dynamically to optimize it better for the ways it is being used at runtime, and it
can do this whether you’re using JIT or AoT.

Managed code has ubiquitous type information. The .NET runtime requires
this to be present, because it enables certain runtime features. For example,
.NET offers various automatic serialization services, in which objects can
be converted into binary or textual representations of their state, and those
representations can later be turned back into objects, perhaps on a different
machine. This sort of service relies on a complete and accurate description
of an object’s structure, something that’s guaranteed to be present in
managed code. Type information can be used in other ways. For example,
unit test frameworks can use it to inspect code in a test project and discover

2

all of the unit tests you have written. This relies on the CLR’s reflection
services, which are the topic of Chapter 13.

Although C#’s close connection with the runtime is one of its main defining
features, it’s not the only one. There’s a certain philosophy underpinning
C#’s design.

C# Prefers Generality to Specialization
C# favors general-purpose language features over specialized ones. C# is
now on its 10th major version, and with every release, the language’s
designers had specific scenarios in mind when designing new features.
However, they have always tried hard to ensure that each element they add
is useful beyond these primary scenarios.

For example, a few years ago, the C# language designers decided to add
features to C# to make database access feel well integrated with the
language. The resulting technology, Language Integrated Query (LINQ,
described in Chapter 10), certainly supports that goal, but they achieved this
without adding any direct support for data access to the language. Instead,
the design team introduced a series of quite diverse-seeming capabilities.
These included better support for functional programming idioms, the
ability to add new methods to existing types without resorting to
inheritance, support for anonymous types, the ability to obtain an object
model representing the structure of an expression, and the introduction of
query syntax. The last of these has an obvious connection to data access,
but the rest are harder to relate to the task at hand. Nonetheless, these can be
used collectively in a way that makes certain data access tasks significantly
simpler. But the features are all useful in their own right, so as well as
supporting data access, they enable a much wider range of scenarios. For
example, these additions made it much easier to process lists, sets, and other
groups of objects, because the new features work for collections of things
from any origin, not just databases.

One illustration of this philosophy of generality was a language feature that
was prototyped for C# but which its designers ultimately chose not to go

ahead with. The feature would have enabled you to write XML directly in
your source code, embedding expressions to calculate values for certain bits
of content at runtime. The prototype compiled this into code that generated
the completed XML at runtime. Microsoft Research demonstrated this
publicly, but this feature didn’t ultimately make it into C#, although it did
later ship in another .NET language, Visual Basic, which also got some
specialized query features for extracting information from XML documents.
Embedded XML expressions are a relatively narrow facility, only useful
when you’re creating XML documents. As for querying XML documents,
C# supports this functionality through its general-purpose LINQ features,
without needing any XML-specific language features. XML’s star has
waned since this language concept was mooted, having been usurped in
many cases by JSON (which will doubtless be eclipsed by something else
in years to come). Had embedded XML made it into C#, it would by now
feel like a slightly anachronistic curiosity.

The new features added in subsequent versions of C# continue in the same
vein. For example, the deconstruction and pattern-matching features added
across the last few versions of C# are aimed at making life easier in subtle
but useful ways and are not limited to any particular application area.

C# Standards and Implementations
Before we can get going with some actual code, we need to know which
implementation of C# and the runtime we are targeting. The standards body
Ecma has written specifications that define language and runtime behavior
(ECMA-334 and ECMA-335, respectively) for C# implementations. This
has made it possible for multiple implementations of C# and the runtime to
emerge. At the time of writing, there are four in widespread use: Mono,
.NET Native, .NET (formerly known as .NET Core), and .NET Framework.
Somewhat confusingly, Microsoft is behind all of these, although it didn’t
start out that way.

Many .NETs
The Mono project was launched in 2001 and did not originate from
Microsoft. (This is why it doesn’t have .NET in its name—it can use the
name C# because that’s what the standards call the language, but back in
the pre-.NET Foundation days, the .NET brand was exclusively used by
Microsoft.) Mono started out with the goal of enabling Linux desktop
application development in C#, but it went on to add support for iOS and
Android. That crucial move helped Mono find its niche, because it is now
mainly used to create cross-platform mobile device applications in C#.
Mono now also supports targeting WebAssembly (also known as WASM)
and includes an implementation of the CLR that can run in any standards-
compliant web browser, enabling C# code to run on the client side in web
applications. This is often used in conjunction with a .NET application
framework called Blazor, which enables you to build HTML-based user
interfaces while using C# to implement behavior. The Blazor-with-WASM
combination also makes C# a viable language for working with platforms
such as Electron, which use web client technologies to create cross-platform
desktop applications. (Blazor doesn’t require WASM—it can also work
with C# code compiled normally and running on the .NET runtime; this is
the basis for .NET’s Multi-platform App UI (MAUI), which makes it
possible to write a single application that can run on Android, iOS, macOS,
and Windows.)

Mono was open source from the start and has been supported by a variety
of companies over its existence. In 2016, Microsoft acquired the company
that had stewardship of Mono: Xamarin. For now, Microsoft retains
Xamarin as a distinct brand, positioning it as the way to write cross-
platform C# applications that can run on mobile devices. Mono’s core
technology has been merged into Microsoft’s .NET runtime codebase. This
was the endpoint of several years of convergence in which Mono gradually
shared more and more in common with .NET. Initially Mono provided its
own implementations of everything: C# compiler, libraries, and the CLR.
But when Microsoft released an open source version of its own compiler,
the Mono tools moved over to that. Mono used to have its own complete

implementation of the .NET runtime libraries, but ever since Microsoft first
released the open source .NET Core, Mono has been depending
increasingly on that. Today, Mono is effectively one of two CLR
implementations in the main .NET runtime repository, enabling support for
mobile and WebAssembly runtime environments.

What about the other three implementations, all of which seem to be called
.NET? There is .NET Native, used in UWP apps, and as the preceding
section discussed, this is a specialized version of .NET that supports only
AoT compilation. However, .NET Native is slated to be replaced by
NativeAOT, which will effectively be a feature of .NET instead of a
completely separate implementation, so in practice we have just two
current, non-doomed versions: .NET Framework (Windows only, closed-
source) and .NET (cross-platform, open source; previously called .NET
Core). However, as mentioned earlier, Microsoft is not planning to add any
new features to the Windows-only .NET Framework, so this leaves .NET
6.0 as effectively the only current version.

This convergence back to one major current version was one of the primary
goals of .NET 6, making it a particularly significant release. However, it’s
useful to know about the other versions because you may well come across
live systems that continue to run on them. One reason for .NET
Framework’s continued popularity is that there are a handful of things it can
do that .NET 6.0 cannot. .NET Framework only runs on Windows, whereas
.NET 6.0 supports Windows, macOS, and Linux, and although this makes
.NET Framework less widely usable, it means it can support some
Windows-specific features. For example, there is a section of the .NET
Framework Class Library dedicated to working with COM+ Component
Services, a Windows feature for hosting components that integrate with
Microsoft Transaction Server. This isn’t possible on the newer, cross-
platform versions of .NET because code might be running on Linux, where
equivalent features either don’t exist or are too different to be presented
through the same .NET API.

The number of .NET-Framework-only features has dropped dramatically
over the last couple of releases, because Microsoft has been working to

enable even Windows-only applications to use the latest version of .NET
6.0. For example, the System.Speech .NET library used to be available
only on .NET Framework because it provides access to Windows-specific
speech recognition and synthesis functionality, but there is now a .NET 6.0
version of this library. That library only works on Windows, but its
availability means that application developers relying on it are now free to
move from .NET Framework to .NET. The remaining .NET Framework
features that have not been brought forward are those that are not used
extensively enough to justify the engineering effort. COM+ support was not
just a library—it had implications for how the CLR executed code, so
supporting it in modern .NET would have had costs that were not justifiable
for what is now a rarely used feature.

The cross-platform .NET is where most of the new development of .NET
has occurred for the last few years. .NET Framework is still supported but
has been falling behind for some time. For example, Microsoft’s web
application framework, ASP.NET Core, dropped support for .NET
Framework back in 2019. So .NET Framework’s retirement, and .NET 6.0’s
arrival as the one true .NET, is the inevitable conclusion of a process that
has been underway for a few years.

Release Cycles and Long Term Support
Microsoft currently releases a new version of .NET every year, normally
around November or December, but not all versions are created equal.
Alternate releases get Long Term Support (LTS), meaning that Microsoft
commits to supporting the release for at least three years. Throughout that
period, the tools, libraries, and runtime will be updated regularly with
security patches. .NET 6.0, released in November 2021, is an LTS release.
The preceding LTS release was .NET Core 3.1, which was released in
December 2019 and therefore remains in support until December 2022; the
LTS release before that was .NET Core 2.1, which went out of support in
August 2021.

What about non-LTS releases? These are supported from release but go out
of support six months after the next LTS release comes out. For example,

3

.NET 5.0 was supported when it was released in December 2020, but
support ended in May 2022, six months after .NET 6.0 shipped. Microsoft
of course could choose to extend support, but for planning purposes it is
wise to assume that non-LTS versions effectively become unusable within
about 18 months.

It often takes a few months for the ecosystem to catch up with a new
release. You might not be able to use a new version of .NET on the day of
its release in practice, because your cloud platform provider might not
support it yet, or there may be incompatibilities with libraries that you need
to use. This significantly shortens the effective useful lifetime of non-LTS
releases, and it can leave you with an uncomfortably narrow window in
which to upgrade when the next LTS version appears. If it takes a few
months for the tools, platforms, and libraries you depend on to align with
the new release, you will have very little time to move on before it falls out
of support. In extreme situations, this window of opportunity might not
even exist: .NET Core 2.2 reached the end of its supported life before Azure
Functions offered full support for either .NET Core 3.0 or 3.1, so
developers who had used the non-LTS .NET Core 2.2 on Azure Functions
found themselves in a situation where the latest supported version actually
went backward: they had to choose between either downgrading back to
.NET Core 2.1 or using an unsupported runtime in production for a few
months. For this reason, some developers look at the non-LTS versions as
previews—you can experimentally target new features in anticipation of
using them in production once they arrive in an LTS release.

Target Multiple .NET Versions with .NET Standard
The multiplicity of runtimes, each with its own different version of the
runtime libraries, has long presented a challenge for anyone who wants to
make their C# code available to other developers. Although the
convergence we’re finally seeing with .NET 6.0 can make this less of an
issue, it will be common to want to continue to support systems that run on
the old .NET Framework. This means that it will be useful to produce
components that target multiple .NET runtimes for the foreseeable future.

There’s a package repository for .NET components, which is where
Microsoft publishes all of the .NET libraries it produces that are not built
into .NET itself, and it is also where most .NET developers publish libraries
they’d like to share. But which version should you build for? This is a two-
dimensional question: there is the runtime implementation (.NET, .NET
Framework) and also the version (for example, .NET Core 3.1 or .NET 6.0;
.NET Framework 4.7.2 or 4.8). Many authors of popular open source
packages distributed through NuGet support a plethora of versions, old and
new.

Component authors often used to support multiple runtimes by building
multiple variants of their libraries. When you distribute .NET libraries via
NuGet, you can embed several sets of binaries in the package, each
targeting different flavors of .NET. However, one major problem with this
is that as new forms of .NET have appeared over the years, existing
libraries wouldn’t run on all newer runtimes. A component written for .NET
Framework 4.0 would work on all subsequent versions of .NET Framework
but not on, say, .NET 6.0. Even if the component’s source code was entirely
compatible with the newer runtime, you would need a separate version
compiled to target that platform. And if the author of a library that you use
hadn’t provided explicit support for .NET, that would stop you from using
it. This was bad for everyone. Various versions of .NET have come and
gone over the years (such as Silverlight and several Windows Phone
variants), meaning that component authors found themselves on a treadmill
of having to churn out new variants of their component, and since that relies
on those authors having the inclination and time to do this work, component
consumers might find that not all of the components they want to use are
available on their chosen platform.

To avoid this, Microsoft introduced .NET Standard, which defines common
subsets of the .NET runtime libraries’ API surface area. If a NuGet package
targets, say, .NET Standard 1.0, this guarantees that it will be able to run on
.NET Framework versions 4.5 or later, .NET Core 1.0 or later, .NET 5.0 and
later, or Mono 4.6 or later. And critically, if yet another variant of .NET
emerges, then as long as it too supports .NET Standard 1.0, existing

4

https://nuget.org/

components will be able to run without modification, even though that new
platform didn’t even exist when they were written.

Today, .NET Standard 2.0 is likely to be the best choice for component
authors wishing to support a wide range of platforms, because all recently
released versions of .NET support it, and it provides access to a very broad
set of features. However, the number of different flavors of .NET that
Microsoft still supports today is much lower than it was when .NET
Standard was first introduced, so .NET Standard is arguably less important
than it once was. Today, the main benefit of targeting .NET Standard is that
your code will run on .NET Framework as well as .NET Core and .NET. If
you don’t need to support .NET Framework, it would make more sense to
target .NET Core 3.1 or .NET 6.0 instead. Chapter 12 describes some of the
considerations around .NET Standard in more detail.

Microsoft provides more than just a language and the various runtimes with
its associated class libraries. There are also development environments that
can help you write, test, debug, and maintain your code.

Visual Studio, Visual Studio Code, and
JetBrains Rider
Microsoft offers three desktop development environments: Visual Studio
Code, Visual Studio, and Visual Studio for Mac. All three provide the basic
features—such as a text editor, build tools, and a debugger—but Visual
Studio provides the most extensive support for developing C# applications,
whether those applications will run on Windows or other platforms. It has
been around the longest—for as long as C#—so it comes from the pre–open
source days and continues to be a closed-source product. The various
editions available range from free to eye-wateringly expensive. Microsoft is
not the only option: the developer productivity company JetBrains sells a
fully-fledged .NET IDE called Rider, which runs on Windows, Linux, and
macOS.

Visual Studio is an Integrated Development Environment (IDE), so it takes
an “everything included” approach. In addition to a fully featured text
editor, it offers visual editing tools for UIs. There is deep integration with
source control systems such as Git and with online systems providing
source repositories, issue tracking, and other Application Lifecycle
Management (ALM) features such as GitHub and Microsoft’s Azure
DevOps system. Visual Studio offers built-in performance monitoring and
diagnostic tools. It has various features for working with applications
developed for and deployed to Microsoft’s Azure cloud platform. It has the
most extensive set of refactoring features out of the three Microsoft
environments described here. Note that Visual Studio runs only on
Windows.

In 2017 Microsoft released Visual Studio for Mac. This is not a port of the
Windows version. It grew out of a platform called Xamarin, a Mac-based
development environment specializing in building mobile apps in C# that
run on the Mono runtime. Xamarin was originally an independent
technology, but when, as discussed earlier, Microsoft acquired the company
that wrote it, Microsoft integrated various features from the Windows
version of Visual Studio when it moved the product under the Visual Studio
brand.

The JetBrains Rider IDE is a single product that runs on three operating
systems. It is more focused than Visual Studio, in that it was designed
purely to support .NET application development. (Visual Studio also
supports C++.) It has a similar “everything included” approach, and it offers
a particularly powerful range of refactoring tools.

Visual Studio Code (often shortened to VS Code) was first released in 2015.
It is open source and cross platform, supporting Linux as well as Windows
and Mac. It is based on the Electron platform and is written predominantly
in TypeScript. (This means that unlike Visual Studio, VS Code really is the
same program on all operating systems.) VS Code is a more lightweight
product than Visual Studio: a basic installation of VS Code has little more
than text editing support. However, as you open up files, it will discover
downloadable extensions that, if you choose to install them, can add support

for C#, F#, TypeScript, PowerShell, Python, and a wide range of other
languages. (The extension mechanism is open, so anyone who wants to can
publish an extension.) So although in its initial form it is less of an IDE and
more like a simple text editor, its extensibility model makes it pretty
powerful. The wide range of extensions has led to VS Code becoming
remarkably popular outside of the world of Microsoft languages, and this in
turn has encouraged a virtuous cycle of even greater growth in the range of
extensions.

Visual Studio and JetBrains Rider offer the most straightforward path to
getting started in C#—you don’t need to install any extensions or modify
any configuration to get up and running. However, Visual Studio Code is
available to a wider audience, so I’ll be using that in the quick introduction
to working with C# that follows. The same basic concepts apply to all
environments, though, so if you will be using Visual Studio or Rider, most
of what I describe here still applies.

TIP
You can download Visual Studio Code for free. You will also need to install the .NET
SDK.

If you are using Windows and would prefer to use Visual Studio, you can download the
free version of Visual Studio, called Visual Studio Community. This will install the
.NET SDK for you, as long as you select at least one .NET workload during installation.

Any nontrivial C# project will have multiple source code files, and these
will belong to a project. Each project builds a single output, or target. The
build target might be as simple as a single file—a C# project could produce
an executable file or a library, for example—but some projects produce
more complicated outputs. For instance, some project types build websites.
A website will normally contain multiple files, but collectively, these files
represent a single entity: one website. Each project’s output will be
deployed as a unit, even if it consists of multiple files.

https://oreil.ly/m0vaY
https://oreil.ly/8Ok2Z
https://oreil.ly/3RUGS

NOTE
Executables typically have a .exe file extension in Windows, while libraries use .dll
(historically short for dynamic link library). With .NET, however, all code goes into .dll
files. The SDK can also generate a bootstrapping executable (with a .exe extension on
Windows), but this just starts the runtime and then loads the .dll containing the main
compiled output. (It’s slightly different if you target .NET Framework: that compiles the
application directly into a self-bootstrapping .exe with no separate .dll.) In any case, the
only difference between the main compiled output of an application and a library is that
the former specifies an application entry point. Both file types can export features to be
consumed by other components. These are both examples of assemblies, the subject of
Chapter 12.

C# project files have a .csproj extension, and if you examine these files
with a text editor, you’ll find that they contain XML. A .csproj file describes
the contents of the project and configures how it should be built. These files
are recognized by both Visual Studio and the .NET extensions for VS Code.
They are also understood by various command-line build utilities such as
the dotnet command-line tool installed by the .NET SDK, and also
Microsoft’s older MSBuild tool. (MSBuild supports numerous languages
and targets, not just .NET. In fact, when you build a C# project with the
.NET SDK’s dotnet build command, it is effectively a wrapper around
MSBuild.)

You will often want to work with groups of projects. For example, it is good
practice to write tests for your code, but most test code does not need to be
deployed as part of the application, so you would typically put automated
tests into separate projects. And you may want to split up your code for
other reasons. Perhaps the system you’re building has a desktop application
and a website, and you have common code you’d like to use in both
applications. In this case, you’d need one project that builds a library
containing the common code, another producing the desktop application
executable, another to build the website, and three more projects containing
the tests for each of the main projects.

The build tools and IDEs that understand .NET help you work with multiple
related projects through what they call a solution. A solution is a file with a

.sln extension, defining a collection of projects. While the projects in a
solution are usually related, they don’t have to be.

If you’re using Visual Studio, be aware that it requires projects to belong to
a solution, even if you have only one project. Visual Studio Code is happy
to open a single project if you want, but its .NET extensions also recognize
solutions.

A project can belong to more than one solution. In a large codebase, it’s
common to have multiple .sln files with different combinations of projects.
You would typically have a main solution that contains every single project,
but not all developers will want to work with all the code all of the time.
Someone working on the desktop application in our hypothetical example
will also want the shared library but probably has no interest in loading the
web project.

I’ll show how to create a new project, open it in Visual Studio Code, and
run it. I’ll then walk through the various features of a new C# project as an
introduction to the language. I’ll also show how to add a unit test project
and how to create a solution containing both.

Anatomy of a Simple Program
Once you’ve installed the .NET 6.0 SDK either directly or by installing an
IDE, you can create a new .NET program. Start by creating a new directory
called HelloWorld on your computer to hold the code. Open up a command
prompt and ensure that its current directory is set to that, and then run this
command:

dotnet new console

This makes a new C# console application by creating two files. It creates a
project file with a name based on the parent directory: HelloWorld.csproj in
this case. And there will be a Program.cs file containing the code. If you
open that file up in a text editor, you’ll see it’s pretty simple, as Example 1-
1 shows.

Example 1-1. Our first program
// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

You can compile and run this program with the following command:

dotnet run

As you’ve probably already guessed, this will display the text Hello,
World! as output.

If you already have some experience with C#, and are reading this book to
learn what’s new in C# 10.0, this example might come as a bit of a surprise.
In earlier versions of the language, the classic “Hello, World!” example that
all programming books are required by law to open with was significantly
larger. This looks so different that the .NET SDK authors felt it necessary to
provide an explanation—over half of this example is just a comment with a
link to a web page explaining where the rest of the code went. The second
line here is all you need.

This illustrates one of the changes that C# 10.0 introduces: it aims to enable
applications to get straight to the point by reducing the amount of
boilerplate. Boilerplate is the name used to describe code that needs to be
present to satisfy certain rules or conventions but that looks more or less the
same in any project. For example, C# requires code to be defined inside a
method, and a method must always be defined inside a type. You can see
evidence of these rules in Example 1-1. To produce output, it relies on the
.NET runtime’s ability to display text, which is embodied in a method
called WriteLine. But we don’t just say WriteLine because C#
methods always belong to types, which is why the code qualifies this as
Console.WriteLine.

Any C# that we write is subject to the rules, of course, so our code that
invokes the Console.WriteLine method must itself live inside a
method inside a type. And in the majority of C# code, this would be
explicit: in most cases, you’ll see something a bit more like Example 1-2.

Example 1-2. “Hello, World!” with visible boilerplate
using System;

internal class Program
{
 private static void Main(string[] args)
 {
 Console.WriteLine("Hello, World!");
 }
}

There’s still only one line here that defines the behavior of the application,
and it’s the same as in Example 1-1. The obvious advantage of the first
example is that it lets us focus on what our program actually does, although
the downside is that quite a lot of what’s going becomes invisible. With the
explicit style in Example 1-2, nothing is hidden. With Example 1-1, the
compiler still puts the code in a method defined inside a type called
Program; it’s just that you can’t see that from the code. With Example 1-2,
the method and type are clearly visible.

In practice, most C# code looks more like Example 1-2 than Example 1-1,
because some of C# 10.0’s boilerplate reduction measures are just for the
program entry point. When you’re writing the code you want to execute
whenever your program starts, you don’t need to define a containing class
or method. But a program has only one entry point, and for everything else,
you still need to spell it out.

Since real projects involve multiple files, and usually multiple projects, let’s
move on to a slightly more realistic example. I’m going to create a program
that calculates the average (the arithmetic mean, to be precise) of some
numbers. I will also create a second project that will automatically test our
first one. Since I’ve got two projects, this time I’ll need a solution. I’ll
create a new directory called Averages. If you’re following along, it doesn’t
matter where it goes, although it’s a good idea not to put it inside your first
project’s directory. I’ll open a command prompt in that directory and run
this command:

dotnet new sln

This will create a new solution file named Averages.sln. (By default,
dotnet new usually names new projects and solutions after their
containing directories, although you can specify other names.) Now I’ll add
the two projects I need with these two commands:

dotnet new console -o Averages
dotnet new mstest -o Averages.Tests

The -o option here (short for output) indicates that I want each of these
new projects to be created in new subdirectories—when you have multiple
projects, each needs its own directory.

I now need to add these to the solution:

dotnet sln add ./Averages/Averages.csproj
dotnet sln add ./Averages.Tests/Averages.Tests.csproj

I’m going to use that second project to define some tests that will check the
code in the first project (which is why I specified a project type of mstest
—this project will use Microsoft’s unit test framework). For that to work,
the second project will need access to the code in the first project. To enable
that, I run this command:

dotnet add ./Averages.Tests/Averages.Tests.csproj reference
./Averages/Averages.csproj

(I’ve split this over two lines to make it fit, but it needs to be run as a single
command.) Finally, to edit the project, I can launch VS Code in the current
directory with this command:

code .

If you’re following along, and if this is the first time you’ve run VS Code, it
will ask you to make some decisions, such as choosing a color scheme. You
might be tempted to ignore its questions, but one of the things it offers to do
at this point is install extensions for language support. People use VS Code
with all sorts of languages, and the installer makes no assumptions about

which you will be using, so you have to install an extension to get C#
support. But if you follow VS Code’s instructions to browse for language
extensions, it will offer Microsoft’s C# extension. Don’t panic if VS Code
does not offer to do this. Maybe you already had it installed, so it no longer
asks these introductory questions, or perhaps there has a been a change to
Code’s first-run behavior since I wrote this. You can still find the extension
very easily. Click the Extensions icon on the bar on the lefthand side, and it
will show a set of extensions it thinks might be relevant. If you’ve opened
VS code in a directory with a .csproj file in it, this will include the C#
extension. And if all else fails, you can search for the extensions you need.
Figure 1-1 shows VS Code’s extensions panel—you can go to this by
clicking the icon in the bar on the lefthand side. It’s the one shown at the
bottom here, with four squares.

Figure 1-1. Visual Studio Code’s C# extension

As you can see, I’ve typed C# into the search text box at the top, and the
first result here is Microsoft’s C# extension. A few other results also appear.
If you’re following along, make sure you get the right one. If you click the
search result, it will show more detailed information, which should show its
full name as “C# for Visual Studio Code (powered by OmniSharp),” and it
will show “Microsoft” as the publisher. Click the Install button to install the
extension.

It might take a few minutes to download and install the C# extension, but
once that’s done, at the bottom left of the window the status bar should look
similar to Figure 1-2, showing the name of the solution file and a flame icon
that indicates that OmniSharp, the system that provides C# support in VS
Code, is ready. It’s possible that a project picker will appear at the top of the
window—the C# extension will have scanned the solution directory and
found the two C# projects and also their containing solution. Normally it
will just open the solution file, but depending on how your system is
configured, it might ask which you want to use. I will be working across
both of the projects in the solution, so I will select the Averages.sln entry.

Figure 1-2. Visual Studio Code status bar

The C# extension will now inspect all of the source code in all of the
projects in the solution. Obviously there’s not much in these yet, but it will
continue to analyze code as I type, enabling it to identify problems and
make helpful suggestions. During this process, it will notice that there isn’t
yet any configuration for building and debugging the projects. It will show
a dialog at the bottom right of the window offering to add these, as Figure
1-3 shows. It’s a good idea to click the Yes button, and when it asks you
which project to launch, to select the main program, Averages.csproj, so
that VS Code knows which one to use when asked to run or debug the code.

Figure 1-3. C# Extension offering to add build and debug assets

I can take a look at the code by switching to the Explorer view, by clicking
the button at the top of the toolbar on the left. As Figure 1-4 shows, it
displays the directories and files. I’ve expanded the Averages.Test directory
and have selected its UnitTest1.cs file.

Figure 1-4. Visual Studio Code’s Explorer

TIP
If you single-click a file in the Explorer panel, VS Code shows it in a preview tab,
meaning that it won’t stay open for long: as soon as you click some other file, that
displaces the one you had open before. This is designed to avoid ending up with
hundreds of open tabs, but if you’re working back and forth across two files, this can be
annoying. You can avoid this by double-clicking the file when you open it—that opens a
nonpreview tab, which will remain open until you deliberately close it. Alternatively, if
you already have a file open in a preview tab, you can double-click the tab to turn it into
an ordinary tab. VS Code shows the filename in italics in preview tabs, and you’ll see it
change to nonitalic when you double-click.

You might be wondering why I expanded the Averages.Tests directory. The
purpose of this test project will be to ensure that the main project does what
it’s supposed to. I happen to prefer the style of development where you
write your tests before you write the code being tested, so I’ll start with the
test project.

Writing a Unit Test
When I ran the command to create this project earlier, I specified a project
type of mstest. This project template has provided me with a test class to
get me started, in a file called UnitTest1.cs. I want to pick a more
informative name. There are various schools of thought as to how you
should structure your unit tests. Some developers advocate one test class for
each class you wish to test, but I like the style where you write a class for
each scenario in which you want to test a particular class, with one method
for each of the things that should be true about your code in that scenario.
This program will only have one behavior: it will calculate the arithmetic
mean of its inputs. So I’ll rename the UnitTest1.cs source file to
WhenCalculatingAverages.cs. (You can rename a file by right-clicking it in
VS Code’s Explorer panel and selecting the Rename entry.) This test should
verify that we get the expected results for a few representative inputs.
Example 1-3 shows a complete source file that does this; there are two tests
here, shown in bold.

Example 1-3. A unit test class for our first program
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Averages.Tests;

[TestClass]
public class WhenCalculatingAverages
{
 [TestMethod]
 public void SingleInputShouldProduceSameValueAsResult()
 {
 string[] inputs = { "1" };
 double result = AverageCalculator.ArithmeticMean(inputs);
 Assert.AreEqual(1.0, result, 1E-14);
 }

 [TestMethod]
 public void MultipleInputsShouldProduceAverageAsResult()
 {
 string[] inputs = { "1", "2", "3" };
 double result = AverageCalculator.ArithmeticMean(inputs);
 Assert.AreEqual(2.0, result, 1E-14);
 }
}

I will explain each of the features in this file once I’ve shown the program
itself. For now, the most interesting parts of this example are the two
methods. First, we have the
SingleInputShouldProduceSameValueAsResult method,
which checks that our program correctly handles the case where there is a
single input. The first line inside this method describes the input—a single
number. (Slightly surprisingly, this test represents the numbers as strings.
This is because our inputs will ultimately come as command-line
arguments, so our test needs to reflect that.) The second line executes the
code under test (which I’ve not actually written yet). And the third line
states that the calculated average should be equal to the one and only input.
If it’s not, this test will report a failure. The second method,
MultipleInputsShouldProduceAverageAsResult, checks a
slightly more complex case, in which there are three inputs, but has the
same basic shape as the first.

NOTE
We’re working with C#’s double type here, a double-precision floating-point number,
to be able to handle results that are not whole numbers. I’ll be describing C#’s built-in
data types in more detail in the next chapter, but be aware that as with most
programming languages, floating-point arithmetic in C# has limited precision. The
Assert.AreEqual method I’m using to check the results here takes this into account
and lets me specify maximum tolerance for imprecision. The final argument of 1E-14
in each case denotes the number 1 divided by 10 raised to the power of 14, so these tests
are stating that they require the answer to be correct to 14 decimal places.

Let’s focus on one particular line from these tests: the one that runs the code
I want to test. Example 1-4 shows the relevant line from Example 1-3. This
is how you invoke a method that returns a result in C#. This line starts by
declaring a variable to hold the result. (The double indicates the data type,
and result is the variable’s name.) All methods in C# need to be defined
inside a type, and so just as we saw earlier with the
Console.WriteLine example, we have the same form here: a type
name, then a period, then a method name. And then, in parentheses, the
input to the method.

Example 1-4. Calling a method
double result = AverageCalculator.ArithmeticMean(inputs);

If you are following along by typing the code in as you read, then first: well
done. But second, if you were to look at the two places this line of code
appears (once in each test method), you might notice that VS Code has
drawn a squiggly line underneath AverageCalculator. Hovering the
mouse over this kind of squiggly shows an error message, as Figure 1-5
shows.

Figure 1-5. An unrecognized type

This is telling us something we already knew: I haven’t yet written the code
that this test aims to test. Let’s fix that. I need to add a new file, which I can
do in VS Code’s Explorer view by clicking the Averages directory and then,
with that selected, clicking the leftmost button on the toolbar near the top of
the Explorer. Figure 1-6 shows that when you hover the mouse over this
button, it shows a tooltip confirming its purpose. After clicking it, I can type
in AverageCalculator.cs as the name for the new file.

Figure 1-6. Adding a new file

VS Code will create a new, empty file. I’ll add the smallest amount of code
I can to fix the error reported in Figure 1-5. Example 1-5 will satisfy the C#
compiler. It’s not complete yet—it doesn’t perform the necessary
calculations, but we’ll come to that.

Example 1-5. A simple class
namespace Averages;

public static class AverageCalculator
{
 public static double ArithmeticMean(string[] args)
 {
 return 1.0;
 }
}

Since the code will now compile, I can run the tests with this command:

dotnet test

This produces the following output:

Failed MultipleInputsShouldProduceAverageAsResult [291 ms]
 Error Message:
 Assert.AreEqual failed. Expected a difference no greater than
<1E-14>
 between expected value <2> and actual value <1>.
 Stack Trace:
 at Averages.Tests.WhenCalculatingAverages.
MultipleInputsShouldProduceAverageAsResult() in
C:\book\Averages\Averages.Tests\WhenCalculatingAverages.cs:line
21

Failed! - Failed: 1, Passed: 1, Skipped: 0, Total:
2,
Duration: 364 ms - Averages.Tests.dll (net6.0)

As expected, we get failures because I’ve not written a proper
implementation yet. But first, I want to explain each element of Example 1-
5 in turn, as it provides a useful introduction to some important elements of
C# syntax and structure. The very first thing in this file is a namespace
declaration.

Namespaces
Namespaces bring order and structure to what would otherwise be a
horrible mess. The .NET runtime libraries contain a large number of types,
and there are many more out there in third-party libraries, not to mention
the classes you will write yourself. There are two problems that can occur
when dealing with this many named entities. First, it becomes hard to
guarantee uniqueness. Second, it can become challenging to discover the
API you need; unless you know or can guess the right name, it’s difficult to
find what you need from an unstructured list of tens of thousands of things.
Namespaces solve both of these problems.

Most .NET types are defined in a namespace. There are certain conventions
for namespaces that you’ll see a lot. For example, types in .NET’s runtime
libraries are in namespaces that start with System. Additionally, Microsoft
has made a wide range of useful libraries available that are not a core part
of .NET, and these usually begin with Microsoft, or, if they are for use
only with some particular technology, they might be named for that. (For
example, there are libraries for using Microsoft’s Azure cloud platform that
define types in namespaces that start with Azure.) Libraries from other
vendors tend to start with the company name or a product name, while open
source libraries often use their project name. You are not forced to put your
own types into namespaces, but it’s recommended that you do. C# does not
treat System as a special namespace, so nothing’s stopping you from using
that for your own types, but unless you’re writing a contribution to the
.NET runtime libraries that you will be submitting as a pull request to the
.NET runtime source repository, then it’s a bad idea because it will tend to
confuse other developers. You should pick something more distinctive for
your own code, such as your company or project name. As you can see
from the first line of Example 1-5, I’ve chosen to define our
AverageCalculator class inside a namespace called Averages,
matching our project name.

The style of namespace declaration in Example 1-5 is new to C# 10.0.
Today, the majority of code you will come across is likely to use the older,
slightly more verbose style shown in Example 1-6. The difference is that

https://github.com/dotnet/runtime

the namespace declaration is followed by braces ({}), and its effect applies
only to the contents of those braces. This makes it possible for a single file
to contain multiple namespace declarations. But in practice, the
overwhelming majority of C# files contain exactly one namespace
declaration. With the old syntax, this means that the majority of the contents
of each file has to sit inside a pair of braces, indented by one tab stop. The
new style shown in Example 1-5 applies to all types declared in the file
without needing to wrap them explicitly. This is part of C# 10.0’s drive to
reduce unproductive clutter in our source files.

Example 1-6. Pre-C# 10.0 namespace declaration
namespace Averages
{
 public static class AverageCalculator
 {
 ...as before...
 }
}

The namespace usually gives a clue as to the purpose of a type. For
example, all the runtime library types that relate to file handling can be
found in the Sys tem. IO namespace, while those concerned with
networking are under System.Net. Namespaces can form a hierarchy. So
the framework’s System namespace contains types and also other
namespaces, such as System.Net, and these often contain yet more
namespaces, such as System.Net.Sockets and System.Net.Mail.
These examples show that namespaces act as a sort of description, which
can help you navigate the library. If you were looking for regular expression
handling, for example, you might look through the available namespaces
and notice the System.Text namespace. Looking in there, you’d find a
System.Text.RegularExpressions namespace, at which point
you’d be pretty confident that you were looking in the right place.

Namespaces also provide a way to ensure uniqueness. The namespace in
which a type is defined is part of that type’s full name. This lets libraries use
short, simple names for things. For example, the regular expression API
includes a Capture class that represents the results from a regular

expression capture. If you are working on software that deals with images,
the term capture is commonly used to mean the acquisition of some image
data, and you might feel that Capture is the most descriptive name for a
class in your own code. It would be annoying to have to pick a different
name just because the best one is already taken, particularly if your image
acquisition code has no use for regular expressions, meaning that you
weren’t even planning to use the existing Capture type.

But in fact, it’s fine. Both types can be called Capture, and they will still
have different names. The full name of the regular expression Capture
class is effectively
System.Text.RegularExpressions.Capture, and likewise,
your class’s full name would include its containing namespace (for
example, Spi ffi ngS oft wor ks. Ima gin g.Ca ptu re).

If you really want to, you can write the fully qualified name of a type every
time you use it, but most developers don’t want to do anything quite so
tedious, which is where the using directives you can see at the start of
Examples 1-2 and 1-3 come in. It’s common to see a list of directives at the
top of each source file, stating the namespaces of the types that file intends
to use. You will normally edit this list to match your file’s requirements. In
this example, the dotnet command-line tool added using
Microsoft.VisualStudio.TestTools.UnitTesting; when it
created the test project. You’ll see different sets in different contexts. If you
add a class representing a UI element, for example, Visual Studio would
include various UI-related namespaces in the list.

Projects that target C# 10.0 or later typically have fewer using directives
than you will see if you look at projects written for older versions (which, at
the time of writing, is almost all of them) because of a new language
feature: global using directives. If we put the global keyword in front of
the directive, as Example 1-7 does, the directive applies to all files in a
project. The .NET SDK then takes this a step further, by generating a
hidden file in your project with a set of these global using directives to
ensure that commonly used namespaces such as System and

System.Collections.Generic are available. (The exact set of
namespaces added as implicit global imports varies by project type—web
projects get a few extra, for example. If you’re wondering why unit test
projects don’t already do what Example 1-7 does, it’s because the .NET
SDK doesn’t have a specific project type for test projects—it considers
them to be just a kind of class library.)

Example 1-7. A global using directive
global using Microsoft.VisualStudio.TestTools.UnitTesting;

With using declarations like these (either per-file or global) in place, you
can just use the short, unqualified name for a class. The line of code that
enables Example 1-1 to do its job uses the System.Console class, but
because the SDK adds an implicit global using directive for the
System namespace, it can refer to it as just Console.

NOTE
Earlier, I used the dotnet CLI to add a reference from our Averages.Tests
project to our Averages project. You might think that references are redundant—can’t
the compiler work out which external libraries we are using from the namespaces? It
could if there was a direct correspondence between namespaces and either libraries or
packages, but there isn’t. There is sometimes an apparent connection—the popular
Newtonsoft.Json NuGet package contains a Newtonsoft.Json.dll file that contains
classes in the Newtonsoft.Json namespace, for example. But often there’s no such
connection—the .NET runtime libraries include a Sys tem. Pri vat e.C ore Lib .dll file, but
there is no System.Private.CoreLib namespace. So it is necessary to tell the
compiler which libraries your project depends on, and also which namespaces it uses.
We will look at the nature and structure of library files in more detail in Chapter 12.

Even with namespaces, there’s potential for ambiguity. A single source file
might use two namespaces that both happen to define a class of the same
name. If you want to use that class, then you will need to be explicit,
referring to it by its full name. If you need to use such classes a lot in the
file, you can still save yourself some typing: you only need to use the full
name once because you can define an alias. Example 1-8 uses aliases to

resolve a clash that I’ve run into a few times: .NET’s desktop UI
framework, the Windows Presentation Foundation (WPF), defines a Path
class for working with Bézier curves, polygons, and other shapes, but
there’s also a Path class for working with filesystem paths, and you might
want to use both types together to produce a graphical representation of the
contents of a file. Just adding using directives for both namespaces would
make the simple name Path ambiguous if unqualified. But as Example 1-8
shows, you can define distinctive aliases for each.

Example 1-8. Resolving ambiguity with aliases
using System.IO;
using System.Windows.Shapes;
using IoPath = System.IO.Path;
using WpfPath = System.Windows.Shapes.Path;

With these aliases in place, you can use IoPath as a synonym for the file-
related Path class, and WpfPath for the graphical one.

By the way, you can refer to types in your own namespace without
qualification, without needing a using directive. That’s why the test code
in Example 1-3 doesn’t have a using Averages; directive. However,
you might be wondering how this works, since the test code declares a
different namespace, Averages.Tests. To understand this, we need to
look at namespace nesting.

Nested namespaces
As you’ve already seen, the .NET runtime libraries nest their namespaces,
sometimes quite extensively, and you will often want to do the same. There
are two ways you can do this. You can nest namespace declarations, as
Example 1-9 shows.

Example 1-9. Nesting namespace declarations
namespace MyApp
{
 namespace Storage
 {
 ...

 }
}

Alternatively, you can just specify the full namespace in a single
declaration, as Example 1-10 shows. This is the more commonly used style.
This single-declaration style works with either the new C# 10.0-style
declaration shown in Example 1-10 or with the older style using braces.

Example 1-10. Nested namespace with a single declaration
namespace MyApp.Storage;

Any code you write in a nested namespace will be able to use types not just
from that namespace but also from its containing namespaces without
qualification. Code in Examples 1-9 or 1-10 would not need explicit
qualification or using directives to use types either in the
MyApp.Storage namespace or the MyApp namespace. This is why in
Example 1-3 I didn’t need to add a using Averages; directive to be
able to access the AverageCalculator in the Averages namespace:
the test was declared in the Averages.Tests namespace, and since that
is nested in the Averages namespace, the code automatically has access
to that outer namespace.

When you define nested namespaces, the convention is to create a matching
directory hierarchy. Some tools expect this. Although VS Code doesn’t
currently have any particular expectations here, Visual Studio does follow
this convention. If your project is called MyApp, it will put new classes in
the MyApp namespace when you add them to the project. But if you create
a new directory in the project called, say, Storage, Visual Studio will put
any new classes you create in that directory into the MyApp.Storage
namespace. Again, you’re not required to keep this—Visual Studio just
adds a namespace declaration when creating the file, and you’re free to
change it. The compiler does not need the namespace to match your
directory hierarchy. But since the convention is supported by various tools,
including Visual Studio, life will be easier if you follow it.

Classes
After the namespace declaration, our AverageCalculator.cs file defines a
class. Example 1-11 shows this part of the file. This starts with the public
keyword, which enables this class to be accessed by other components.
Next is the static keyword, which indicates that this class is not meant to
be instantiated—it offers only class-level operations and no per-instance
features. Then comes the class keyword followed by the name, and of
course the full name of the type is effectively
Averages.AverageCalculator, because of the namespace
declaration. As you can see, C# uses braces ({}) to delimit all sorts of things
—we already saw this in the older (but still widely used) namespace
declaration syntax, and here you can see the same thing with the class, as
well as the method it contains.

Example 1-11. A class with a method
public static class AverageCalculator
{
 public static double ArithmeticMean(string[] args)
 {
 return 1.0;
 }
}

Classes are C#’s mechanism for defining entities that combine state and
behavior, a common object-oriented idiom. But this class contains nothing
more than a single method. C# does not support global methods—all code
has to be written as a member of some type. So this particular class isn’t
very interesting—its only job is to act as the container for the method that
will do the actual work. We’ll see some more interesting uses for classes in
Chapter 3.

As with the class, I’ve marked the method as public to enable access
from other components. I’ve also declared this to be a static method,
meaning that it is not necessary to create an instance of the containing type
(AverageCalculator, in this case) in order to invoke the method. The
double keyword that follows indicates that the type of data this method
returns is a double-precision floating-point number.

The method declaration is followed by the method body, which in this
example contains code that returns a placeholder value, so all that remains
is to modify the code inside the braces delimiting the method body.
Example 1-12 shows code that calculates the average instead of just
returning 1.0.

Example 1-12. Calculating the average
return args.Select(numText => double.Parse(numText)).Average();

This relies on library functions for working with collections that are part of
the set of features collectively known as LINQ, which is the subject of
Chapter 10. But just to describe quickly what’s going on here, the Select
method lets us apply an operation to every single item in a collection, and in
this case, the operation I’m applying is the double.Parse method, a
.NET runtime library function that converts a textual string containing a
number into the native double-precision floating-point type. And then we
push these transformed results through the Average method, which does
the calculation for us.

With this in place, if I run dotnet test again, it reports that all tests
have passed. So apparently the code is working. However, I see a problem
if I try to verify that informally by running the program, which I can do
with this command:

./Averages/bin/Debug/net6.0/Averages 1 2 3 4 5

This just writes out Hello, World! to the screen. I’ve written and tested
the code that performs the required calculation, but I’ve not yet connected
that up to the program’s entry point. The code that runs when the program
starts lives in Program.cs, although there’s nothing special about that
filename. The program entry point can live in any file. In older versions of
C#, you denoted the entry point by defining a static method called
Main, as Example 1-2 showed. But starting with C# 10.0, you can instead
add a file that contains executable statements without putting them
explicitly inside a method in a type, and the C# compiler will treat that as
the entry point. (You’re only allowed to have one file in your project written

that way, because your program can have only one entry point.) If I replace
the entire contents of Program.cs with the code shown in Example 1-13, it
will have the desired effect.

Example 1-13. Program entry point with arguments
using Averages;

Console.WriteLine(AverageCalculator.ArithmeticMean(args));

Notice that I’ve had to add a using directive—when you use C# 10.0’s
new stripped-down program entry point syntax, the code in that file is not in
any namespace by default, so I need to state that I want to use the class I
defined in the Averages namespace. After that, this code invokes the
method I wrote earlier, passing args as an argument, and then calls
Console.WriteLine to display the result. When you use this style of
program entry point, args is a special name—it’s effectively an implicitly
defined local variable that provides access to the command-line arguments.
This will be an array of strings, with one entry for each argument. If you
want to run the program again with the same arguments as before, run the
dotnet build command first to rebuild it.

TIP
Some C-family languages include the filename of the program itself as the first
argument, on the grounds that it’s part of what the user typed at the command prompt.
C# does not follow this convention. If the program is launched without arguments, the
array’s length will be 0. You might have noticed that the code does not cope well with
that. Feel free to add a new test scenario that defines the relevant behavior, and to
modify the program to match.

Unit Tests
Now that the program is working, I want to return to the tests, because they
illustrate some C# features that the main program does not. If you go back
to Example 1-3, it starts in a pretty ordinary way: we have a using
directive and then a namespace declaration, for Averages.Tests this

time, matching the test project name. But the class looks different. Example
1-14 shows the relevant part of Example 1-3.

Example 1-14. Test class with attribute
[TestClass]
public class WhenCalculatingAverages
{

Immediately before the class declaration is the text [TestClass]. This is
an attribute. Attributes are annotations you can apply to classes, methods,
and other features of the code. Most of them do nothing on their own—the
compiler records the fact that the attribute is present in the compiled output,
but that is all. Attributes are useful only when something goes looking for
them, so they tend to be used by frameworks. In this case, I’m using
Microsoft’s unit testing framework, and it goes looking for classes
annotated with this TestClass attribute. It will ignore classes that do not
have this annotation. Attributes are typically specific to a particular
framework, and you can define your own, as we’ll see in Chapter 14.

The two methods in the class are also annotated with attributes. Example 1-
15 shows the relevant excerpts from Example 1-3. The test runner will
execute any methods marked with the [TestMethod] attribute.

Example 1-15. Annotated methods
[TestMethod]
public void SingleInputShouldProduceSameValueAsResult()
...

[TestMethod]
public void MultipleInputsShouldProduceAverageAsResult()
...

And with that, we’ve examined every element of a program and the test
project that verifies that it works as intended.

Summary
You’ve now seen the basic structure of C# programs. I created a solution
containing two projects, one for tests and one for the program itself. This

was a simple example, so each project had only one or two source files of
interest. Where necessary, these files began with using directives
indicating which types the file uses. The program’s entry point used C#
10.0’s new stripped-down style, but the other two used a more conventional
structure, containing a namespace declaration stating the namespace that the
file populates, and a class containing one or more methods or other
members, such as fields.

We will look at types and their members in much more detail in Chapter 3,
but first, Chapter 2 will deal with the code that lives inside methods, where
we express what we want our programs to do.

1 The old .NET Framework will be supported for many years to come, but Microsoft has stated
that it will not get any new features.

2 .NET Native and NativeAOT don’t do this: they are designed specifically to avoid any
runtime JIT, so they do not offer tiered compilation.

3 If you’re wondering how these version numbers and dates square with yearly, alternating
releases, the current schedule was introduced with .NET Core 3.1, and there was no .NET Core
4. When .NET Core was rebranded as plain .NET, it skipped from 3.1 to 5.0 to emphasize that
this was moving on from .NET Framework, the latest version of which is 4.8.

4 Or .NET Core. The name changes can cause confusion here. A component supporting .NET
Core 3.1 will work on .NET 5.0 and .NET 6.0, because these are later versions of the same
runtime; it just dropped the word Core and skipped a version number when .NET 5.0 shipped.

Chapter 2. Basic Coding in C#

All programming languages have to provide certain capabilities. It must be
possible to express the calculations and operations that our code should
perform. Programs need to be able to make decisions based on their input.
Sometimes we will need to perform tasks repeatedly. These fundamental
features are the very stuff of programming, and this chapter will show how
these things work in C#.

Depending on your background, some of this chapter’s content may seem very
familiar. C# is said to be from the “C family” of languages. C is a hugely
influential programming language, and numerous languages have borrowed
much of its syntax. There are direct descendants, such as C++ and Objective-C.
There are also more distantly related languages, including Java, JavaScript, and
C# itself, that have no compatibility with C but that still copy many aspects of
its syntax. If you are familiar with any of these languages, you will recognize
many of the language features we are about to explore.

We saw the basic elements of a program in Chapter 1. In this chapter, we will
be looking just at code inside methods. As you’ve seen, C# requires a certain
amount of structure: code is made up of statements that live inside a method,
which belongs to a type, which is typically inside a namespace, all inside a file
that is part of a project, typically contained by a solution. (In the special case of
a program’s entry point, the containing method and type might be hidden
thanks to C# 10.0’s clutter reduction features, but they’re visible in most files.)
For clarity, most of the examples in this chapter will show the code of interest
in isolation, as in Example 2-1.

Example 2-1. The code and nothing but the code
Console.WriteLine("Hello, World!");

And although C# 10.0 will accept that shorter example as the entirety of the
program, any program larger than a single file (i.e., almost any useful program)
will need to include the other elements explicitly. So unless I say otherwise,
this kind of extract is shorthand for showing the code in context inside a

suitably structured file. Examples such as Example 2-1 are equivalent to
something more like Example 2-2.

Example 2-2. The whole code
using System;

internal class MyType
{
 private static void SomeMethod()
 {
 Console.WriteLine("Hello, World!");
 }
}

Although I’ll be introducing fundamental elements of the language in this
section, this book is for people who are already familiar with at least one
programming language, so I’ll be relatively brief with the most ordinary
features of the language and will go into more detail on those aspects that are
particular to C#.

Local Variables
The inevitable “Hello, World!” example is missing a vital element: it doesn’t
really deal with information. Useful programs normally fetch, process, and
produce data, so the ability to define and identify it is one of the most
important features of a language. Like most languages, C# lets you define local
variables, which are named elements inside a method that each hold a piece of
information.

NOTE
In the C# specification, the term variable can refer to local variables but also to fields in
objects and array elements. This section is concerned entirely with local variables, but it gets
tiring to keep reading the local prefix. So, from now on in this section, variable means a
local variable.

C# is a statically typed language, which is to say that any element of code that
represents or produces information, such as a variable or an expression, has a

data type determined at compile time. This is different than dynamically typed
languages, such as JavaScript, in which types are determined at runtime.

The easiest way to see C#’s static typing in action is with simple variable
declarations, such as the ones in Example 2-3. Each of these starts with the data
type—the first two variables are of type string, followed by two int
variables. These types represent text strings and 32-bit signed integers,
respectively.

Example 2-3. Variable declarations
string part1 = "the ultimate question";
string part2 = "of something";
int theAnswer = 42;
int andAnotherThing;

The data type is followed immediately by the variable’s name. The name must
begin with either a letter or an underscore, which can be followed by any
combination of letters, decimal digits, and underscores. (At least, those are the
options if you stick to ASCII. C# supports Unicode, so if you save your file in
UTF-8 or UTF-16 format, anything after the first character in an identifier can
be any of the characters described in the “Identifier and Pattern Syntax” annex
of the Unicode specification. This includes various accents, diacritics, and
numerous punctuation marks but only characters intended for use within words
—characters that Unicode identifies as being intended for separating words
cannot be used.) These same rules determine what constitutes a legal identifier
for any user-defined entity in C#, such as a class or a method.

Example 2-3 shows that there are a couple of forms of variable declarations.
The first three variables include an initializer, which provides the variable’s
initial value, but as the final variable shows, this is optional. That’s because you
can assign new values into variables at any point. Example 2-4 continues on
from Example 2-3 and shows that you can assign a new value into a variable
regardless of whether it had an initial value.

Example 2-4. Assigning values to previously declared variables
part2 = " of life, the universe, and everything";
andAnotherThing = 123;

Because variables have a static type, the compiler will reject attempts to assign
the wrong kind of data. So if we were to follow on from Example 2-3 with the

1

code in Example 2-5, the compiler would complain. It knows that the variable
called theAnswer has a type of int, which is a numeric type, so it will
report an error if we attempt to assign a text string into it.

Example 2-5. An error: the wrong type
theAnswer = "The compiler will reject this";

You’d be allowed to do this in dynamic languages such as JavaScript, because
in those languages, a variable doesn’t have its own type—all that matters is the
type of the value it contains, and that can change as the code runs. It’s possible
to do something similar in C# by declaring a variable with type dynamic or
object (which I’ll describe later in “Dynamic” and “Object”). However, the
most common practice in C# is for variables to have a more specific type.

NOTE
The static type doesn’t always provide a complete picture, thanks to inheritance. I’ll be
discussing this in Chapter 6, but for now, it’s enough to know that some types are open to
extension through inheritance, and if a variable uses such a type, then it’s possible for it to
refer to some object of a type derived from the variable’s static type. Interfaces, described in
Chapter 3, provide a similar kind of flexibility. However, the static type always determines
what operations you are allowed to perform on the variable. If you want to use additional
members specific to some derived type, you won’t be able to do so through a variable of the
base type.

You don’t have to state the variable type explicitly. You can let the compiler
work it out for you by using the keyword var in place of the data type.
Example 2-6 shows the first three variable declarations from Example 2-3 but
using var instead of explicit data types.

Example 2-6. Implicit variable types with the var keyword
var part1 = "the ultimate question";
var part2 = "of something";
var theAnswer = 40 + 2;

This code often misleads people who know some JavaScript, because that also
has a var keyword that you can use in a similar-looking way. But var does
not work the same way in C# as in JavaScript: these variables are still all
statically typed. All that’s changed is that we haven’t said what the type is—

we’re letting the compiler deduce it for us. It looks at the initializers and can
see that the first two variables are strings, whereas the third is an integer.
(That’s why I left out the fourth variable from Example 2-3,
andAnotherThing. That doesn’t have an initializer, so the compiler would
have no way of inferring its type. If you try to use the var keyword without an
initializer, you’ll get a compiler error.)

You can demonstrate that variables declared with var are statically typed by
attempting to assign something of a different type into them. We could repeat
the same thing we tried in Example 2-5 but this time with a var-style variable.
Example 2-7 does this, and it will produce exactly the same compiler error,
because it’s the same mistake—we’re trying to assign a text string into a
variable of an incompatible type. That variable, theAnswer, has a type of
int here, even though we didn’t say so explicitly.

Example 2-7. An error: the wrong type (again)
var theAnswer = 42;
theAnswer = "The compiler will reject this";

Opinion is divided on how and when to use the var keyword, as the following
sidebar “To var, or Not to var?” describes.

TO VAR, OR NOT TO VAR?
A variable declared with var behaves in exactly the same way as the
equivalent explicitly typed declaration, which raises a question: Which
should you use? In a sense, it doesn’t matter, because they are equivalent.
However, if you like your code to be consistent, you’ll want to pick one
style and stick to it. Not everyone agrees on which is the “best” style.

Some developers see the extra text required for explicit variable types as
unproductive “ceremony,” preferring the more succinct var keyword. Let
the compiler deduce the type for you, instead of doing the work yourself, or
so the argument goes. It also reduces visual clutter in the code.

I take a different view, because I spend more time reading code than
writing it—debugging, code review, refactoring, and enhancements seem to
dominate. Anything that makes those activities easier is worth the frankly
minimal time it takes to write the type names explicitly. Code that uses
var everywhere slows you down, because you have to work out what the
type really is in order to understand the code. Although var saved you
some work when you wrote the code, that gain is quickly wiped out by the
additional thought required every time you go back and look at the code.
So unless you’re the sort of developer who only ever writes new code,
leaving others to clean up after you, the only benefit the “var everywhere”
philosophy really offers is that it can look neater.

You can even use explicit types and still get the compiler to do the work: in
Visual Studio (and also VS Code if you enable the
omnisharp.enableRoslynAnalyzers setting) you can write the
keystroke-friendly var, then press Ctrl-. to open the Quick Actions menu.
This offers to replace it with the explicit type for you. (This feature uses the
C# compiler’s API to discover the variable’s type.)

That said, there are some situations in which I will use var. One is to
avoid writing the name of the type twice. This can happen when you use
the new operator to create a new instance of some type, as in this example:

List<int> numbers1 = new List<int>();
var numbers2 = new List<int>();

List<int> numbers3 = new();

All three lines have the same effect. (The third line works because you can
use new() without specifying the type as long as the C# compiler can
infer the type required. var n = new(); wouldn’t work because that
doesn’t indicate a type.) The type name is right there in all three cases, so
the first one doesn’t gain anything by stating the type twice. There are
similar examples involving casts and generic methods. As long as the type
name appears explicitly in the variable declaration, there is no downside to
using var to avoid writing the type twice.

I also use var where it is necessary. As we will see in later chapters, C#
supports anonymous types, and as the name suggests, it’s not possible to
write the name of such a type. In these situations, you may be compelled to
use var. (In fact, the var keyword was introduced to C# only when
anonymous types were added.)

One last thing worth knowing about declarations is that you can declare and
optionally initialize multiple variables in a single line. If you want multiple
variables of the same type, this may reduce clutter in your code. Example 2-8
declares three variables of the same type in a single declaration and initializes
two of them.

Example 2-8. Multiple variables in a single declaration
double a, b = 2.5, c = -3;

Regardless of how you declare it, a variable holds some piece of information of
a particular type, and the compiler prevents us from putting data of an
incompatible type into that variable. Variables are useful only because we can
refer back to them later in our code. Example 2-9 starts with the variable
declarations we saw in earlier examples, then goes on to use the values of those
variables to initialize some more variables, and then displays the results.

Example 2-9. Using variables
string part1 = "the ultimate question";
string part2 = "of something";
int theAnswer = 42;

part2 = "of life, the universe, and everything";

string questionText = "What is the answer to " + part1 + ", " + part2
+ "?";
string answerText = "The answer to " + part1 + ", " +
 part2 + ", is: " + theAnswer;

Console.WriteLine(questionText);
Console.WriteLine(answerText);

By the way, this code relies on the fact that C# defines a couple of meanings
for the + operator when it’s used with strings. First, when you “add” two
strings together, it concatenates them. Second, when you “add” something
other than a string to the end of a string (as the initializer for answerText
does—it adds theAnswer, which is a number), C# generates code that
converts the value to a string before appending it. So Example 2-9 produces
this output:

What is the answer to the ultimate question, of life, the universe,
and everythi
ng?
The answer to the ultimate question, of life, the universe, and
everything, is:
42

NOTE
In this book, text longer than 80 characters is wrapped across multiple lines to fit the page. If
you try these examples, they will look different if your console windows are configured for a
different width.

When you use a variable, its value is whatever you last assigned to it. If you
attempt to use a variable before you have assigned a value, as Example 2-10
does, the C# compiler will report an error.

Example 2-10. Error: using an unassigned variable
int willNotWork;
Console.WriteLine(willNotWork);

Compiling that produces this error for the second line:

error CS0165: Use of unassigned local variable 'willNotWork'

The compiler uses a slightly pessimistic system (which it calls the definite
assignment rules) for determining whether a variable has a value yet. It’s not
possible to create an algorithm that can determine such things for certain in
every possible situation. Since the compiler has to err on the side of caution,
there are some situations in which the variable will have a value by the time the
offending code runs, and yet the compiler still complains. The solution is to
write an initializer so that the variable always contains something, perhaps
using 0 for numeric values and false for Boolean variables. In Chapter 3, I’ll
introduce reference types, and as the name suggests, a variable of such a type
can hold a reference to an instance of the type. If you need to initialize such a
variable before you’ve got something for it to refer to, you can use the keyword
null, a special value signifying a reference to nothing. Alternatively, you can
initialize a variable of any type with the keyword default, which denotes a
value of zero, false, or null.

The definite assignment rules determine the parts of your code in which the
compiler considers a variable to contain a valid value and will therefore let you
read from it. Writing into a variable is less restricted, but as you might expect,
any given variable is accessible only from certain parts of the code. Let’s look
at the rules that govern this.

Scope
A variable’s scope is the range of code in which you can refer to that variable
by its name. Variables are not the only things with scope. Methods, properties,
types, and, in fact, anything with a name all have scope. These require
broadening the definition of scope: it’s the parts of your code where you can
refer to the entity by its name without needing additional qualification. When I
write Console.WriteLine, I am referring to the method by its name
(WriteLine), but I need to qualify it with a class name (Console), because
the method is not in scope. But with a local variable, scope is absolute: either
it’s accessible without qualification, or it’s not accessible at all.

Broadly speaking, a variable’s scope starts at its declaration and finishes at the
end of its containing block. (Some statements, such as loops, complicate this by
putting variable declarations ahead of the block in which they are in scope.) A
block is a region of code delimited by a pair of braces ({}). A method body is a

2

block, so a variable defined in one method is not visible in a separate method,
because it is out of scope. If you attempt to compile Example 2-11, you’ll get
an error complaining that The name 'thisWillNotWork' does not
exist in the current context.

Example 2-11. Error: out of scope
static void SomeMethod()
{
 int thisWillNotWork = 42;
}

static void AnUncompilableMethod()
{
 Console.WriteLine(thisWillNotWork);
}

Methods often contain nested blocks, particularly when you work with the loop
and flow control constructs we’ll be looking at later in this chapter. At the point
where a nested block starts, everything that is in scope in the outer block
continues to be in scope inside that nested block. Example 2-12 declares a
variable called someValue and then introduces a nested block as part of an
if statement. The code inside this block is able to access that variable declared
in the containing block.

Example 2-12. Variable declared outside block, used within block
int someValue = GetValue();
if (someValue > 100)
{
 Console.WriteLine(someValue);
}

The converse is not true. If you declare a variable in a nested block, its scope
does not extend outside of that block. So Example 2-13 will fail to compile,
because the willNotWork variable is only in scope within the nested block.
The final line of code will produce a compiler error because it tries to use that
variable outside of that block.

Example 2-13. Error: trying to use a variable not in scope
int someValue = GetValue();
if (someValue > 100)
{
 int willNotWork = someValue - 100;

}
Console.WriteLine(willNotWork);

This might seem fairly straightforward, but things get a bit more complex when
it comes to potential naming collisions. C# sometimes catches people by
surprise here.

Variable Name Ambiguity
Consider the code in Example 2-14. This declares a variable called
anotherValue inside a nested block. As you know, that variable is only in
scope to the end of that nested block. After that block ends, we try to declare
another variable with the same name.

Example 2-14. Error: surprising name collision
int someValue = GetValue();
if (someValue > 100)
{
 int anotherValue = someValue - 100; // Compiler error
 Console.WriteLine(anotherValue);
}

int anotherValue = 123;

This causes a compiler error on the first of the lines to declare
anotherValue:

error CS0136: A local or parameter named 'anotherValue' cannot be
declared in
 this scope because that name is used in an enclosing local scope to
define a
 local or parameter

This seems odd. At the final line, the supposedly conflicting earlier declaration
is not in scope, because we’re outside of the nested block in which it was
declared. Furthermore, the second declaration is not in scope within that nested
block, because the declaration comes after the block. The scopes do not
overlap, but despite this, we’re having problems with C#’s rules for avoiding
name conflicts. To see why this example fails, we first need to look at a less
surprising example.

C# tries to prevent ambiguity by disallowing code where one name might refer
to more than one thing. Example 2-15 shows the sort of problem it aims to
avoid. Here we’ve got a variable called errorCount, and the code starts to
modify this as it progresses, but partway through, it introduces a new variable
in a nested block, also called errorCount. It is possible to imagine a
language that allowed this—you could have a rule that says that when multiple
items of the same name are in scope, you just pick the one whose declaration
happened last.

Example 2-15. Error: hiding a variable
int errorCount = 0;
if (problem1)
{
 errorCount += 1;

 if (problem2)
 {
 errorCount += 1;
 }

 // Imagine that in a real program there was a big
 // chunk of code here before the following lines.

 int errorCount = GetErrors(); // Compiler error
 if (problem3)
 {
 errorCount += 1;
 }
}

C# chooses not to allow this, because code that did this would be easy to
misunderstand. This is an artificially short method because it’s a contrived
example in a book, making it easy to see the duplicate names, but if the code
were a bit longer, it would be very easy to miss the nested variable declaration.
Then, we might not realize that errorCount refers to something different at
the end of the method than it did earlier on. C# simply disallows this to avoid
misunderstanding.

But why does Example 2-14 fail? The scopes of the two variables don’t
overlap. Well, it turns out that the rule that outlaws Example 2-15 is not based
on scopes. It is based on a subtly different concept called a declaration space.
A declaration space is a region of code in which a single name must not refer to

3

two different entities. Each method introduces a declaration space for variables.
Nested blocks also introduce declaration spaces, and it is illegal for a nested
declaration space to declare a variable with the same name as one in its parent’s
declaration space. And that’s the rule we’ve contravened here—the outermost
declaration space in Example 2-15 contains a variable named errorCount,
and a nested block’s declaration space tries to introduce another variable of the
same name.

If that all seems a bit dry or arbitrary, it may be helpful to know why there’s a
whole separate set of rules for name collisions instead of basing it on scopes.
The intent of the declaration space rules is that it mostly shouldn’t matter
where you put the declaration. If you were to move all of the variable
declarations in a block to the start of that block—and some organizations have
coding standards that mandate this sort of layout—the idea of these rules is that
this shouldn’t change what the code means. This wouldn’t be possible if
Example 2-15 were legal. And this explains why Example 2-14 is illegal.
Although the scopes don’t overlap, they would if you moved all variable
declarations to the tops of their containing blocks.

Local Variable Instances
Variables are features of the source code, so each particular variable has a
distinct identity: it is declared in exactly one place in the source code and goes
out of scope at exactly one well-defined place. However, that doesn’t mean that
it corresponds to a single storage location in memory. It is possible for multiple
invocations of a single method to be in progress simultaneously, through
recursion, multithreading, or asynchronous execution.

Each time a method runs, it gets a distinct set of storage locations to hold the
local variables’ values. This enables multiple threads to execute the same
method simultaneously without problems, because each has its own set of local
variables. Likewise, in recursive code, each nested call gets its own set of
locals that will not interfere with any of its callers. The same goes for multiple
concurrent invocations of a method. To be strictly accurate, each execution of a
particular scope gets its own set of variables. This distinction matters when you
use anonymous functions, described in Chapter 9. As an optimization, C#
reuses storage locations when it can, so it will only allocate new memory for

each scope’s execution when it really has to. (For example, it won’t allocate
new memory for variables declared in the body of a loop for each iteration
unless you put it into a situation where it has no choice.) But the effect is as
though it allocated new space each time.

Be aware that the C# compiler does not make any particular guarantee about
where variables live (except for some special cases, as we’ll see in Chapter 18).
They might well live on the stack, but sometimes they don’t. When we look at
anonymous functions in later chapters, you’ll see that variables sometimes need
to outlive the method that declares them, because they remain in scope for
nested methods that will run as callbacks after the containing method has
returned.

By the way, before we move on, be aware that just as variables are not the only
things to have scope, they are also not the only things to which declaration
space rules apply. Other language features that we’ll be looking at later,
including classes, methods, and properties, also have scoping and name
uniqueness rules.

Statements and Expressions
Variables give us somewhere to put the information that our code works with,
but to do anything with those variables, we will need to write some code. This
will mean writing statements and expressions.

Statements
When we write a C# method, we are writing a sequence of statements.
Informally, the statements in a method describe the actions we want the method
to perform. Each line in Example 2-16 is a statement. It might be tempting to
think of a statement as an instruction to do one thing (such as initializing a
variable or invoking a method). Or you might take a more lexical view, where
anything ending in a semicolon is a statement. (And it’s the semicolons that are
significant here, not the line breaks, by the way. I could have written this as one
long line of code and it would have exactly the same meaning.) However, both
descriptions are simplistic, even though they happen to be true for this
particular example.

Example 2-16. Some statements
int a = 19;
int b = 23;
int c;
c = a + b;
Console.WriteLine(c);

C# recognizes many different kinds of statements. The first three lines of
Example 2-16 are declaration statements, statements that declare and
optionally initialize a variable. The fourth and fifth lines are expression
statements. But some statements have more structure than the ones in this
example.

When you write a loop, that’s an iteration statement. When you use the if or
switch mechanisms described later in this chapter to choose between various
possible actions, those are selection statements. In fact, the C# specification
distinguishes between 13 categories of statements. Most fit broadly into the
scheme of describing either what the code should do next or, for features such
as loops or conditional statements, describing how it should decide what to do
next. Statements of the second kind usually contain one or more embedded
statements describing the action to perform in a loop, or the action to perform
when an if statement’s condition is met.

There’s one special case, though. A block is a kind of statement. This makes
statements such as loops more useful than they would otherwise be, because a
loop iterates over just a single embedded statement. That statement can be a
block, and since a block itself is a sequence of statements (delimited by
braces), this enables loops to contain more than one statement.

This illustrates why the two simplistic points of view stated earlier
—“statements are actions” and “statements are things that end in
semicolons”—are wrong. Compare Example 2-16 with 2-17. Both do the same
thing, because the various actions we’ve said we want to perform remain
exactly the same, and both contain five semicolons. However, Example 2-17
contains one extra statement. The first two statements are the same, but they
are followed by a third statement, a block, which contains the final three
statements from Example 2-16. The extra statement, the block, doesn’t end in a
semicolon, nor does it perform any action. In this particular example, it’s
pointless, but it can sometimes be useful to introduce a nested block like this to

avoid name ambiguity errors. So statements can be structural, rather than
causing anything to happen at runtime.

Example 2-17. A block
int a = 19;
int b = 23;
{
 int c;
 c = a + b;
 Console.WriteLine(c);
}

While your code will contain a mixture of statement types, it will inevitably
end up containing at least a few expression statements. An expression
statement is a statement that consists of a suitable expression, followed by a
semicolon. What’s a suitable expression? What’s an expression, for that matter?
I’d better answer that second question before coming back to what constitutes a
valid expression for a statement.

Expressions
Microsoft’s official definition of a C# expression is rather dry: “a sequence of
operators and operands.” Admittedly, language specifications tend to be like
that, but in addition to this sort of formal prose, the C# specification contains
some very readable informal explanations of the more formally expressed
ideas. (For example, it describes statements as the means by which “the actions
of a program are expressed” before going on to pin that down with less
approachable but more technically precise language.) The quote at the start of
this paragraph is from the formal definition of an expression, so we might hope
that the informal explanation in the introduction will be more helpful. No such
luck: it says that expressions “are constructed from operands and operators.”
That’s certainly less precise than the other definition, but it’s no easier to
understand. The problem is that there are several kinds of expressions, and they
do different jobs, so there isn’t a single, general, informal description.

It’s tempting to describe an expression as some code that produces a value.
That’s not true for all expressions, but the majority of expressions you’ll write
will fit this description, so I’ll focus on this for now, and I’ll come to the
exceptions later.

The simplest expressions are literals, where we just write the value we want,
such as "Hello, World!" or 42. You can also use the name of a variable
as an expression. Expressions can involve operators, which describe
calculations or other computations to be performed. Operators have some fixed
number of inputs, called operands. Some take a single operand. For example,
you can negate a number by putting a minus sign in front of it. Some take two:
the + operator lets you form an expression that adds together the results of the
two operands on either side of the + symbol.

NOTE
Some symbols have different roles depending on the context. The minus sign is not just used
for negation. It acts as a two-operand subtraction operator if it appears between two
expressions.

In general, operands are also expressions. So, when we write 2 + 2, that’s an
expression that contains two more expressions—the pair of "2" literals on
either side of the + symbol. This means that we can write arbitrarily
complicated expressions by nesting expressions within expressions within
expressions. Example 2-18 exploits this to evaluate the quadratic formula (the
standard way to solve quadratic equations).

Example 2-18. Expressions within expressions
double a = 1, b = 2.5, c = -3;
double x = (-b + Math.Sqrt(b * b - 4 * a * c)) / (2 * a);
Console.WriteLine(x);

Look at the declaration statement on the second line. The overall structure of its
initializer expression is a division operation. But that division operator’s two
operands are also expressions. Its lefthand operand is a parenthesized
expression, which tells the compiler that I want that whole expression (-b +
Math.Sqrt(b * b - 4 * a * c)) to be the first operand of the
division. This subexpression contains an addition, whose lefthand operand is a
negation expression whose single operand is the variable b. The addition’s
righthand side takes the square root of another, more complex expression. And
the division’s righthand operand is another parenthesized expression,

containing a multiplication. Figure 2-1 illustrates the full structure of the
expression.

Figure 2-1. The structure of an expression

One important detail of this last example is that method invocations are a kind
of expression. The Math.Sqrt method used in Example 2-18 is a .NET
runtime library function that calculates the square root of its input and returns
the result. What’s perhaps more surprising is that invocations of methods that
don’t return a value, such as Console.WriteLine, are also, technically,
expressions. And there are a few other constructs that don’t produce values but
are still considered to be expressions, including a reference to a type (such as
the Console in Console.WriteLine) or to a namespace. These sorts of
constructs take advantage of a set of common rules (such as scoping, how to
resolve what a name refers to, etc.) by virtue of being expressions. However, all

the non-value-producing expressions can be used only in certain specific
circumstances. (You can’t use one as an operand in another expression, for
example.) So although it’s not technically correct to define an expression as a
piece of code that produces a value, the ones that do are the ones we use when
describing the calculations we want our code to perform.

We can now return to the question, What can we put in an expression
statement? Roughly speaking, the expression has to do something; it cannot
just calculate a value. So although 2 + 2 is a valid expression, you’ll get an
error if you try to turn it into an expression statement by sticking a semicolon
on the end. That expression calculates something but doesn’t do anything with
the result. To be more precise, you can use the following kinds of expressions
as statements: method invocation, assignment, increment, decrement, and new
object creation. We’ll be looking at increment and decrement later in this
chapter, and we’ll be looking at objects in later chapters, so that leaves
invocation and assignment.

So a method invocation is allowed to be an expression statement. This can
involve nested expressions of other kinds, but the whole thing must be a
method call. Example 2-19 shows some valid examples. Notice that the C#
compiler doesn’t check whether the method call really has any lasting effect—
the Math.Sqrt function is a pure function, in the sense that it does nothing
other than returning a value determined entirely by its inputs. So invoking it
and then doing nothing with the result doesn’t really do anything at all—it’s no
more of an action than the expression 2 + 2. But as far as the C# compiler is
concerned, any method call is allowed as an expression statement.

Example 2-19. Method invocation expressions as statements
Console.WriteLine("Hello, World!");
Console.WriteLine(12 + 30);
Console.ReadKey();
Math.Sqrt(4);

NOTE
If you run this example in VS Code, the call to ReadKey might fail because of how the
debugger redirects input and output by default. The documentation explains how to avoid
this problem when debugging programs that need to read console input.

https://oreil.ly/JefbY

It seems inconsistent that C# forbids us from using an addition expression as a
statement while allowing Math.Sqrt. Both perform a calculation that
produces a result, so it makes no sense to use either in this way. Wouldn’t it be
more consistent if C# allowed only calls to methods that return nothing to be
used for expression statements? That would rule out the final line of Example
2-19, which would seem like a good idea because that code does nothing
useful. It would also be consistent with the fact that 2 + 2 also cannot form
an expression statement. Unfortunately, sometimes you want to ignore the
return value. Example 2-19 calls Console.ReadKey(), which waits for a
keypress and returns a value indicating which key was pressed. If my
program’s behavior depends on which particular key the user pressed, I’ll need
to inspect the method’s return value, but if I just want to wait for any key at all,
it’s OK to ignore the return value. If C# didn’t allow methods with return
values to be used as expression statements, I wouldn’t be able to do this. The
compiler has no way to distinguish between methods that make for pointless
statements because they have no side effects (such as Math.Sqrt) and those
that might be good candidates (such as Console.ReadKey), so it allows any
method.

For an expression to be a valid expression statement, it is not enough merely to
contain a method invocation. Example 2-20 shows some expressions that call
methods and then go on to use those as part of addition expressions. Although
these are valid expressions, they’re not valid expression statements, so these
will cause compiler errors. What matters is the outermost expression. In both
lines here, that’s an addition expression, which is why these are not allowed.

Example 2-20. Errors: some expressions that don’t work as statements
Console.ReadKey().KeyChar + "!";
Math.Sqrt(4) + 1;

Earlier I said that one kind of expression we’re allowed to use as a statement is
an assignment. It’s not obvious that assignments should be expressions, but
they are, and they do produce a value: the result of an assignment expression is
the value being assigned to the variable. This means it’s legal to write code like
that in Example 2-21. The second line here uses an assignment expression as an
argument for a method invocation, which shows the value of that expression.
The first two WriteLine calls both display 123.

Example 2-21. Assignments are expressions
int number;
Console.WriteLine(number = 123);
Console.WriteLine(number);

int x, y;
x = y = 0;
Console.WriteLine(x);
Console.WriteLine(y);

The second part of this example assigns one value into two variables in a single
step by exploiting the fact that assignments are expressions—it assigns the
value of the y = 0 expression (which evaluates to 0) into x.

This shows that evaluating an expression can do more than just produce a
value. Some expressions have side effects. We’ve just seen that an assignment
is an expression, and of course it has the effect of changing what’s in a
variable. Method calls are expressions too, and although you can write pure
functions that do nothing besides calculating their result from their input, like
Math.Sqrt, many methods do something with lasting effects, such as writing
data to the screen, updating a database, or triggering the demolition of a
building. This means that we might care about the order in which the operands
of an expression get evaluated.

An expression’s structure imposes some constraints on the order in which
operators do their work. For example, I can use parentheses to enforce
ordering. The expression 10 + (8 / 2) has the value 14, while the
expression (10 + 8) / 2 has the value 9, even though both have exactly
the same literal operands and arithmetic operators. The parentheses here
determine whether the division is performed before or after the subtraction.

However, while the structure of an expression imposes some ordering
constraints, it still leaves some latitude: although both the operands of an
addition need to be evaluated before they can be added, the addition operator
doesn’t care which operand we evaluate first. But if the operands are
expressions with side effects, the order could be important. For these simple
expressions, it doesn’t matter because I’ve used literals, so we can’t really tell
when they get evaluated. But what about an expression in which operands call
some method? Example 2-22 contains code of this kind.

4

Example 2-22. Operand evaluation order
static int X(string label, int i)
{
 Console.Write(label);
 return i;
}

Console.WriteLine(X("a", 1) + X("b", 1) + X("c", 1) + X("d", 1));

This defines a method, X, which takes two arguments. It displays the first and
just returns the second. I’ve then used this a few times in an expression so that
we can see exactly when the operands that call X are evaluated. Some
languages choose not to define this order, making the behavior of such a
program unpredictable, but C# does specify an order here. The rule is that
within any expression, the operands are evaluated in the order in which they
occur in the source. So, when the Console.WriteLine in Example 2-22
runs, it makes multiple calls to X, which calls Console.Write each time, so
we see this output: abcd4.

However, this glosses over an important subtlety: What do we mean by the
order of expressions when nesting occurs? The entire argument to that
Console.WriteLine is one big add expression, where the first operand is
X("a", 1), and the second is another add expression, which in turn has a
first operand of X("b", 1) and a second operand, which is yet another add
expression, whose operands are X("c", 1) and X("d", 1). Taking the
first of those add expressions, which constitutes the entire argument to
Console.WriteLine, and does it even make sense to ask whether it comes
before or after its first operand? Lexically, the outermost add expression starts
at exactly the same point that its first operand starts and ends at the point where
its second operand ends (which also happens to be at the exact same point that
the final X("d", 1) ends). In this particular case, it doesn’t really matter
because the only observable effect of the order of evaluation is the output the X
method produces when invoked. None of the expressions that invoke X are
nested within one another, so we can meaningfully say what order those
expressions are in, and the output we see matches that order. However, in some
cases, such as Example 2-23, the overlapping of nested expressions can have a
visible impact.

Example 2-23. Operand evaluation order with nested expressions
Console.WriteLine(
 X("a", 1) +
 X("b", (X("c", 1) + X("d", 1) + X("e", 1))) +
 X("f", 1));

Here, Console.WriteLine’s argument adds the results of three calls to X;
however, the second of those calls to X (first argument "b") takes as its second
argument an expression that adds the results of three more calls to X (with
arguments of "c", "d", and "e"). With the final call to X (passing "f"), we
have a total of six expressions invoking X in that statement. C#’s rule of
evaluating expressions in the order in which they appear applies as always, but
because there is overlap, the results are initially surprising. Although the letters
appear in the source in alphabetical order, the output is "acdebf5". If you’re
wondering how on earth that can be consistent with expressions being
evaluated in order, consider that this code starts the evaluation of each
expression in the order in which the expressions start, and finishes the
evaluation in the order in which the expressions finish, but that those are two
different orderings. In particular, the expression that invokes X with "b"
begins its evaluation before those that invoke it with "c", "d", and "e", but it
finishes its evaluation after them. And it’s that after ordering that we see in the
output. If you find each closing parenthesis that corresponds to a call to X in
this example, you’ll find that the order of calls exactly matches what’s
displayed.

Comments and Whitespace
Most programming languages allow source files to contain text that is ignored
by the compiler, and C# is no exception. As with most C-family languages, it
supports two styles of comments for this purpose. There are single-line
comments, as shown in Example 2-24, in which you write two / characters in a
row, and everything from there to the end of the line will be ignored by the
compiler.

Example 2-24. Single-line comments
Console.WriteLine("Say"); // This text will be ignored, but the
code on

Console.WriteLine("Anything"); // the left is still compiled as
usual.

C# also supports delimited comments. You start a comment of this kind with
/*, and the compiler will ignore everything that follows until it encounters the
first */ character sequence. This can be useful if you don’t want the comment
to go all the way to the end of the line, as the first line of Example 2-25
illustrates. This example also shows that delimited comments can span multiple
lines.

Example 2-25. Delimited comments
Console.WriteLine(/* Has side effects */ GetLog());

/* Some developers like to use delimited comments for big blocks of
text,
 * where they need to explain something particularly complex or odd in
the
 * code. The column of asterisks on the left is for decoration -
asterisks
 * are necessary only at the start and end of the comment.
 */

There’s a minor snag you can run into with delimited comments; it can happen
even when the comment is within a single line, but it more often occurs with
multiline comments. Example 2-26 shows the problem with a comment that
begins in the middle of the first line and ends at the end of the fourth.

Example 2-26. Multiline comments
Console.WriteLine("This will run"); /* This comment includes not
just the
Console.WriteLine("This won't"); * text on the right but also
the text
Console.WriteLine("Nor will this"); /* on the left except the first
and last
Console.WriteLine("Nor this"); * lines. */
Console.WriteLine("This will also run");

Notice that the /* character sequence appears twice in this example. When this
sequence appears in the middle of a comment, it does nothing special—
comments don’t nest. Even though we’ve seen two /* sequences, the first */
is enough to end the comment. This is occasionally frustrating, but it’s the
norm for C-family languages.

It’s sometimes useful to take a chunk of code out of action temporarily, in a
way that’s easy to put back. Turning the code into a comment is a common way
to do this, and although a delimited comment might seem like the obvious
thing to use, it becomes awkward if the region you commented out happens to
include another delimited comment. Since there’s no support for nesting, you
would need to add a /* after the inner comment’s closing */ to ensure that
you’ve commented out the whole range. So it is common to use single-line
comments for this purpose. (You can also use the #if directive described in
the next section.)

NOTE
Visual Studio and VS Code can comment out regions of code for you. If you select several
lines of text and type Ctrl-K followed immediately by Ctrl-C, it will add // to the start of
every line in the selection. And you can uncomment a region with Ctrl-K, Ctrl-U. (With
Visual Studio, if you chose something other than C# as your preferred language when you
installed it, these actions may be bound to different key sequences, but they are also
available on the Edit→Advanced menu, as well as on the Text Editor toolbar, one of the
standard toolbars that Visual Studio shows by default.)

Speaking of ignored text, C# ignores extra whitespace for the most part. Not all
whitespace is insignificant, because you need at least some space to separate
tokens that consist entirely of alphanumeric symbols. For example, you can’t
write staticvoid as the start of a method declaration—you’d need at least
one space (or tab, newline, or other space-like character) between static and
void. But with nonalphanumeric tokens, spaces are optional, and in most
cases, a single space is equivalent to any amount of whitespace and new lines.
This means that the three statements in Example 2-27 are all equivalent.

Example 2-27. Insignificant whitespace
Console.WriteLine("Testing");
Console . WriteLine("Testing");
Console.
 WriteLine ("Testing")
 ;

There are a couple of cases where C# is more sensitive to whitespace. Inside a
string literal, space is significant, because whatever spaces you write will be

present in the string value. Also, while C# mostly doesn’t care whether you put
each element on its own line, or put all your code in one massive line, or (as
seems more likely) something in between, there is an exception: preprocessing
directives are required to appear on their own lines.

Preprocessing Directives
If you’re familiar with the C language or its direct descendants, you may have
been wondering if C# has a preprocessor. It doesn’t have a separate
preprocessing stage, and it does not offer macros. However, it does have a
handful of directives similar to those offered by the C preprocessor, although it
is only a very limited selection. Even though C# doesn’t have a full
preprocessing stage like C, these are known as preprocessing directives
nonetheless.

Compilation Symbols
C# offers a #define directive that lets you define a compilation symbol.
These symbols are commonly used in conjunction with the #if directive to
compile code in different ways for different situations. For example, you might
want some code to be present only in Debug builds, or perhaps you need to use
different code on different platforms to achieve a particular effect. Often, you
won’t use the #define directive, though—it’s more common to define
compilation symbols through the compiler build settings. You can open up the
.csproj file and define the values you want in a <DefineConstants>
element of any <PropertyGroup>. Alternatively, Visual Studio can do this
for you: right-click the project’s node in Solution Explorer, select Properties,
and in the property page that this opens, go to the Build section. This UI lets
you configure different symbol values for each build configuration (which it
does by adding attributes such as
Condition="'$(Configuration)|$(Platform)'=='Debug|Any
CPU'" to the <PropertyGroup> containing these settings).

NOTE
The .NET SDK defines certain symbols by default. It supports two configurations, Debug
and Release. It defines a DEBUG compilation symbol in the Debug configuration, whereas
Release will define RELEASE instead. It defines a symbol called TRACE in both
configurations. Certain project types get additional symbols. A library targeting .NET
Standard will have NETSTANDARD defined, along with a version-specific symbol such as
NETSTANDARD2_0, for example. Projects that target .NET 6.0 get a NET6_0 symbol.

Compilation symbols are typically used in conjunction with the #if, #else,
#elif, and #endif directives (#elif is short for else if). Example 2-28
uses some of these directives to ensure that certain lines of code get compiled
only in Debug builds. (You can also write #if false to prevent sections of
code from being compiled at all. This is typically done only as a temporary
measure and is an alternative to commenting out that sidesteps some of the
lexical pitfalls of attempting to nest comments.)

Example 2-28. Conditional compilation
#if DEBUG
 Console.WriteLine("Starting work");
#endif
 DoWork();
#if DEBUG
 Console.WriteLine("Finished work");
#endif

C# provides a more subtle mechanism to support this sort of thing, called a
conditional method. The compiler recognizes an attribute defined by the
runtime libraries, called ConditionalAttribute, for which it provides
special compile-time behavior. You can annotate any method with this attribute.
Example 2-29 uses it to indicate that the annotated method should be used only
when the DEBUG compilation symbol is defined.

Example 2-29. Conditional method
[System.Diagnostics.Conditional("DEBUG")]
static void ShowDebugInfo(object o)
{
 Console.WriteLine(o);
}

If you write code that calls a method that has been annotated in this way, the
C# compiler will omit that call in builds that do not define the relevant symbol.
So if you write code that calls this ShowDebugInfo method, the compiler
strips out all those calls in non-Debug builds. This means you can get the same
effect as Example 2-28 but without cluttering up your code with directives.

The runtime libraries’ Debug and Trace classes in the
System.Diagnostics namespace use this feature. The Debug class offers
various methods for generating diagnostic output that are conditional on the
DEBUG compilation symbol, while the Trace class has methods conditional
on TRACE. If you leave the default settings for a new C# project in place, any
diagnostic output produced through the Trace class will be available in both
Debug and Release builds, but any code that calls a method on the Debug
class will not get compiled into Release builds.

WARNING
The Debug class’s Assert method is conditional on DEBUG, which sometimes catches
developers out. Assert lets you specify a condition that must be true at runtime, and it
throws an exception if the condition is false. There are two things developers new to C#
often mistakenly put in a Debug.Assert: checks that should in fact occur in all builds,
and expressions with side effects that the rest of the code depends on. This leads to bugs,
because the compiler will strip this code out in non-Debug builds.

#error and #warning
C# lets you choose to generate compiler errors or warnings with the #error
and #warning directives. These are typically used inside conditional regions,
as Example 2-30 shows, although an unconditional #warning could be useful
as a way to remind yourself that you’ve not written some particularly important
bit of the code yet.

Example 2-30. Generating a compiler error
#if NETSTANDARD
 #error .NET Standard is not a supported target for this source file
#endif

#line
The #line directive is useful in generated code. When the compiler produces
an error or a warning, it states where the problem occurred, providing the
filename, a line number, and an offset within that line. But if the code in
question was generated automatically using some other file as input and if that
other file contains the root cause of the problem, it may be more useful to
report an error in the input file, rather than the generated file. A #line
directive can instruct the C# compiler to act as though the error occurred at the
line number specified and, optionally, as if the error were in an entirely
different file. Example 2-31 shows how to use it. The error after the directive
will be reported as though it came from line 123 of a file called Foo.cs. You
can tell the compiler to revert to reporting warnings and errors without fakery
by writing #line default.

Example 2-31. The #line directive and a deliberate mistake
#line 123 "Foo.cs"
 intt x;

This directive also affects debugging. When the compiler emits debug
information, it takes #line directives into account. This means that when
stepping through code in the debugger, you’ll see the location that #line
refers to.

The filename part is optional, enabling you to fake just line numbers.
Conversely, this pragma also accepts a more complex form in which you can
supply column and range information for situations where generated code
doesn’t have a straightforward line-to-line relationship with the input. The
ASP.NET Core web framework uses this: it includes a feature called Razor,
which enables C# expressions to be mixed with HTML. Razor works by
generating C# files, but it uses #line directives so that the debugger shows
the original code written by the developer in the Razor file, and not the
generated code.

There’s another use for this directive. Instead of a line number (and optional
filename), you can write just #line hidden. This affects only the debugger
behavior: when single stepping, Visual Studio will run straight through all the

code after such a directive without stopping until it encounters a non-hidden
#line directive (typically #line default).

#pragma
The #pragma directive provides two features: it can be used to disable
selected compiler warnings, and it can also be used to override the checksum
values the compiler puts into the .pdb file it generates containing debug
information. Both of these are designed primarily for code-generation
scenarios, although it can occasionally be useful to disable warnings in
ordinary code. Example 2-32 shows how to use a #pragma to prevent the
compiler from issuing the warning that would normally occur if you declare a
variable that you do not then go on to use.

Example 2-32. Disabling a compiler warning
#pragma warning disable CS0168
 int a;

You should generally avoid disabling warnings. This feature is useful in
generated code because code generation can often end up creating items that
are not always used, and pragmas may offer the only way to get a clean
compilation. But when you’re writing code by hand, it should usually be
possible to avoid normal compiler warnings in the first place.

Having said that, it can be useful to disable specific warnings if you have opted
into additional diagnostics. Some components on NuGet supply code
analyzers, components that get connected up to the C# compiler API and that
are given the opportunity to inspect the code and generate their own diagnostic
messages. (This happens at build time, and in Visual Studio, it also happens
during editing, providing live diagnostics as you type. They also work live in
Visual Studio Code if you install the OmniSharp C# extension and enable the
omn ish arp .en ab leRos lyn Ana lyz ers setting.) The .NET SDK also
includes built-in analyzers that can check various aspects of your code such as
adherence to naming conventions or the presence of common security
mistakes. You can configure these at a project level with the AnalysisMode
setting, but as with compiler warnings, you might want to disable analyzer
warnings in specific cases. You can use #pragma warning directives to
control warnings from code analyzers, not just ones from the C# compiler.

Analyzers generally prefix their warning numbers with some letters to enable
you to distinguish between them—compiler warnings all start with CS, and
warnings from the .NET SDK’s analyzers start with CA, for example.

It’s possible that future versions of C# may add other features based on
#pragma. When the compiler encounters a pragma it does not understand, it
generates a warning, not an error, on the grounds that an unrecognized pragma
might be valid for some future compiler version or some other vendor’s
compiler.

#nullable
The #nullable directive allows fine-grained control of the nullable
annotation context and the nullable warning context. This is part of the nullable
references feature. Chapter 3 describes the #nullable directive in more
detail.

#region and #endregion
Finally, we have two preprocessing directives that do nothing. If you write
#region directives, the only thing the compiler does is ensure that they have
corresponding #endregion directives. Mismatches cause compiler errors,
but the compiler ignores correctly paired #region and #endregion
directives. Regions can be nested.

These directives exist entirely for the benefit of text editors that choose to
recognize them. Visual Studio, VS Code, and Rider use them to provide the
ability to collapse sections of the code down to a single line on screen. The C#
editor automatically allows certain features to be expanded and collapsed, such
as class definitions, methods, and code blocks (a feature it calls outlining). If
you define regions with these two directives, it will also allow those to be
expanded and collapsed. This allows for outlining at both finer-grained (for
example, within a single block) and coarser-grained (for example, multiple
related methods) scales than the editor offers automatically.

If you hover the mouse over a collapsed region in Visual Studio, it displays a
tool tip showing the region’s contents. You can put text after the #region
token. When IDEs display a collapsed region, they show this text on the single

line that remains. Although you’re allowed to omit this, it’s usually a good idea
to include some descriptive text so that people can have a rough idea of what
they’ll see if they expand it.

Some people like to put the entire contents of a class into various regions,
because by collapsing all regions, you can see a file’s structure at a glance. It
might even all fit on the screen at once, thanks to the regions being reduced to a
single line. On the other hand, some people hate collapsed regions, because
they present speed bumps on the way to being able to look at the code and can
also encourage people to put too much source code into one file.

Fundamental Data Types
.NET defines thousands of types in its runtime libraries, and you can write your
own, so C# can work with an unlimited number of data types. However, a
handful of types get special handling from the compiler. You saw earlier in
Example 2-9 that if you have a string, and you try to add a number to it, the
resulting code converts the number to a string and appends that to the first
string. In fact, the behavior is more general than that—it’s not limited to
numbers. The compiled code works by calling the String.Concat method,
and if you pass to that any nonstring arguments, it will call their ToString
methods before performing the append. All types offer a ToString method,
so this means you can append values of any type to a string.

That’s handy, but it only works because the C# compiler knows about strings
and provides special services for them. (There’s a part of the C# specification
that defines the unique string handling for the + operator.) C# provides various
special services not just for strings but also for certain numeric data types,
Booleans, a family of types called tuples, and two specific types called
dynamic and object. Most of these are special not just to C# but also to the
runtime—almost all of the numeric types get direct support in intermediate
language (IL), and the bool, string, and object types are also
intrinsically understood by the runtime.

Numeric Types
C# supports integer and floating-point arithmetic. There are signed and
unsigned integer types, and they come in various sizes, as Table 2-1 shows. The
most commonly used integer type is int, not least because it is large enough
to represent a usefully wide range of values without being too large to work
efficiently on all CPUs that support .NET. (Larger data types might not be
handled natively by the CPU and can also have undesirable characteristics in
multithreaded code: reads and writes are atomic for 32-bit types but may not
be for larger ones.)

5

T
a
b
l
e
2
-
1
.
I
n
t
e
g
e
r
t
y
p
e
s

C# type CLR name Signed Size in bits Inclusive range

byte System.Byte No 8 0 to 255

sbyte System.SByte Yes 8 −128 to 127

ushort System.UInt16 No 16 0 to 65,535

short System.Int16 Yes 16 −32,768 to 32,767

uint System.UInt32 No 32 0 to 4,294,967,295

int System.Int32 Yes 32 −2,147,483,648 to
2,147,483,647

ulong System.UInt64 No 64 0 to
18,446,744,073,709
,551,615

long System.Int64 Yes 64 −9,223,372,036,85
4,775,808 to
9,223,372,036,854,
775,807

nint System.IntPtr Yes Depends Depends

nuint System.UIntPt
r

No Depends Depends

The second column in Table 2-1 shows the name of the type in the CLR.
Different languages have different naming conventions, and C# uses names
from its C-family roots for numeric types, but those don’t fit with the naming
conventions that .NET has for its data types. As far as the runtime is concerned,
the names in the second column are the real names—there are various APIs that
can report information about types at runtime, and they report these CLR
names, not the C# ones. For all but the last two items, the names are
synonymous in C# source code, so you’re free to use the runtime names if you

want to, but the C# names are a better stylistic fit—keywords in C-family
languages are all lowercase. Since the compiler handles these types differently
than the rest, it’s arguably good to have them stand out.

The nint and nuint types are odd ones out here. These are the native-sized
integer types (hence the n prefix), and they are intended for low-level code that
needs to deal directly with the address of data in memory. This is why they
don’t have a fixed size—they are 32 bits wide in a 32-bit process and 64 bits in
a 64-bit process. And unlike all the other types in Table 2-1, different features
are available depending on whether you use the C# name or the CLR name: C#
does not currently permit arithmetic when using System.IntPtr or
System.UIntPtr, but it supports it on nint and nuint, and it also adds
various implicit conversions from other integer types. These are very
specialized types, normally only used when writing wrappers for non-.NET
libraries, and I’ve included them in this table only for completeness.

WARNING
Not all .NET languages support unsigned numbers, so the .NET runtime libraries tend to
avoid them. A runtime that supports multiple languages (such as the CLR) faces a trade-off
between offering a type system rich enough to cover most languages’ needs and forcing an
overcomplicated type system on simple languages. To resolve this, .NET’s type system, the
CTS, is reasonably comprehensive, but languages don’t have to support all of it. .NET also
defines the Common Language Specification (CLS), which identifies a relatively small
subset of the CTS that all languages should support. Signed integers are in the CLS, but
unsigned ones are not. This explains some surprising-looking type choices, such as the
Length property of an array being int (rather than uint) despite the fact that it will never
return a negative value.

C# also supports floating-point numbers. There are two types: float and
double, which are 32-bit and 64-bit numbers in the standard IEEE 754
formats, and as the CLR names in Table 2-2 suggest, these correspond to what
are commonly called single-precision and double-precision numbers. Floating-
point values do not work in the same way as integers, so this table is a little
different than the integer types table. Floating-point numbers store a value and
an exponent (similar in concept to scientific notation but working in binary
instead of decimal). The Precision column shows how many bits are available

https://oreil.ly/ZMz9o

for the value part, and then the range is expressed as the smallest nonzero value
and the largest value that can be represented. (These can be either positive or
negative.)

T
a
b
l
e
2
-
2
.
F
l
o
a
ti
n
g
-
p
o
i
n
t
t
y
p
e
s

C# type CLR name Size in bits Precision
Range
(magnitude)

float System.Single 32 23 bits (~7 decimal
digits)

1.5 × 10 to 3.4 ×
10

−45
38

double System.Double 64 52 bits (~15
decimal digits)

5.0 × 10 to 1.7
× 10

C# recognizes a third noninteger numeric representation called decimal (or
Sys tem. Dec im al in the CLR). This is a 128-bit value, so it can offer greater
precision than the other formats, but it is not just a bigger version of double.
It is designed for calculations that require predictable handling of decimal
fractions, something neither float nor double can offer. If you write code
that initializes a variable of type float to 0 and then adds 0.1 to it nine times
in a row, you might expect to get a value of 0.9, but in fact you’ll get
approximately 0.9000001. That’s because IEEE 754 stores numbers in binary,
which cannot represent all decimal fractions. It can handle some, such as the
decimal 0.5; written in base 2, that’s 0.1. But the decimal 0.1 turns into a
recurring number in binary. (Specifically, it’s 0.0 followed by the recurring
sequence 0011.) This means float and double can represent only an
approximation of the decimal value 0.1, and more generally, only a small
subset of decimals can be represented completely accurately. This isn’t always
instantly obvious, because when floating-point numbers are converted to text,
they are rounded to a decimal approximation that can mask the discrepancy.
But over multiple calculations, the inaccuracies tend to add up and eventually
produce surprising-looking results.

For some kinds of calculations, this doesn’t really matter; in simulations or
signal processing, for example, some noise and error is expected. But
accountants and financial regulators tend to be less forgiving—little
discrepancies like this can make it look like money has magically vanished or
appeared. We need calculations that involve money to be absolutely accurate,
which makes binary floating point a terrible choice for such work. This is why
C# offers the decimal type, which provides a well-defined level of decimal
precision.

−324

308

NOTE
Most of the integer types can be handled natively by the CPU. (All of them can when
running in a 64-bit process.) Likewise, many CPUs can work directly with float and
double representations. However, none has intrinsic support for decimal, meaning that
even simple operations, such as addition, require multiple CPU instructions. This means that
arithmetic is significantly slower with decimal than with the other numeric types shown so
far.

A decimal stores numbers as a sign bit (positive or negative) and a pair of
integers. There’s a 96-bit integer, and the value of the decimal is this first
integer (negated if the sign bit says so) divided by 10 raised to the power of the
second integer, which is a number in the range of 0 to 28. Ninety-six bits is
enough to represent any 28-digit decimal integer (and some, but not all, 29-
digit ones), so the second integer—the one representing the power of 10 by
which the first is divided—effectively says where the decimal point goes. This
format makes it possible to represent any decimal with 28 or fewer digits
accurately.

When you write a literal numeric value, you can choose the type, or you can let
the compiler pick a suitable type for you. If you write a plain integer, such as
123, its type will be int, uint, long, or ulong—the compiler picks the
first type from that list with a range that contains the value. (So 123 would be
an int, 3000000000 would be a uint, 5000000000 would be a long,
etc.) If you write a number with a decimal point, such as 1.23, its type is
double.

If you’re dealing with large numbers, it’s very easy to get the number of zeros
wrong. This is usually bad and possibly very expensive or dangerous,
depending on your application area. C# provides some mitigation by allowing
you to add underscores anywhere in numeric literals, to break the numbers up
however you please. This is analogous to the common practice in most
English-speaking countries of using a comma to separate zeros into groups of
three. For example, instead of writing 5000000000, most native English
speakers would write 5,000,000,000, instantly making it much easier to see that
this is 5 billion and not, say, 50 billion, or 500 million. (What many native
English speakers don’t know is that several countries around the world use a

6

period for this and would write 5.000.000.000 instead, using the comma where
most native English speakers would put a decimal point. Interpreting a value
such as €100.000 requires you to know which country’s conventions are in use
if you don’t want to make a disastrous financial miscalculation. But I digress.)
In C# we can do something similar by writing the numeric literal as
5_000_000_000.

You can tell the compiler that you want a specific type by adding a suffix. So
123U is a uint, 123L is a long, and 123UL is a ulong. Suffix letters are
case- and order-independent, so instead of 123UL, you could write 123Lu,
123uL, or any other permutation. For double, float, and decimal, use
the D, F, and M suffixes, respectively.

These last three types all support a decimal exponential literal format for large
numbers, where you put a decimal, then the letter E followed by an integer. The
value is the first number multiplied by 10 raised to the power of the second.
For example, the literal value 1.5E-20 is the value 1.5 multiplied by 10 .
(This happens to be of type double, because that’s the default for a number
with a decimal point, regardless of whether it’s in exponential format. You
could write 1.5E-20F and 1.5E-20M for float and decimal constants
with equivalent values.)

It’s often useful to be able to write integer literals in hexadecimal, because the
digits map better onto the binary representation used at runtime. This is
particularly important when different bit ranges of a number represent different
things. For example, you may need to deal with a numeric error code that
originated from a Windows system call—these occasionally crop up in
exceptions. In some cases, these codes use the topmost bit to indicate success
or failure, the next few bits to indicate the origin of the error, and the remaining
bits to identify the specific error. For example, the COM error code
E_ACCESSDENIED has the value −2,147,024,891. It’s hard to see the
structure in decimal, but in hexadecimal, it’s easier: 80070005. The 8 indicates
that this is an error, and the 007 that follows indicates that this was originally a
plain Win32 error that has been translated into a COM error. The remaining bits
indicate that the Win32 error code was 5 (ERROR_ACCESS_DENIED). C#
lets you write integer literals in hexadecimal for scenarios like these, where the

−20

hex representation is more readable. You just prefix the number with 0x;
therefore, in this case, you would write 0x80070005.

You can also write binary literals by using the 0b prefix. Digit separators can
be used in hex and binary just as they can in decimals, although it’s more
common to group binary digits by fours, like so: 0b_0010_1010. Obviously
this makes any binary structure in a number even more evident than
hexadecimal does, but 32-bit binary literals are inconveniently long, which is
why we often use hexadecimal instead.

Numeric conversions
Each of the built-in numeric types uses a different representation for storing
numbers in memory. Converting from one form to another requires some work
—even the number 1 looks quite different if you inspect its binary
representations as a float, an int, and a decimal. However, C# is able to
generate code that converts between formats, and it will often do so
automatically. Example 2-33 shows some cases in which this will happen.

Example 2-33. Implicit conversions
int i = 42;
double di = i;
Console.WriteLine(i / 5);
Console.WriteLine(di / 5);
Console.WriteLine(i / 5.0);

The second line assigns the value of an int variable into a double variable.
The C# compiler generates the necessary code to convert the integer value into
its equivalent floating-point value. More subtly, the last two lines will perform
similar conversions, as we can see from the output of that code:

8
8.4
8.4

This shows that the first division produced an integer result—dividing the
integer variable i by the integer literal 5 caused the compiler to generate code
that performs integer division, so the result is 8. But the other two divisions
produced a floating-point result. In the second case, we’ve divided the
double variable di by an integer literal 5. C# converts that 5 to floating point

before performing the division. (As an optimization, in this particular case the
compiler happens to perform that conversion at compile time, so it emits the
same code for that expression as it would if we had written di / 5.0.) And
in the final line, we’re dividing an integer variable by a floating-point literal.
This time, it’s the variable’s value that gets turned from an integer into a
floating-point value before the division takes place. (Since i is a variable, not a
constant, the compiler emits code that performs that conversion at runtime.)

In general, when you perform arithmetic calculations that involve a mixture of
numeric types, C# will pick the type with the largest range and promote values
of types with a narrower range into that larger one before performing the
calculations. (Arithmetic operators generally require all their operands to have
the same type, so if you supply operands with different types, one type has to
“win” for any particular operator.) For example, double can represent any
value that int can, and many that it cannot, so double is the more expressive
type.

C# will perform numeric conversions implicitly whenever the conversion is a
promotion (i.e., the target type has a wider range than the source), because
there is no possibility of the conversion failing. However, it will not implicitly
convert in the other direction. The second and third lines of Example 2-34 will
fail to compile, because they attempt to assign expressions of type double
into an int, which is a narrowing conversion, meaning that the source might
contain values that are out of the target’s range.

Example 2-34. Errors: implicit conversions not available
int i = 42;
int willFail = 42.0;
int willAlsoFail = i / 1.0;

It is possible to convert in this direction, just not implicitly. You can use a cast,
where you specify the name of the type to which you’d like to convert in
parentheses. Example 2-35 shows a modified version of Example 2-34, where
we state explicitly that we want a conversion to int, and we either don’t mind
that this conversion might not work correctly or we have reason to believe that,
in this specific case, the value will be in range. Note that on the final line I’ve
put parentheses around the expression after the cast. That makes the cast apply
to the whole expression; otherwise, C#’s rules of precedence mean it would

7

apply just to the i variable, and since that’s already an int, it would have no
effect.

Example 2-35. Explicit conversions with casts
int i = 42;
int i2 = (int) 42.0;
int i3 = (int) (i / 1.0);

So narrowing conversions require explicit casts, and conversions that cannot
lose information occur implicitly. However, with some combinations of types,
neither is strictly more expressive than the other. What should happen if you try
to add an int to a uint? Or an int to a float? These types are all 32 bits
in size, so none of them can possibly offer more than 2 distinct values, but
they have different ranges, which means that each has values it can represent
that the other types cannot. For example, you can represent the value
3,000,000,001 in a uint, but it’s too large for an int and can only be
approximated in a float. As floating-point numbers get larger, the values that
can be represented get farther apart—a float can represent 3,000,000,000
and also 3,000,001,024 but nothing in between. So for the value 3,000,000,001,
uint seems better than float. But what about −1? That’s a negative number,
so uint can’t cope with that. Then there are very large numbers that float
can represent that are out of range for both int and uint. Each of these types
has its strengths and weaknesses, and it makes no sense to say that one of them
is generally better than the rest.

Surprisingly, C# allows some implicit conversions even in these potentially
lossy scenarios. The rules consider only range, not precision: implicit
conversions are allowed if the target type’s range completely contains the
source type’s range. So you can convert from either int or uint to float,
because although float is unable to represent some values exactly, there are
no int or uint values that it cannot at least approximate. But implicit
conversions are not allowed in the other direction, because there are some
float values that are simply too big—unlike float, the integer types can’t
offer approximations for bigger numbers.

You might be wondering what happens if you force a narrowing conversion to
int with a cast, as Example 2-35 does, in situations where the number is out
of range. The answer depends on the type from which you are casting.

32

Conversion from one integer type to another works differently than conversion
from floating point to integer. In fact, the C# specification does not define how
floating-point numbers that are too big should be converted to an integer type
—the result could be anything. But when casting between integer types, the
outcome is well defined. If the two types are of different sizes, the binary will
be either truncated or padded with zeros (or ones, if the source type is signed
and the value is negative) to make it the right size for the target type, and then
the bits are just treated as if they are of the target type. This is occasionally
useful but can more often produce surprising results, so you can choose an
alternative behavior for any out-of-range cast by making it a checked
conversion.

Checked contexts
C# defines the checked keyword, which you can put in front of either a block
statement or an expression, making it a checked context. This means that
certain arithmetic operations, including casts, are checked for range overflow at
runtime. If you cast a value to an integer type in a checked context and the
value is too high or low to fit, an error will occur—the code will throw a
System.OverflowException.

As well as checking casts, a checked context will detect range overflows in
ordinary arithmetic. Addition, subtraction, and other operations can take a
value beyond the range of its data type. For integers, this causes the value to
“roll over” when unchecked, so adding 1 to the maximum value produces the
minimum value, and vice versa for subtraction. Occasionally, this wrapping can
be useful. For example, if you want to determine how much time has elapsed
between two points in the code, one way to do this is to use the
Environment.TickCount property. (This is more reliable than using the
current date and time, because that can change as a result of the clock being
adjusted or when moving between time zones. The tick count just keeps
increasing at a steady rate. That said, in real code you’d probably use the
runtime libraries’ Stopwatch class.) Example 2-36 shows one way to do this.

Example 2-36. Exploiting unchecked integer overflow
int start = Environment.TickCount;
DoSomeWork();
int end = Environment.TickCount;

8

int totalTicks = end - start;
Console.WriteLine(totalTicks);

The tricky thing about Environment.TickCount is that it occasionally
“wraps around.” It counts the number of milliseconds since the system last
rebooted, and since its type is int, it will eventually run out of range. A span
of 25 days is 2.16 billion milliseconds—too large a number to fit in an int.
(You could avoid this by using the TickCount64 property, which is good for
almost 300 million years. But this is unavailable in .NET Framework, or any
current .NET Standard.) Imagine the tick count is 2,147,483,637, which is 10
short of the maximum value for int. What would you expect it to be 100 ms
later? It can’t be 100 higher (2,147,483,727), because that’s too big a value for
an int. We’d expect it to get to the highest possible value after 10 ms, so after
11 ms, it’ll roll round to the minimum value; thus, after 100 ms, we’d expect
the tick count to be 89 above the minimum value (which would be
−2,147,483,559).

WARNING
The tick count is not necessarily precise to the nearest millisecond in practice. It often stands
still for milliseconds at a time before leaping forward in increments of 10 ms, 15 ms, or even
more. However, the value still rolls over—you just might not be able to observe every
possible tick value as it does so.

Interestingly, Example 2-36 handles this perfectly. If the tick count in start
was obtained just before the count wrapped, and the one in end was obtained
just after, end will contain a much lower value than start, which seems
upside down, and the difference between them will be large—larger than the
range of an int. However, when we subtract start from end, the overflow
rolls over in a way that exactly matches the way the tick count rolls over,
meaning we end up getting the correct result regardless. For example, if the
start contains a tick count from 10 ms before rollover, and end is from 90
ms afterward, subtracting the relevant tick counts (i.e., subtracting
−2,147,483,558 from 2,147,483,627) seems like it should produce a result of

4,294,967,185. But because of the way the subtraction overflows, we actually
get a result of 100, which corresponds to the elapsed time of 100 ms.

But in most cases, this sort of integer overflow is undesirable. It means that
when dealing with large numbers, you can get results that are completely
incorrect. A lot of the time, this is not a big risk, because you will be dealing
with fairly small numbers, but if there is any possibility that your calculations
might encounter overflow, you might want to use a checked context. Any
arithmetic performed in a checked context will throw an exception when
overflow occurs. You can request this in an expression with the checked
operator, as Example 2-37 shows. Everything inside the parentheses will be
evaluated in a checked context, so you’ll see an OverflowException if the
addition of a and b overflows. The checked keyword does not apply to the
whole statement here, so if an overflow happens as a result of adding c, that
will not cause an exception.

Example 2-37. Checked expression
int result = checked(a + b) + c;

You can also turn on checking for an entire block of code with a checked
statement, which is a block preceded by the checked keyword, as Example 2-
38 shows. Checked statements always involve a block—you cannot just add
the checked keyword in front of the int keyword in Example 2-37 to turn
that into a checked statement. You’d also need to wrap the code in braces.

Example 2-38. Checked statement
checked
{
 int r1 = a + b;
 int r2 = r1 - (int) c;
}

WARNING
A checked block only affects the lines of code inside the block. If the code invokes any
methods, those will be unaffected by the presence of the checked keyword—there isn’t
some checked bit in the CPU that gets enabled on the current thread inside a checked
block. (In other words, this keyword’s scope is lexical, not dynamic.)

C# also has an unchecked keyword. You can use this inside a checked block
to indicate that a particular expression or nested block should not be a checked
context. This makes life easier if you want everything except for one particular
expression to be checked—rather than having to label everything except the
chosen part as checked, you can put all the code into a checked block and then
exclude the one piece that wants to allow overflow without errors.

You can configure the C# compiler to put everything into a checked context by
default, so that only explicitly unchecked expressions and statements will be
able to overflow silently. In Visual Studio, you can configure this by opening
the project properties, going to the Build tab, and clicking the Advanced button.
Or you can edit the .csproj file, adding
<CheckForOverflowUnderflow>true</CheckFor
Ove rfl owU nde rfl ow> inside a <PropertyGroup>. Be aware that
there’s a significant cost—checking can make individual integer operations
several times slower. The impact on your application as a whole will be
smaller, because programs don’t spend their whole time performing arithmetic,
but the cost may still be nontrivial. Of course, as with any performance matter,
you should measure the practical impact. You may find that the performance
cost is an acceptable price to pay for the guarantee that you will find out about
unexpected overflows.

BigInteger
There’s one last numeric type worth being aware of: BigInteger. It’s part of
the runtime libraries and gets no special recognition from the C# compiler, so it
doesn’t strictly belong in this section of the book. However, it defines
arithmetic operators and conversions, meaning that you can use it just like the
built-in data types. It will compile to slightly less compact code—the compiled
format for .NET programs can represent integers and floating-point values
natively, but BigInteger has to rely on the more general-purpose
mechanisms used by ordinary class library types. In theory it is likely to be
significantly slower too, although in an awful lot of code, the speed at which
you can perform basic arithmetic on small integers is not a limiting factor, so
it’s quite possible that you won’t notice. And as far as the programming model
goes, it looks and feels like a normal numeric type in your code.

As the name suggests, a BigInteger represents an integer. Its unique selling
point is that it will grow as large as is necessary to accommodate values. So
unlike the built-in numeric types, it has no theoretical limit on its range.
Example 2-39 uses it to calculate values in the Fibonacci sequence, showing
every 100,000th value. This quickly produces numbers far too large to fit into
any of the other integer types. I’ve shown the full source of this example,
including the using directive, to illustrate that this type is defined in the
System.Numerics namespace.

Example 2-39. Using BigInteger
using System.Numerics;

BigInteger i1 = 1;
BigInteger i2 = 1;
Console.WriteLine(i1);
int count = 0;
while (true)
{
 // The % operator returns the remainder of dividing its 1st
operand by its
 // 2nd, so this displays the number only when count is divisible
by 100000.
 if (count++ % 100000 == 0)
 {
 Console.WriteLine(i2);
 }
 BigInteger next = i1 + i2;
 i1 = i2;
 i2 = next;
}

Although BigInteger imposes no fixed limit, there are practical limits. You
might produce a number that’s too big to fit in the available memory, for
example. Or more likely, the numbers may grow large enough that the amount
of CPU time required to perform even basic arithmetic becomes prohibitive.
But until you run out of either memory or patience, BigInteger will grow to
accommodate numbers as large as you like.

Booleans
C# defines a type called bool, or as the runtime calls it, System.Boolean.
This offers only two values: true and false. Whereas some C-family

languages allow numeric types to stand in for Boolean values, with
conventions such as 0 meaning false and anything else meaning true, C# will
not accept a number. It demands that values indicating truth or falsehood be
represented by a bool, and none of the numeric types is convertible to bool.
For example, in an if statement, you cannot write if (someNumber) to
get some code to run only when someNumber is nonzero. If that’s what you
want, you need to say so explicitly by writing if (someNumber != 0).

Strings and Characters
The string type (synonymous with the CLR System.String type)
represents text. A string is a sequence of values of type char (or
System.Char, as the CLR calls it), and each char is a 16-bit value
representing a single UTF-16 code unit.

A common mistake is to think that each char represents a character. (The
type’s name has to share some of the blame for this.) It’s often true, but not
always. There are two factors to bear in mind: first, something that we might
think of as a single character can be made up from multiple Unicode code
points. (The code point is Unicode’s central concept and in English at least,
each character is represented by a single code point, but some languages are
more complex.) Example 2-40 uses Unicode’s 0301 “COMBINING ACUTE
ACCENT” to add an accent to a letter to form the text cafés.

Example 2-40. Characters versus char
char[] chars = { 'c', 'a', 'f', 'e', (char) 0x301, 's' };
string text = new string(chars);

So this string is a sequence of six char values, but it represents text that seems
to contain just five characters. There are other ways to achieve this—I could
have used code point 00E9 “LATIN SMALL LETTER E WITH ACUTE” to
represent that accented character as a single code point. But either approach is
valid, and there are plenty of scenarios in which the only way to create the
exact character required is to use this combining character mechanism. This
means that certain operations on the char values in a string can have
surprising results—if you were to reverse the order of the values, the resulting
string would not look like a reversed version of the text—the acute accent

would now apply to the s, resulting in śefac! (If I had used 00E9 instead of
combining e with 0301, reversing the characters would have produced the less
surprising séfac.)

Unicode’s combining marks notwithstanding, there is a second factor to
consider. The Unicode standard defines more code points than can be
represented in a single 16-bit value. (We passed that point back in 2001, when
Unicode 3.1 defined 94,205 code points.) UTF-16 represents any code point
with a value higher than 65,535 as a pair of UTF-16 code units, referred to as a
surrogate pair. The Unicode standard defines rules for mapping code points to
surrogate pairs in a way that the resulting code units have values in the range
0xD800 to 0xDFFF, a reserved range for which no code points will ever be
defined. (For example, code point 10C48, “OLD TURKIC LETTER ORKHON
BASH,” which looks like , would become 0xD803, followed by 0xDC48.)

In summary, items that users perceive as single characters might be represented
with multiple Unicode code points, and some single code points might be
represented as multiple code units. Manipulating the individual char values
that make up a string is therefore a job you should approach with caution.
Often, a simple approach works well enough—if, for example, you want to
search a string for some specific character that you know fits in a single code
unit (such as /), a simple char-based search will work perfectly well.
However, if you have a more complex scenario that requires you to detect all
multi-code-unit sequences correctly, the runtime libraries offer some help here.

The string type offers an EnumerateRunes method that effectively
combines surrogate pairs back into the value of the code point they represent. It
presents the string as a sequence of values of type Rune, and if a string
contained the 0xD803, 0xDC48 sequence just described, this pair of char
values would be presented as a single Rune with the value 0x10C48. The
Rune type still operates at the level of individual code points, so it won’t help
you with combining characters, but if you need to go to that next level, the
runtime libraries define a StringInfo class in the Sys tem.
Glo bal iza ti on namespace. This interprets a string as a sequence of “text
elements,” and in cases such as cafés, it will report the é as a single text
element, even when it was formed with two code points using the combining
character mechanism.

Immutability of strings
.NET strings are immutable. There are many operations that sound as though
they will modify a string, such as concatenation, or the ToUpper and
ToLower methods offered by instances of the string type, but each of these
generates a new string, leaving the original one unmodified. This means that if
you pass strings as arguments, even to code you didn’t write, you can be certain
that it cannot change your strings.

The downside of immutability is that string processing can be inefficient. If
you need to do work that performs a series of modifications to a string, such as
building it up character by character, you will end up allocating a lot of
memory, because you’ll get a separate string for each modification. This creates
a lot of extra work for .NET’s garbage collector, causing your program to use
more CPU time than necessary. In these situations, you can use a type called
StringBuilder. (This type gets no special recognition from the C#
compiler, unlike string.) This is conceptually similar to a string—it is a
sequence of char values and offers various useful string manipulation
methods—but it is modifiable. Alternatively, in extremely performance-
sensitive scenarios, you might use the techniques shown in Chapter 18.

String manipulation methods
The string type has numerous instance methods for working with strings. I
already mentioned ToUpper and ToLower, but there are also methods for
finding text within the string, including IndexOf and LastIndexOf.
StartsWith and EndsWith return a bool indicating whether the string
starts or ends with a particular character or string. Split takes one or more
separator characters (e.g., commas or spaces) and returns an array with an entry
for each substring between the separators. For example,
"One,two,three".Split(',') returns an array containing the three
strings "One", "two", and "three". Substring takes a starting position
and optional length and returns a new string containing all characters from the
start position up to either the end of the string or the specified length; Remove
does the opposite: it forms a new string by removing the part of the original
string that Substring would have returned. Insert forms a new string by
inserting one string into the middle of another. Replace returns a new string

formed by replacing all instances of a particular character or string with
another. Trim can be used to remove unwanted leading and trailing characters
such as whitespace.

Formatting data in strings
C# provides a syntax that makes it easy to produce strings that contain a
mixture of fixed text and information determined at runtime. (The official name
for this feature is string interpolation.) For example, if you have local variables
called name and age, you could use them in a string, as Example 2-41 shows.

Example 2-41. Expressions in strings
string message = $"{name} is {age} years old";

When you put a $ symbol in front of a string literal, the C# compiler looks for
embedded expressions delimited by braces and produces code that will insert a
textual representation of the expression at that point in the string. (So if name
and age were Ian and 48, respectively, the string’s value would be "Ian is
48 years old".) Embedded expressions can be more complex than just
variable names, as Example 2-42 shows.

Example 2-42. More complex expressions in strings
double width = 3, height = 4;
string info = $"Hypotenuse: {Math.Sqrt(width * width + height *
height)}";

If you want to use string interpolation but you also want the resulting string to
include opening or closing braces, you double them up. When an interpolated
string contains either {{ or }}, the compiler does not interpret them as
delimiting embedded expressions and just produces a single { or } in the
output. For example, $"Brace: {{, braces: {{}}, width:
{width}, braced width: {{{width}}}" evaluates to Brace: {,
braces: {}, width: 3, braced width: {3} (assuming width is
3 here).

The runtime libraries offer another mechanism for plugging values into a
string. The string class’s Format method takes a string with numbered
placeholders of the form {0} and {1}, followed by a list of arguments

supplying the values for these placeholders. Example 2-43 uses this to achieve
the same effect as Examples 2-41 and 2-42.

Example 2-43. Using string.Format
string message = string.Format("{0} is {1} years old", name, age);
string info = string.Format(
 "Hypotenuse: {0}",
 Math.Sqrt(width * width + height * height));

This numbered placeholder mechanism is older—it has been around since C#
1.0, whereas string interpolation was introduced in C# 6.0—so you will see it
cropping up in quite a few places. Console.WriteLine supports it, for
example. It does offer one advantage over string interpolation: if you want to
combine a large number of expressions into one string, or if any of the
expressions you want to use is large, the interpolated string syntax can become
unwieldy; the ability to put a long constituent expression on its own line as
Example 2-43 does can sometimes improve readability. However, string
interpolation is much less error prone—string.Format uses position-based
placeholders, making it all too easy to put an expression in the wrong place. It’s
also tedious for anyone reading the code to try and work out how the numbered
placeholders relate to the arguments that follow, particularly as the number of
expressions increases. Interpolated strings are usually much easier to read.

Interpolated strings can sometimes offer performance benefits.
string.Format always assembles the string at runtime, but with string
interpolation, the compiler may be able to perform compile-time optimizations.
For example, if an expression in an interpolated string is a const string
(Chapter 3 describes the const keyword), the compiler will insert its value
into the string at compile time. Furthermore, C# 10.0 enables libraries to
indicate that they want to be involved in the interpolation process, making it
possible to avoid ever creating a string in cases where that string won’t be used.
When might you write an interpolated string that won’t be used? Look at
Example 2-44.

Example 2-44. A potentially unused interpolated string
Debug.Assert(everythingIsOk, $"Everything is *not* OK:
{myApplicationModel}");

This uses Debug.Assert, a diagnostic method you can add to your code to
detect when your application has got into some unexpected state.
Debug.Assert checks its first argument, and if it’s false, it will halt the
program, displaying the message passed as the second argument. But if the
argument is true, it proceeds without ever using the second argument. In this
example, if calling ToString() on the My App lic ati on Mod el in the
interpolated string were expensive, it would be bad news if that ran even in
cases where everything is in fact OK—our program might be doing a great deal
of work to create a string that gets thrown away. But .NET 6.0 adds a new
overload of Debug.Assert, taking advantage of C# 10.0’s new string
interpolation features in a way that avoids ever creating that string in cases
where it won’t be used. This same mechanism could be used by logging
frameworks, in which it’s common for code to be able to generate a lot of
strings to provide detailed descriptions of what’s happening but which will be
unused in the typical case where verbose logging has not been enabled.

With some data types, there are choices to be made about their textual
representation. For example, with floating-point numbers, you might want to
limit the number of decimal places, or force the use of exponential notation.
(For example, 1e6 instead of 1000000.) In .NET, we control this with a
format specifier, which is a string describing how to convert some data to a
string. Some data types have only one reasonable string representation, so they
do not support this, but with types that have multiple string forms, you can pass
the format specifier as an argument to the ToString method. For example,
System.Math.PI.ToString("f4") formats the PI constant (which is
of type double) to four decimal places ("3.1416"). There are nine built-in
formats for numbers, and if none of those suits your requirements, there’s also
a minilanguage for defining custom formats. Moreover, different types use
different format strings—dates work quite differently from numbers, for
example—so the full range of available formats is too large to list here.
Microsoft supplies extensive documentation of the details.

When using string.Format, you can include a format specifier in the
placeholder; for example, {0:f3} indicates that the first expression is to be
formatted with three digits after the decimal point. You can include a format

specifier in a similar way with string interpolation. Example 2-45 shows the
age with one digit after the decimal point.

Example 2-45. Format specifiers
string message = $"{name} is {age:f1} years old";

There’s one wrinkle with this: with many data types, the process of converting
to a string is culture-specific. For example, as mentioned earlier, in the US and
the UK, decimals are typically written with a period between the whole number
part and the fractional part, and you might use commas to group digits for
readability, but some European countries invert this: they use periods to group
digits, while the comma denotes the start of the fractional part. So what might
be written as 1,000.2 in one country could be written as 1.000,2 in another.

As far as numeric literals in source code are concerned, this is a nonissue: C#
uses underscores for digit grouping and always uses a period as the decimal
point. But what about processing numbers at runtime? By default, you will get
conventions determined by the current thread’s culture, and unless you’ve
changed that, it will use the regional settings of the computer. Sometimes this is
useful—it can mean that numbers, dates, and so on are correctly formatted for
whatever locale a program runs in. However, it can be problematic: if your
code relies on strings being formatted in a particular way (to serialize data that
will be transmitted over a network, for example), you may need to apply a
particular set of conventions. For this reason, you can pass the
string.Format method a format provider, an object that controls
formatting conventions. Likewise, data types with culture-dependent
representations accept an optional format provider argument in their
ToString methods. But how do you control this when using string
interpolation? There’s nowhere to put the format provider. You can solve this
with the string type’s Create method, as shown in Example 2-46.

Example 2-46. Format specifiers with invariant culture
decimal v = 1234567.654m;
string i = string.Create(CultureInfo.InvariantCulture, $"Quantity
{v:N}");
string f = string.Create(new CultureInfo("fr"), $"Quantity {v:N}");
string frc = string.Create(new CultureInfo("fr-FR"), $"Quantity
{v:C}");
string cac = string.Create(new CultureInfo("fr-CA"), $"Quantity
{v:C}");

This passes various different format providers to the string.Create
method, but it uses the same interpolated string each time. Notice that it puts
:N after the variable name in the first two lines. This asks for normal numeric
formatting, including digit separators. The first call passes the invariant
culture, which guarantees consistent formatting regardless of the locale in
which the code runs, with the effect that i gets the value "Quantity
1,234,567.654". The third line uses a CultureInfo object constructed
with the argument "fr". This tells it that we want it to format strings in the
ways typically expected in French-speaking cultures, so the f variable gets the
value "Quantity 1.234.567,654". The final two lines use :C,
indicating we’d like to show the value as a currency. I’ve passed cultures
representing France and the French-speaking parts of Canada, resulting in Euro
and dollar symbols, respectively.

It may seem odd that this works: normally, method arguments are evaluated
before being passed into the method, so you might expect the interpolated
string to be turned into a normal string before the call to string.Create,
meaning it would be too late to apply the specified format provider. But as I
said earlier, methods can indicate that they want to be involved in the string
interpolation process. This string.Create method does exactly that,
enabling it to take control of the process, which is how it is able to apply the
format provider.

Verbatim string literals
C# supports one more way of expressing a string value: you can prefix a string
literal with the @ symbol like so: @"Hello". Strings of this form are called
verbatim string literals. They are useful for two reasons: they can improve the
readability of strings containing backslashes, and they make it possible to write
multiline string literals.

In a normal string literal, the compiler treats a backslash as an escape character,
enabling various special values to be included. For example, in the literal
"Hello\tWorld!" the \t denotes a single tab character (code point 9).
This is a common way to express control characters in C-family languages.
You can also use the backslash to include a double quote in a string—the
backslash prevents the compiler from interpreting the character as the end of

the string. Useful though this is, it makes including a backslash in a string a bit
awkward: you have to write two of them. Since Windows uses backslashes in
paths, this can get ugly: "C:\\Windows\\System32\\". A verbatim
string literal can be useful here, because it treats backslashes literally, enabling
you to write just @"C:\Windows\System32". (You can still include
double quotes in a verbatim literal: just write two double quotes in a row. For
example, @"Hello ""World""" produces the string value Hello
"World".)

TIP
You can use @ in front of an interpolated string. This combines the benefits of verbatim
literals—straightforward use of backslashes and newlines—with support for embedded
expressions.

Verbatim string literals also allow values to span multiple lines. With a normal
string literal, the compiler will report an error if the closing double quote is not
on the same line as the opening one. But with a verbatim string literal, the
string can cover as many lines of source as you like.

The resulting string will use whichever line-ending convention your source
code uses. Just in case you’ve not encountered this, one of the unfortunate
accidents of computing history is that different systems use different character
sequences to denote line endings. The predominant system in internet protocols
is to use a pair of control codes for each line end: in either Unicode or ASCII,
we use code points 13 and 10, denoting a carriage return and a line feed,
respectively, often abbreviated to CR LF. This is an archaic hangover from the
days before computers had screens, and starting a new line meant moving the
teletype’s print head back to its start position (carriage return) and then moving
the paper up by one line (line feed). Anachronistically, the HTTP specification
requires this representation, as do the various popular email standards, SMTP,
POP3, and IMAP. It is also the standard convention on Windows.
Unfortunately, the Unix operating system does things differently, as do most of
its derivatives and lookalikes such as macOS and Linux—the convention on
these systems is to use just a single line feed character. The C# compiler
accepts either and will not complain if a single source file even contains a

mixture of both conventions. This introduces a potential problem for multiline
string literals if you are using a source control system that converts line endings
for you. For example, Git is a very popular source control system, and thanks
to its origins (it was created by Linus Torvalds, who also created Linux), there
is a widespread convention of using Unix-style line endings in its repositories.
However, on Windows it can be configured to convert working copies of files
to a CR LF representation, automatically converting them back to LF when
committing changes. This means that files will appear to use different line-
ending conventions depending on whether you’re looking at them on a
Windows system or a Unix one. (And it might even vary from one Windows
system to another, because the default line-ending handling is configurable.
Individual users can configure the machine-wide default setting and can also
set the configuration for their local clone of any repository if the repository
does not specify the setting itself.) This in turn means that compiling a file
containing a multiline verbatim string literal on a Windows system could
produce subtly different behavior than you’d see with the exact same file on a
Unix system, if automatic line-ending conversion is enabled (which it is by
default on most Windows installations of Git). That might be fine—you
typically want CR LF when running on Windows and LF on Unix—but it could
cause surprises if you deploy code to a machine running a different OS than the
one you built it on. So it’s important to provide a .gitattributes file in your
repositories so that they can specify the required behavior, instead of relying on
changeable local settings. If you need to rely on a particular line ending in a
string literal, it’s best to make your .gitattributes disable line-ending
conversions.

Tuples
Tuples let you combine multiple values into a single value. The name tuple
(which C# shares with many other programming languages that provide a
similar feature) is meant to be a generalized version of words like double,
triple, quadruple, and so on, but we generally call them tuples even in cases
where we don’t need the generality. For example, even if we’re talking about a
tuple with two items in it, we still call it a tuple, not a double. Example 2-47
creates a tuple containing two int values and then displays them.

Example 2-47. Creating and using a tuple
(int X, int Y) point = (10, 5);
Console.WriteLine($"X: {point.X}, Y: {point.Y}");

That first line is a variable declaration with an initializer. It’s worth breaking
this down, because the syntax for tuples makes for a slightly more complex-
looking declaration than we’ve seen so far. Remember, the general pattern for
statements of this form is as follows:

type identifier = initial-value;

That means that in Example 2-47, the type is (int X, int Y). So we’re
saying that our variable, point, is a tuple containing two values, both of type
int, and we want to refer to those as X and Y. The initializer here is (10,
5). So when we run the example, it produces this output:

X: 10, Y: 5

If you’re a fan of var, you’ll be pleased to know that you can specify the
names in the initializer using the syntax shown in Example 2-48, enabling you
to use var instead of the explicit type. This is equivalent to Example 2-47.

Example 2-48. Naming tuple members in the initializer
var point = (X: 10, Y: 5);
Console.WriteLine($"X: {point.X}, Y: {point.Y}");

If you initialize a tuple from existing variables and you do not specify names,
the compiler will presume that you want to use the names of those variables, as
Example 2-49 shows.

Example 2-49. Inferring tuple member names from variables
int x = 10, y = 5;
var point = (x, y);
Console.WriteLine($"X: {point.x}, Y: {point.y}");

This raises a stylistic question: Should tuple member names start with
lowercase or uppercase letters? The members are similar in nature to
properties, which we’ll be discussing in Chapter 3, and conventionally those
start with an uppercase letter. For this reason, many people believe that tuple
member names should also be uppercase. To a seasoned .NET developer, that

point.x in Example 2-49 just looks weird. However, another .NET
convention is that local variables usually start with a lowercase name. If you
stick to both of these conventions, tuple name inference doesn’t look very
useful. Many developers choose to accept lowercase tuple member names for
tuples used purely in local variables, because it enables the use of the
convenient name inference feature, using this casing style only for tuples that
are exposed outside of a method.

Arguably it doesn’t matter much, because tuple member names turn out to exist
only in the eye of the beholder. First, they’re optional. As Example 2-50 shows,
it’s perfectly legal to omit them. The names just default to Item1, Item2, etc.

Example 2-50. Default tuple member names
(int, int) point = (10, 5);
Console.WriteLine($"X: {point.Item1}, Y: {point.Item2}");

Second, the names are purely for the convenience of the code using the tuples
and are not visible to the runtime. You’ll have noticed that I’ve used the same
initializer expression, (10, 5), as I did in Example 2-47. Because it doesn’t
specify names, the expression’s type is (int, int), which matches the type
in Example 2-50, but I was also able to assign it straight into an (int X,
int Y) in Example 2-47. That’s because the names are essentially irrelevant
—these are all the same thing under the covers. (As we’ll see in Chapter 4, at
runtime these are all represented as instances of a type called
ValueTuple<int, int>.) The C# compiler keeps track of the names
we’ve chosen to use, but as far as the CLR is concerned, all these tuples just
have members called Item1 and Item2. An upshot of this is that we can
assign any tuple into any variable with the same shape, as Example 2-51
shows.

Example 2-51. Structural equivalence of tuples
(int X, int Y) point = (46, 3);
(int Width, int Height) dimensions = point;
(int Age, int NumberOfChildren) person = point;

This flexibility is a double-edged sword. The assignments in Example 2-51
seem rather sketchy. It might conceivably be OK to assign something that
represents a location into something that represents a size—there are some
situations in which that would be valid. But to assign that same value into

something apparently representing someone’s age and the number of children
they have looks likely to be wrong. The compiler won’t stop us though,
because it considers all tuples comprising a pair of int values to have the
same type. (It’s not really any different from the fact that the compiler won’t
stop you assigning an int variable named age into an int variable named
height. They’re both of type int.)

If you want to enforce a semantic distinction, you would be better off defining
custom types as described in Chapter 3. Tuples are really designed as a
convenient way to package together a few values in cases where defining a
whole new type wouldn’t really be justified.

C# does require tuples to have an appropriate shape. You cannot assign an
(int, int) into a (int, string), nor into an (int, int, int).
However, all of the implicit conversions in “Numeric conversions” work, so
you can assign anything with an (int, int) shape into an (int,
double) or a (double, long). So a tuple is really just like having a
handful of variables neatly contained inside another variable.

Tuples support comparison, so you can use the == and != relational operators
described later in this chapter. To be considered equal, two tuples must have the
same shape, and each value in the first tuple must be equal to its counterpart in
the second tuple.

Tuple deconstruction
Sometimes you will want to split a tuple back into its component parts. The
most straightforward way would be to access each item in turn by its name (or
as Item1, Item2, etc., if you didn’t specify names), but C# provides another
mechanism, called deconstruction. Example 2-52 declares and initializes two
tuples and then shows two different ways to deconstruct them.

Example 2-52. Constructing then deconstructing tuples
(int X, int Y) point1 = (40, 6);
(int X, int Y) point2 = (12, 34);

(int x, int y) = point1;
Console.WriteLine($"1: {x}, {y}");
(x, y) = point2;
Console.WriteLine($"2: {x}, {y}");

Having defined point1 and point2, this deconstructs point1 into two
variables, x and y. This particular form of deconstruction also declares the
variables into which the tuple is being deconstructed. The alternative form is
shown when we deconstruct point2—here, we’re deconstructing it into two
variables that already exist, so there’s no need to declare them.

Until you become accustomed to this syntax, the first deconstruction example
can seem confusingly similar to the first couple of lines, in which we declare
and initialize new tuples. In those first couple of lines, the (int X, int Y)
text signifies a tuple type with two int values named X and Y, but in the
deconstruction line when we write (int x, int y), we’re actually
declaring two variables, each of type int. The only significant difference is
that in the lines where we’re constructing new tuples, there’s a variable name
before the = sign. (Also, we’re using uppercase names there, but that’s just a
matter of convention. It would be entirely legal to write (int x, int y)
point3 = point1;. That would declare a new tuple with two int values
named x and y, stored in a variable named point3, initialized with the same
values as are in point1. Equally, we could write (int X, int Y) =
point1;. That would deconstruct point into two local variables called X
and Y.)

Starting with C# 10.0, you can mix the two forms of deconstruction. Before
this, any single deconstruction of a tuple either had to declare a new variable
for each part of the target, or every target had to be an existing variable. But as
Example 2-53 shows, a single deconstruction can now contain a mixture of
target types.

Example 2-53. Mixing declarations and existing variables in tuple
deconstruction
int u;
(u, int v) = point1;

If you don’t need every element of a tuple, you can use an underscore, as
Example 2-54 shows. This is called a discard.

Example 2-54. Tuple deconstruction with discard
(_, int h) = point1;

The underscore character can appear in any number of places in the target, and
it tells the compiler that we don’t need that part of the tuple to be extracted into
a variable.

Dynamic
C# defines a type called dynamic. This doesn’t directly correspond to any
CLR type—when we use dynamic in C#, the compiler presents it to the
runtime as object, which is described in the next section. However, from the
perspective of C# code, dynamic is a distinct type, and it enables some
special behavior.

With dynamic, the compiler makes no attempt at compile time to check
whether operations performed by code are likely to succeed. In other words, it
effectively disables the statically typed behavior that we normally get with C#.
You are free to attempt almost any operation on a dynamic variable—you can
use arithmetic operators, you can attempt to invoke methods on it, you can try
to assign it into variables of some other type, and you can try to get or set
properties on it. When you do this, the compiler generates code that attempts to
make sense of what you’ve asked it to do at runtime.

If you have come to C# from a language in which this sort of behavior is the
norm (such as JavaScript), you might be tempted to use dynamic for
everything because it works in a way you are used to. However, you should be
aware that there are a couple of issues with it. First, it was designed with a
particular scenario in mind: interoperability with certain pre-.NET Windows
components. The Component Object Model (COM) in Windows is the basis for
automatability of the Microsoft Office Suite, and many other applications, and
the scripting language built into Office is dynamic in nature. An upshot of this
is that a lot of Office’s automation APIs used to be hard work to use from C#.
One of the big drivers behind adding dynamic to the language was a desire to
improve this.

As with all C# features, it was designed with broader applicability in mind and
not simply as an Office interop feature. But since that was the most important
scenario for this feature, you may find that its ability to support idioms you are
familiar with from dynamic languages is disappointing. And the second issue to

be aware of is that it is not an area of the language that is getting a lot of new
work. When it was introduced, Microsoft went to considerable lengths to
ensure that all dynamic behavior was as consistent as possible with the
behavior you would have seen if the compiler had known at compile time what
types you were going to be using.

This means that the infrastructure supporting dynamic (which is called the
Dynamic Language Runtime, or DLR) has to replicate significant portions of
C# behavior. However, the DLR has not been updated much since dynamic
was added in C# 4.0 back in 2010, even though the language has seen many
new features since then. Of course, dynamic still works, but its capabilities
reflect how the language looked around a decade ago.

Even when it first appeared, dynamic had some limitations. There are some
aspects of C# that depend on the availability of static type information,
meaning that dynamic has always had some problems working with delegates
and also with LINQ. So even from the start, it was at something of a
disadvantage compared to using C# as intended, i.e., as a statically typed
language.

Object
The last data type to get special recognition from the C# compiler is object
(or System.Object, as the CLR calls it). This is the base class of almost
all C# types. A variable of type object is able to refer to a value of any type
that derives from object. This includes all numeric types, the bool and
string types, and any custom types you can define using the keywords we’ll
look at in the next chapter, such as class, record, and struct. And it also
includes all the types defined by the runtime libraries, with the exception of
certain types that can only be stored on the stack and that are described in
Chapter 18.

So object is the ultimate general-purpose container. You can refer to almost
anything with an object variable. We will return to this in Chapter 6 when
we look at inheritance.

9

Operators
Earlier you saw that expressions are sequences of operators and operands. I’ve
shown some of the types that can be used as operands, so now it’s time to see
what operators C# offers. Table 2-3 shows the ones that support common
arithmetic operations.

T
a
b
le
2
-
3
.
B
a
si
c
a
ri
t
h
m
et
ic
o
p
e
r
a
t
o
r
s

Name Example

Unary plus (does nothing) +x

Negation (unary minus) -x

Postincrement x++

Postdecrement x--

Preincrement ++x

Predecrement --x

Addition x + y

Subtraction x - y

Multiplication x * y

Division x / y

Remainder x % y

If you’ve had much experience with any other C-family language, all of these
should seem familiar. If not, the most peculiar ones will probably be the
increment and decrement operators. These have side effects: they add or
subtract one from the variable to which they are applied (meaning they can be

applied only to variables). With the postincrement and postdecrement, although
the variable gets modified, the containing expression ends up getting the
original value. So if x is a variable containing the value 5, the value of x++ is
also 5, even though the x variable will have a value of 6 after evaluating the
x++ expression. The pre- forms return the modified value, so if x is initially 5,
++x produces the value 6, which is also the value of x after evaluating the
expression.

Although the operators in Table 2-3 are used in arithmetic, some are available
on certain nonnumeric types. As you saw earlier, the + symbol represents
concatenation when working with strings, and as you’ll see in Chapter 9, the
addition and subtraction operators are also used for combining and removing
delegates.

C# also offers some operators that perform certain binary operations on the bits
that make up a value, shown in Table 2-4. These are not available on floating-
point types.

T
a
b
l
e
2
-
4
.
B
i
n
a
r
y
i
n
t
e
g
e
r
o
p
e
r
a
t
o
r
s

Name Example

Bitwise negation ~x

Bitwise AND x & y

Bitwise OR x | y

Bitwise XOR x ^ y

Shift left x << y

Shift right x >> y

The bitwise negation operator inverts all bits in an integer—any binary digit
with a value of 1 becomes 0, and vice versa. The shift operators move all the
binary digits left or right by the number of columns specified by the second
operand. A left shift sets the bottom digits to 0. Right shifts of unsigned
integers fill the top digits with 0, and right shifts of signed integers leave the
top digit as it is (i.e., negative numbers remain negative because they keep their
top bit set, while positive numbers keep their top bit as 0, thus remaining
positive).

The bitwise AND, OR, and XOR (exclusive OR) operators perform Boolean
logic operations on each bit of the two operands when applied to integers.
These three operators are also available when the operands are of type bool.
(In effect, these operators treat a bool as a one-digit binary number.) There are
some additional operators available for bool values, shown in Table 2-5. The
! operator does to a bool what the ~ operator does to each bit in an integer.

T
a
b
le
2
-
5
.
O
p
e
r
a
t
o
r
s
f
o
r
b

o

o

l

Name Example

Logical negation (also known as NOT) !x

Conditional AND x && y

Conditional OR x || y

If you have not used other C-family languages, the conditional versions of the
AND and OR operators may be new to you. These evaluate their second
operand only if necessary. For example, when evaluating (a && b), if the
expression a is false, the code generated by the compiler will not even
attempt to evaluate b, because the result will be false no matter what value b
has. Conversely, the conditional OR operator does not bother to evaluate its
second operand if the first is true, because the result will be true regardless
of the second operand’s value. This is significant if the second operand’s
expression either contains elements that have side effects (such as method
invocation) or might produce an error. For example, you often see code like
that shown in Example 2-55.

Example 2-55. The conditional AND operator
if (s != null && s.Length > 10)
...

This checks to see if the variable s contains the special value null, meaning
that it doesn’t currently refer to any value. The use of the && operator here is
important, because if s is null, evaluating the expression s.Length would
cause a runtime error. If we had used the & operator, the compiler would have
generated code that always evaluates both operands, meaning that we would
see a NullReferenceException at runtime if s is null. By using the
conditional AND operator, we avoid that, because the second operand,
s.Length > 10, will be evaluated only if s is not null.

NOTE
Although code of the kind shown in Example 2-55 was once common, it has gradually
become much rarer thanks to a feature introduced back in C# 6.0, null-conditional operators.
If you write s?.Length instead of just s.Length, the compiler generates code that
checks s for null first, avoiding the NullReferenceException. This means the
check can become just if (s?.Length > 10). Furthermore, C#’s optional nullable
reference types (a relatively new feature, discussed in Chapter 3) can help reduce the need
for these kinds of tests for null.

Example 2-55 tests to see if a property is greater than 10 by using the >
operator. This is one of several relational operators, which allow us to compare
values. They all take two operands and produce a bool result. Table 2-6 shows
these, and they are supported for all numeric types. Some operators are
available on some other types too. For example, you can compare string values
with the == and != operators. (There is no built-in meaning for the other
relational operators with string because different countries have different
ideas about the order in which to sort strings. If you want ordered string
comparison, .NET offers the StringComparer class, which requires you to
select the rules by which you’d like your strings ordered.)

T
a
b
l
e
2
-
6
.
R
e
l
a
ti
o
n
a
l
o
p
e
r
a
t
o
r
s

Name Example

Less than x < y

Greater than x > y

Less than or equal x <= y

Greater than or equal x >= y

Equal x == y

Not equal x != y

As is usual with C-family languages, the equality operator is a pair of equals
signs. This is because a single equals sign means something else: it’s an
assignment, and assignments are expressions too. This can lead to an
unfortunate problem: in some C-family languages, it’s all too easy to write if
(x = y) when you meant if (x == y). Fortunately, this will usually
produce a compiler error in C#, because C# has a special type to represent
Boolean values. In languages that allow numbers to stand in for Booleans, both
pieces of code are legal even if x and y are numbers. (The first means to assign
the value of y into x, and then to execute the body of the if statement if that
value is nonzero. That’s very different than the second one, which doesn’t
change the value of anything and executes the body of the if statement only if
x and y are equal.) But in C#, the first example would be meaningful only if x
and y were both of type bool.

Another feature that’s common to the C family is the conditional operator.
(This is sometimes also called the ternary operator, because it’s the only
operator in the language that takes three operands.) It chooses between two
expressions. More precisely, it evaluates its first operand, which must be a
Boolean expression, and then returns the value of either the second or third
operand, depending on whether the value of the first was true or false,

10

respectively. Example 2-56 uses this to pick the larger of two values. (This is
just for illustration. In practice, you’d normally use .NET’s Math.Max
method, which has the same effect but is rather more readable. Math.Max
also has the benefit that if you use expressions with side effects, it will only
evaluate each one once, something you can’t do with the approach shown in
Example 2-56, because we’ve ended up writing each expression twice.)

Example 2-56. The conditional operator
int max = (x > y) ? x : y;

This illustrates why C and its successors have a reputation for terse syntax. If
you are familiar with any language from this family, Example 2-56 will be easy
to read, but if you’re not, its meaning might not be instantly clear. This will
evaluate the expression before the ? symbol, which is (x > y) in this case,
and that’s required to be an expression that produces a bool. (The parentheses
are optional. I put them in to make the code easier to read.) If that is true, the
expression between the ? and : symbols is used (x, in this case); otherwise, the
expression after the : symbol (y here) is used.

The conditional operator is similar to the conditional AND and OR operators in
that it will evaluate only the operands it has to. It always evaluates its first
operand, but it will never evaluate both the second and third operands. That
means you can handle null values by writing something like Example 2-57.
This does not risk causing a NullReferenceException, because it will
evaluate the third operand only if s is not null.

Example 2-57. Exploiting conditional evaluation
int characterCount = s == null ? 0 : s.Length;

However, in some cases, there are simpler ways of dealing with null values.
Suppose you have a string variable, and if it’s null, you’d like to use the
empty string instead. You could write (s == null ? "" : s). But you
could just use the null coalescing operator instead, because it’s designed for
precisely this job. This operator, shown in Example 2-58 (it’s the ?? symbol),
evaluates its first operand, and if that’s non-null, that’s the result of the
expression. If the first operand is null, it evaluates its second operand and
uses that instead.

Example 2-58. The null coalescing operator
string neverNull = s ?? "";

We could combine a null-conditional operator with the null coalescing operator
to provide a more succinct alternative to Example 2-57, shown in Example 2-
59.

Example 2-59. Null-conditional and null coalescing operators
int characterCount = s?.Length ?? 0;

One of the main benefits offered by the conditional, null-conditional, and null
coalescing operators is that they often allow you to write a single expression in
cases where you would otherwise have needed to write considerably more
code. This can be particularly useful if you’re using the expression as an
argument to a method, as in Example 2-60.

Example 2-60. Conditional expression as method argument
FadeVolume(gateOpen ? MaxVolume : 0.0, FadeDuration,
FadeCurve.Linear);

Compare this with what you’d need to write if the conditional operator did not
exist. You would need an if statement. (I’ll get to if statements in the next
section, but since this book is not for novices, I’m assuming you’re familiar
with the rough idea.) And you’d either need to introduce a local variable, as
Example 2-61 does, or you’d need to duplicate the method call in the two
branches of the if/else, changing just the first argument. So, terse though the
conditional and null coalescing operators are, they can remove a lot of clutter
from your code.

Example 2-61. Life without the conditional operator
double targetVolume;
if (gateOpen)
{
 targetVolume = MaxVolume;
}
else
{
 targetVolume = 0.0;
}
FadeVolume(targetVolume, FadeDuration, FadeCurve.Linear);

There is one last set of operators to look at: the compound assignment
operators. These combine assignment with some other operation and are
available for the +, -, *, /, %, <<, >>, &, ^, |, and ?? operators. They enable
you not to have to write the sort of code shown in Example 2-62.

Example 2-62. Assignment and addition
x = x + 1;

We can write this assignment statement more compactly as the code in
Example 2-63. All the compound assignment operators take this form—you
just stick an = on the end of the original operator.

Example 2-63. Compound assignment (addition)
x += 1;

This is a distinctive syntax that makes it very clear that we are modifying the
value of a variable in some particular way. So, although those two snippets
perform identical work, many developers find the second idiomatically
preferable.

That’s not quite a comprehensive list of operators. There are a few more
specialized ones that I’ll get to once we’ve looked at the areas of the language
for which they were defined. (Some relate to classes and other types, some to
inheritance, some to collections, and some to delegates. There are chapters
coming up on all of these.) By the way, although I’ve been describing which
operators are available on which types, it’s possible to write a custom type that
defines its own meanings for most of these. That’s how .NET’s BigInteger
type can support the same arithmetic operations as the built-in numeric types.
I’ll show how this can be done in Chapter 3.

Flow Control
Most of the code we have examined so far executes statements in the order they
are written and stops when it reaches the end. If that were the only possible
way in which execution could flow through our code, C# would not be very
useful. So, as you’d expect, it has a variety of constructs for writing loops and
for deciding which code to execute based on inputs.

Boolean Decisions with if Statements
An if statement decides whether or not to run some particular statement
depending on the value of a bool expression. For example, the if statement
in Example 2-64 will execute the block statement that shows a message only if
the age variable’s value is less than 18.

Example 2-64. Simple if statement
if (age < 18)
{
 Console.WriteLine("You are too young to buy alcohol in a bar in
the UK.");
}

You don’t have to use a block statement with an if statement. You can use any
statement type as the body. A block is necessary only if you want the if
statement to govern the execution of multiple statements. However, some
coding style guidelines recommend using a block in all cases. This is partly for
consistency but also because it avoids a possible error when modifying the
code at a later date: if you have a nonblock statement as the body of an if, and
then you add another statement after that, intending it to be part of the same
body, it can be easy to forget to add a block around the two statements, leading
to code like that in Example 2-65. The indentation suggests that the developer
meant for the final statement to be part of the if statement’s body, but C#
ignores indentation, so that final statement will always run. If you are in the
habit of always using a block, you won’t make this mistake.

Example 2-65. Probably not what was intended
if (authenticationCodesCorrect)
 SendTransferConfirmation();
 TransferFunds();

An if statement can optionally include an else part, which is followed by
another statement that runs only if the if statement’s expression evaluates to
false. So Example 2-66 will write either the first or the second message,
depending on whether the optimistic variable is true or false.

Example 2-66. if and else
if (optimistic)
{
 Console.WriteLine("Glass half full");

}
else
{
 Console.WriteLine("Glass half empty");
}

The else keyword can be followed by any statement, and again, this is
typically a block. However, there’s one scenario in which most developers do
not use a block for the body of the else part, and that’s when they use another
if statement. Example 2-67 shows this—its first if statement has an else
part, which has another if statement as its body.

Example 2-67. Picking one of several possibilities
if (temperatureInCelsius < 52)
{
 Console.WriteLine("Too cold");
}
else if (temperatureInCelsius > 58)
{
 Console.WriteLine("Too hot");
}
else
{
 Console.WriteLine("Just right");
}

This code still looks like it uses a block for that first else, but that block is
actually the statement that forms the body of a second if statement. It’s that
second if statement that is the body of the else. If we were to stick rigidly to
the rule of giving each if and else body its own block, we’d rewrite
Example 2-67 as Example 2-68. This seems unnecessarily fussy, because the
main risk that we’re trying to avert by using blocks doesn’t really apply in
Example 2-67.

Example 2-68. Overdoing the blocks
if (temperatureInCelsius < 52)
{
 Console.WriteLine("Too cold");
}
else
{
 if (temperatureInCelsius > 58)
 {
 Console.WriteLine("Too hot");

 }
 else
 {
 Console.WriteLine("Just right");
 }
}

Although we can chain if statements together as shown in Example 2-67, C#
offers a more specialized statement that can sometimes be easier to read.

Multiple Choice with switch Statements
A switch statement defines multiple groups of statements and either runs one
group or does nothing at all, depending on the value of an input expression. As
Example 2-69 shows, you put the expression inside parentheses after the
switch keyword, and after that, there’s a region delimited by braces
containing a series of case sections, defining the behavior for each anticipated
value for the expression.

Example 2-69. A switch statement with strings
switch (workStatus)
{
case "ManagerInRoom":
 WorkDiligently();
 break;

case "HaveNonUrgentDeadline":
case "HaveImminentDeadline":
 CheckTwitter();
 CheckEmail();
 CheckTwitter();
 ContemplateGettingOnWithSomeWork();
 CheckTwitter();
 CheckTwitter();
 break;

case "DeadlineOvershot":
 WorkFuriously();
 break;

default:
 CheckTwitter();
 CheckEmail();
 break;
}

As you can see, a single section can serve multiple possibilities—you can put
several different case labels at the start of a section, and the statements in that
section will run if any of those cases apply. You can also write a default
section, which will run if none of the cases apply. A switch statement does
not have to be comprehensive, so if there is no case that matches the
expression’s value and there is no default section, the switch statement
simply does nothing.

Unlike if statements, which take exactly one statement for the body, a case
may be followed by multiple statements without needing to wrap them in a
block. The sections in Example 2-69 are delimited by break statements,
which causes execution to jump to the end of the switch statement. This is
not the only way to finish a section—strictly speaking, the rule imposed by the
C# compiler is that the end point of the statement list for each case must not
be reachable, so anything that causes execution to leave the switch statement
is acceptable. You could use a return statement instead, or throw an
exception, or you could even use a goto statement.

Some C-family languages (C, for example) allow fall-through, meaning that if
execution is allowed to reach the end of the statements in a case section, it
will continue with the next one. Example 2-70 shows this style, and it is not
allowed in C# because of the rule that requires the end of a case statement list
not to be reachable.

Example 2-70. C-style fall-through, illegal in C#
switch (x)
{
case "One":
 Console.WriteLine("One");
case "Two": // This line will not compile
 Console.WriteLine("One or two");
 break;
}

C# outlaws this, because the vast majority of case sections do not fall
through, and when they do in languages that allow it, it’s often a mistake
caused by the developer forgetting to write a break statement (or some other
statement to break out of the switch). Accidental fall-through is likely to
produce unwanted behavior, so C# requires more than the mere omission of a

break: if you want fall-through, you must ask for it explicitly. As Example 2-
71 shows, we use the unloved goto keyword to express that we really do want
one case to fall through into the next one.

Example 2-71. Fall-through in C#
switch (x)
{
case "One":
 Console.WriteLine("One");
 goto case "Two";
case "Two":
 Console.WriteLine("One or two");
 break;
}

This is not technically a goto statement. It is a goto case statement and
can be used only to jump within a switch block. C# also supports more
general goto statements—you can add labels to your code and jump around
within your methods. However, goto is heavily frowned upon, so the fall-
through form offered by goto case statements seems to be the only use for
this keyword that is considered respectable in modern society.

These examples have all used strings. You can also use switch with integer
types, char, and any enum (a kind of type discussed in the next chapter). But
case labels don’t necessarily have to be constants: you can also use patterns,
which are discussed later in this chapter.

Loops: while and do
C# supports the usual C-family loop mechanisms. Example 2-72 shows a
while loop. This takes a bool expression. It evaluates that expression, and if
the result is true, it will execute the statement that follows. So far, this is just
like an if statement, but the difference is that once the loop’s embedded
statement is complete, it then evaluates the expression again, and if it’s true
again, it will execute the embedded statement a second time. It will keep doing
this until the expression evaluates to false. As with if statements, the body
of the loop does not need to be a block, but it usually is.

Example 2-72. A while loop
while (!reader.EndOfStream)
{
 Console.WriteLine(reader.ReadLine());
}

The body of the loop may decide to finish the loop early with a break
statement. It does not matter whether the while expression is true or
false—executing a break statement will always terminate the loop.

C# also offers the continue statement. Like a break statement, this
terminates the current iteration, but unlike break, it will then reevaluate the
while expression, so iteration may continue. Both continue and break
jump straight to the end of the loop, but you could think of continue as
jumping directly to the point just before the loop’s closing }, while break
jumps to the point just after. By the way, continue and break are also
available for all of the other loop styles I’m about to show.

Because a while statement evaluates its expression before each iteration, it’s
possible for a while loop not to run its body at all. Sometimes, you may want
to write a loop that runs at least once, only evaluating the bool expression
after the first iteration. This is the purpose of a do loop, as shown in Example
2-73.

Example 2-73. A do loop
char k;
do
{
 Console.WriteLine("Press x to exit");
 k = Console.ReadKey().KeyChar;
}
while (k != 'x');

Notice that Example 2-73 ends in a semicolon, denoting the end of the
statement. Compare this with the line containing the while keyword in
Example 2-72, which does not, despite otherwise looking very similar. That
may look inconsistent, but it’s not a typo. Putting a semicolon at the end of the
line with the while keyword in Example 2-72 would be legal, but it would
change the meaning—it would indicate that we want the body of the while
loop to be an empty statement. The block that followed would then be treated

as a brand-new statement to execute after the loop completes. The code would
get stuck in an infinite loop unless the reader were already at the end of the
stream. (The compiler will issue a warning about a “Possible mistaken empty
statement” if you do that, by the way.)

C-Style for Loops
Another style of loop that C# inherits from C is the for loop. This is similar to
while, but it adds two features to that loop’s bool expression: it provides a
place to declare and/or initialize one or more variables that will remain in scope
for as long as the loop runs, and it provides a place to perform some operation
each time around the loop (in addition to the statement that forms the body of
the loop). So the structure of a for loop looks like this:

for (initializer; condition; iterator) body

A very common application of this is to do something to all the elements in an
array. Example 2-74 shows a for loop that multiplies every element in an
array by 2. The condition part works in exactly the same way as in a while
loop—it determines whether the embedded statement forming the loop’s body
runs, and it will be evaluated before each iteration. Again, the body doesn’t
strictly have to be a block but usually is.

Example 2-74. Modifying array elements with a for loop
for (int i = 0; i < myArray.Length; i++)
{
 myArray[i] *= 2;
}

The initializer in this example declares a variable called i and initializes it to 0.
This initialization happens just once—this wouldn’t be very useful if it reset the
variable to 0 every time around the loop, because the loop would never end.
This variable’s lifetime effectively begins just before the loop starts and
finishes when the loop finishes. The initializer does not need to be a variable
declaration—you can use any expression statement.

The iterator in Example 2-74 just adds 1 to the loop counter. It runs at the end
of each loop iteration, after the body runs and before the condition is

reevaluated. (So if the condition is initially false, not only does the body not
run, the iterator will never be evaluated.) C# does nothing with the result of the
iterator expression—it is useful only for its side effects. So it doesn’t matter
whether you write i++, ++i, i += 1, or even i = i + 1.

A for loop doesn’t let you do anything that you couldn’t have achieved by
writing a while loop and putting the initialization code before the loop and
the iterator at the end of the loop body instead. However, there may be
readability benefits. A for statement puts the code that defines how we loop in
one place, separate from the code that defines what we do each time around the
loop, which might help those reading the code to understand what it does. They
don’t have to scan down to the end of a long loop to find the iterator statement
(although a long loop body that trails over pages of code is generally
considered to be bad practice, so this last benefit is a little dubious).

Both the initializer and the iterator can contain lists, as Example 2-75 shows,
although in this particular case it isn’t terribly useful—since all the iterators run
every time around, i and j will have the same value as each other throughout.

Example 2-75. Multiple initializers and iterators
for (int i = 0, j = 0; i < myArray.Length; i++, j++)
...

You can’t write a single for loop that performs a multidimensional iteration. If
you want that, you would nest one loop inside another, as Example 2-76
illustrates.

Example 2-76. Nested for loops
for (int j = 0; j < height; ++j)
{
 for (int i = 0; i < width; ++i)
 {
 ...
 }
}

Although Example 2-74 shows a common enough idiom for iterating through
arrays, you will often use a different, more specialized construct.

11

Collection Iteration with foreach Loops
C# offers a style of loop that is not universal in C-family languages. The
foreach loop is designed for iterating through collections. A foreach loop
fits this pattern:

foreach (item-type iteration-variable in collection) body

The collection is an expression whose type must match a particular pattern
recognized by the compiler. The runtime libraries’ IEnumerable<T>
interface, which we’ll be looking at in Chapter 5, matches this pattern, although
the compiler doesn’t actually require an implementation of that interface—it
just requires the collection to have a GetEnumerator method that resembles
the one defined by that interface. Example 2-77 uses foreach to show all the
strings in an array. (All arrays provide the method that foreach requires.)

Example 2-77. Iterating over a collection with foreach
string[] messages = GetMessagesFromSomewhere();
foreach (string message in messages)
{
 Console.WriteLine(message);
}

This loop will run the body once for each item in the array. The iteration
variable (message, in this example) is different each time around the loop
and will refer to the item for the current iteration.

In one way, this is less flexible than the for-based loop shown in Example 2-
74: a foreach loop cannot modify the collection it iterates over. That’s
because not all collections support modification. IEnumerable<T> demands
very little of its collections—it does not require modifiability, random access,
or even the ability to know up front how many items the collection provides.
(In fact, IEnumerable<T> is able to support never-ending collections. For
example, it is perfectly legal to write an implementation that will return random
numbers for as long as you care to keep fetching values.)

But foreach offers two advantages over for. One advantage is subjective
and therefore debatable: it’s a bit more readable. But significantly, it’s also
more general. If you’re writing methods that do things to collections, those

methods will be more broadly applicable if they use foreach rather than
for, because you’ll be able to accept an IEnumerable<T>. Example 2-78
can work with any collection that contains strings, rather than being limited to
arrays.

Example 2-78. General-purpose collection iteration
public static void ShowMessages(IEnumerable<string> messages)
{
 foreach (string message in messages)
 {
 Console.WriteLine(message);
 }
}

This code can work with collection types that do not support random access,
such as the LinkedList<T> class described in Chapter 5. It can also process
lazy collections that decide what items to produce on demand, including those
produced by iterator functions, also shown in Chapter 5, and by certain LINQ
queries, as described in Chapter 10.

Patterns
There’s one last essential mechanism to look at in C#: patterns. A pattern
describes one or more criteria that a value can be tested against. You’ve already
seen some simple patterns in action: each case in a switch specifies a
pattern. But as we’ll now see, there are many kinds of patterns, and they aren’t
just for switch statements.

The switch examples earlier, such as Example 2-69, all used one of the
simplest pattern types: they were all constant patterns. With these, you specify
just a constant value, and an expression matches this pattern if it has that value.
Example 2-79 shows a more interesting kind of pattern: it uses declaration
patterns. An expression matches a declaration pattern if it has the specified
type. As you saw earlier in “Object”, some variables are capable of holding a
variety of different types. Variables of type object are an extreme case of
this, since they can hold more or less anything. Language features such as
interfaces (discussed in Chapter 3), generics (Chapter 4), and inheritance
(Chapter 6) can lead to scenarios where the static type of a variable provides

more information than the anything-goes object type but still leave latitude
for a range of possible types at runtime. Declaration patterns can be useful in
these cases.

Example 2-79. Declaration patterns
switch (o)
{
case string s:
 Console.WriteLine($"A piece of string is {s.Length} long");
 break;

case int i:
 Console.WriteLine($"That's numberwang! {i}");
 break;
}

Declaration patterns have an interesting characteristic that constant ones do not:
as well as the Boolean match/no-match common to all patterns, a declaration
pattern produces an additional output. Each case in Example 2-79 introduces
a variable, which the code for that case then goes on to use. This output is just
the input but copied into a variable with the specified static type. So that first
case will match if o turns out to be a string, in which case we can access it
through the s variable (which is why that s.Length expression compiles
correctly; o.Length would not if o is of type object).

Sometimes, you won’t actually need a declaration pattern’s output—it might be
enough just to know that the input matched a pattern. One way to handle these
cases is with a discard: if you put an underscore (_) in the place where the
output variable name would normally go, that tells the C# compiler that you are
only interested in whether the value matches the type. C# 9.0 introduced a
more succinct alternative: type patterns. A type pattern looks and works like a
declaration pattern without the variable—as Example 2-80 shows, the pattern
consists of just the type name.

Example 2-80. Type patterns
switch (o)
{
case string:
 Console.WriteLine("This is a piece of string");
 break;

case int:

 Console.WriteLine("That's numberwang!");
 break;
}

Some patterns do a little more work to produce their output. For example,
Example 2-81 shows a positional pattern that matches any tuple containing a
pair of int values and extracts those values into two variables, x and y.

Example 2-81. Positional pattern
case (int x, int y):
 Console.WriteLine($"I know where it's at: {x}, {y}");
 break;

Positional patterns are an example of a recursive pattern: they are patterns that
contain patterns. In this case, this positional pattern contains a declaration
pattern as each of its children. But as Example 2-82 shows, we can use constant
values in each position to match tuples with specific values.

Example 2-82. Positional patterns with constant values
switch (p)
{
case (0, 0):
 Console.WriteLine("How original");
 break;

case (0, 1):
case (1, 0):
 Console.WriteLine("What an absolute unit");
 break;

case (1, 1):
 Console.WriteLine("Be there and be square");
 break;
}

We can mix things up, because positional patterns can contain different pattern
types in each position. Example 2-83 shows a positional pattern with a constant
pattern in the first position and a declaration pattern in the second.

Example 2-83. Positional pattern with constant and declaration patterns
case (0, int y):
 Console.WriteLine($"This is on the X axis, at height {y}");
 break;

If you are a fan of var, you might be wondering if you can write something
like Example 2-84. This will work, and the static types of the x and y variables
here will depend on the type of the pattern’s input expression. If the compiler
can determine how the expression deconstructs (for example, if the switch
statement input’s static type is an (int, int) tuple), then it will use this
information to determine the output variables’ static types. In cases where this
is unknown, but it’s still conceivable that this pattern could match (for
example, if the input is object), then x and y here will also have type
object.

Example 2-84. Positional pattern with var
case (var x, var y):
 Console.WriteLine($"I know where it's at: {x}, {y}");
 break;

NOTE
The compiler will reject patterns in cases where it can determine that a match is impossible.
For example, if it knows the input type is a (string, int, bool) tuple, it cannot
possibly match a positional pattern with only two child patterns, so C# won’t let you try.

Example 2-84 shows an unusual case where using var instead of an explicit
type can introduce a significant change of behavior. These var patterns differ in
one important respect from the declaration patterns in Example 2-81: a var
pattern always matches its input, whereas a declaration pattern inspects its
input’s type to determine at runtime whether it matches. This check might be
optimized away in practice—there are cases where a declaration pattern will
always match because its input type is known at compile time. But the only
way to express in your code that you definitely don’t want the child patterns in
a positional pattern to perform a runtime check is to use var. So although a
positional pattern containing declaration patterns strongly resembles the
deconstruction syntax shown in Example 2-52, the behavior is quite different.
Example 2-81 is in effect performing three runtime tests: whether the value is a
2-tuple, whether the first value is an int, and whether the second value is an
int. (So it would work for tuples with a static type of (object, object),
as long as each value is an int at runtime.) This shouldn’t really be surprising:

the point of patterns is to test at runtime whether a value has certain
characteristics. However, with some recursive patterns, you may find yourself
wanting to express a mixture of runtime matching (for example, is this thing a
string?) combined with statically typed deconstruction (for example, if this
is a string, I’d like to extract its Length property, which I believe to be of
type int, and I want a compiler error if that belief turns out to be wrong).
Patterns are not designed to do this, so it’s best not to try to use them that way.

What if we don’t need to use all of the items in the tuple? You already know
one way to handle that. Since we can use any pattern in each position, we could
use a declaration pattern that discards its result in, say, the second position:
(int x, int _). Or we could use a type pattern: (int x, int).
However, Example 2-85 shows a shorter alternative: instead of a type pattern,
we can use just a lone underscore. This is a discard pattern. You can use it in a
recursive pattern anyplace a pattern is required but where you want to indicate
that anything will do in that particular position and that you don’t need to know
what it was.

Example 2-85. Positional pattern with discard pattern
case (int x, _):
 Console.WriteLine($"At X: {x}. As for Y, who knows?");
 break;

This has subtly different semantics than the discarding declaration pattern or
the type pattern: those patterns will check at runtime that the value to be
discarded has the specified type, and the pattern will only match if this check
succeeds. But a discard pattern always matches, so this would match (10,
20), (10, "Foo"), and (10, (20, 30)), for example.

Positional patterns are not the only recursive ones: you can also write a
property pattern. We’ll look at properties in detail in the next chapter, but for
now it’s enough to know that they are members of a type that provide some sort
of information, such as the string type’s Length property, which returns an
int telling you how many code units the string contains. Example 2-86 shows
a property pattern that inspects this Length property.

Example 2-86. Property pattern
case string { Length: 0 }:
 Console.WriteLine("How long is a piece of string? Not very!");

 break;

This property pattern starts with a type name, so it effectively incorporates the
behavior of a type pattern in addition to its property-based tests. (You can omit
this in cases where the type of the pattern’s input is sufficiently specific to
identify the property. For example, if the input in this case already had a static
of type string, we could omit this.) This is then followed by a section in
braces listing each of the properties that the pattern wants to inspect and the
pattern to apply for that property. (These child patterns are what make this
another recursive pattern.) So this example first checks to see if the input is a
string. If it is, it then applies a constant pattern to the string’s Length, so
this pattern matches only if the input is a string with Length of 0.

Property patterns can optionally specify an output. Example 2-86 doesn’t do
this. Example 2-87 shows the syntax, although in this particular case it’s not
terribly useful because this pattern will ensure that s only ever refers to an
empty string.

Example 2-87. Property pattern with output
case string { Length: 0 } s:
 Console.WriteLine($"How long is a piece of string? This long:
{s.Length}");
 break;

Since each property in a property pattern contains a nested pattern, those too
can produce outputs, as Example 2-88 shows.

Example 2-88. Property pattern with nested pattern with output
case string { Length: int length }:
 Console.WriteLine($"How long is a piece of string? This long:
{length}");
 break;

You can nest property patterns within property patterns. Example 2-89 uses this
to inspect the operating system version reported by
Environment.OSVersion, testing whether the major version is equal to
10.

Example 2-89. Property pattern with nested property pattern
switch (Environment.OSVersion)
{
 case { Version: { Major: 10 } }:

 Console.WriteLine("Windows 10, 11, or later");
 break;
}

C# 10.0 adds a more succinct syntax for expressing the same thing. You can
replace the case in Example 2-89 with Example 2-90. It has exactly the same
effect but is a more compact, and arguably more readable, expression of the
intent.

Example 2-90. Extended property pattern
case { Version.Major: 10 }:
 Console.WriteLine("Windows 10, 11, or later");
 break;

Combining and Negating Patterns
C# offers three logical operations for use in patterns: and, or, and not. The
simplest of these is not, and it lets you invert the meaning of a pattern.
Example 2-91 uses this to ensure it runs certain code only if a variable is non-
null. This applies negation (not) to a constant pattern: the null here is
interpreted as a constant pattern. If we had written just null, the pattern would
match when the value is null, but with not null the pattern matches when it
is not.

Example 2-91. Detecting non-nullness with pattern negation
case not null:
 Console.WriteLine($"User's middle name is: {middleName}");
 break;

We can use and and or to combine pairs of patterns. (These are officially
called conjunctive and disjunctive patterns; apparently the C# language
designers are fans of formal propositional logic.) If we combine two patterns
with and, the result is a pattern that matches only if both of the constituent
patterns match. For example, if you wanted to write code that had something
against my middle name, you could use the approach shown in Example 2-92.
This also shows that you can use a mixture of these logical operations: this uses
both and and not.

Example 2-92. Using pattern conjunction (and) and negation (not)
case not null and not "David":
 Console.WriteLine($"User's middle name is: {middleName}");

 break;

We can use or in a similar way, and the effect is a pattern that matches its input
if either of its constituent patterns matches. You can build up larger
combinations through repeated use of and and/or or.

Relational Patterns
Patterns can use the <, <=, >=, and > operators when the pattern’s type
supports these kinds of comparison. Example 2-93 shows a switch statement
that includes two relational patterns, as patterns based on these operators are
called.

Example 2-93. Relational patterns
switch (value)
{
case > 0: Console.WriteLine("Positive"); break;
case < 0: Console.WriteLine("Negative"); break;
default: Console.WriteLine("Neither strictly positive nor negative");
break;
};

You can use relational patterns in any position that any other pattern can be
used. So they could appear inside a positional pattern (e.g., if you wanted to
match points on the Y axis, above the X axis you could write (0, > 0)).
Example 2-94 uses two relational patterns as the constituents of a conjunction
to express the requirement that a value falls within a particular range.

Example 2-94. Using relational patterns in a conjunction
case >= 168 and <= 189:
 Console.WriteLine("Is within inner 90 percentiles");
 break;

Relational patterns support comparisons only with constants. You cannot
replace the numbers in the preceding examples with variables.

Getting More Specific with when
Sometimes, the built-in pattern types won’t provide the level of precision you
need. For example, with positional patterns, we’ve seen how to write patterns
that match, say, any pair of values, or any pair of numbers, or a pair of numbers

where one has a particular value. But what if you want to match a pair of
numbers where the first is higher than the second? This isn’t a big conceptual
leap, but there’s no built-in support for this—relational patterns can’t do this
because they can compare only with constants. We could detect the condition
with an if statement of course, but it would seem a shame to have to
restructure our code from a switch to a series of if and else statements
just to make this small step forward. Fortunately we don’t have to.

Any pattern in a case label can be qualified by adding a when clause. It
allows a Boolean expression to be included. This will be evaluated if the value
matches the main part of the pattern, and the value will match the pattern as a
whole only if the when clause is true. Example 2-95 shows a positional pattern
with a when clause that matches pairs of numbers in which the first number is
larger than the second.

Example 2-95. Pattern with when clause
case (int w, int h) when w > h:
 Console.WriteLine("Landscape");
 break;

Patterns in Expressions
All of the patterns I’ve shown so far appear in case labels as part of a
switch statement. This is not the only way to use patterns. They can also
appear inside expressions. To see how this can be useful, look first at the
switch statement in Example 2-96. The intent here is to return a single value
determined by the input, but it’s a little clumsy: I’ve had to write four separate
return statements to express that.

Example 2-96. Patterns, but not in expressions
switch (shape)
{
 case (int w, int h) when w < h: return "Portrait";
 case (int w, int h) when w > h: return "Landscape";
 case (int _, int _): return "Square";
 default: return "Unknown";
}

Example 2-97 shows code that performs the same job but rewritten to use a
switch expression. As with a switch statement, a switch expression

contains a list of patterns. The difference is that whereas labels in a switch
statement are followed by a list of statements, in a switch expression each
pattern is followed by a single expression. The value of a switch expression
is the result of evaluating the expression associated with the first pattern that
matches.

Example 2-97. A switch expression
return shape switch
{
 (int w, int h) when w < h => "Portrait",
 (int w, int h) when w > h => "Landscape",
 (int _, int _) => "Square",
 _ => "Unknown"
};

switch expressions look quite different than switch statements, because
they don’t use the case keyword. Instead, they just dive straight in with the
pattern, and then use => between the pattern and its corresponding expression.
There are a few reasons for this. First, it makes switch expressions a bit more
compact. Expressions are generally used inside other things—in this case, the
switch expression is the value of a return statement, but you might also
use these as a method argument or anywhere else an expression is allowed—so
we generally want them to be succinct. Secondly, using case here could have
led to confusion because the rules for what follows each case would be
different for switch statements and switch expressions: in a switch
statement, each case label is followed by one or more statements, but in a
switch expression, each pattern needs to be followed by a single expression.
Finally, although switch expressions were only added to version 8.0 of C#,
this sort of construct has been around in other languages for many years. C#’s
version of it more closely resembles equivalents from other languages than it
would have done if the expression form used the case keyword.

Notice that the final pattern in Example 2-97 is a discard pattern. This will
match anything, and it’s there to ensure that the pattern is exhaustive, i.e., that
it covers all possible cases. (It has a similar effect to a default section in a
switch statement.) Unlike a switch statement, where it’s OK for there to be
no matches, a switch expression has to produce a result, so the compiler will
warn you if your patterns don’t handle all possible cases for the input type. It

would complain in this situation if we were to remove that final case, assuming
the shape input is of type object. (Conversely, if shape were of type
(int, int), we would have to remove that final case, because the first three
cases in fact cover all possible values for that type and the compiler will
produce an error telling us that the final pattern will never apply.) If you ignore
this warning, and then at runtime you evaluate a switch expression with an
unmatchable value, it will throw a SwitchExpressionException.
Exceptions are described in Chapter 8.

There’s one more way to use a pattern in an expression, and that’s with the is
keyword. It turns any pattern into a Boolean expression. Example 2-98 shows a
simple example that determines whether a value is a tuple containing two
integers.

Example 2-98. An is expression
bool isPoint = value is (int, int);

This also provides a way to ensure that a value is non-null before proceeding.
Example 2-99 combines a negation with a constant pattern testing for null.

Example 2-99. Testing for non-nullness with is
if (s is not null)
{
 Console.WriteLine(s.Length);
}

You might be wondering why we wouldn’t just write s != null. In most
cases that will work, but it has a potential problem: types are free to customize
the behavior of comparison operators such as !=. The advantage of the
approach in Example 2-99 is that it will invariably perform just a simple
comparison with null even with types that have customized the behavior of
!= and ==. (The positive form, is null, has the same advantage.)

As with patterns in switch statements or expressions, the pattern in an is
expression can extract values from its source. Like Example 2-98, the pattern in
Example 2-100 tests whether a value is a tuple containing two integers but goes
on to use the two values from the tuple.

Example 2-100. Using the values from an is expression’s pattern
if (value is (int x, int y))
{
 Console.WriteLine($"X: {x}, Y: {y}");
}

New variables introduced in this way by an is expression remain in scope
after their containing statement. So in both these examples, x and y would
continue to be in scope until the end of the containing block. Since the pattern
in Example 2-100 is in the if statement’s condition expression, that means
these variables remain in scope after the body block. However, if you try to use
them outside of the body, you’ll find that the compiler’s definite assignment
rules will tell you that they are uninitialized. It allows Example 2-100 because
it knows that the body of the if statement will run only if the pattern matches,
so in that case x and y will have been initialized and are safe to use.

Patterns in is expressions cannot include a when clause. It would be
redundant: the result is a Boolean expression, so you can just add on any
qualification you require using the normal Boolean operators, as Example 2-
101 shows.

Example 2-101. No need for when in an is expression’s pattern
if (value is (int w, int h) && w < h)
{
 Console.WriteLine($"(Portrait) Width: {w}, Height: {h}");
}

Summary
In this chapter, I showed the nuts and bolts of C# code—variables, statements,
expressions, basic data types, operators, flow control, and patterns. Now it’s
time to take a look at the broader structure of a program. All code in C#
programs must belong to a type, and types are the topic of the next chapter.

1 C# does in fact offer dynamic typing as an option with its dynamic keyword, but it takes the
slightly unusual step of fitting that into a statically typed point of view: dynamic variables have a
static type of dynamic.

2 See Alan Turing’s seminal work on computation for details. Charles Petzold’s The Annotated
Turing (John Wiley & Sons) is an excellent guide to the relevant paper.

3 If you’re new to C-family languages, the += operator may be unfamiliar. It is a compound
assignment operator, described later in this chapter. I’m using it here to increase errorCount by
one.

4 In the absence of parentheses, C# has rules of precedence that determine the order in which
operators are evaluated. For the full (and not very interesting) details, consult the documentation. In
this example, because division has higher precedence than addition, without parentheses the
expression would evaluate to 14.

5 Strictly speaking, this is guaranteed only for correctly aligned 32-bit types. However, C# aligns
them correctly by default, and you’d normally encounter misaligned data only if your code needs to
call out into unmanaged code.

6 A decimal, therefore, doesn’t use all of its 128 bits. Making it smaller would cause alignment
difficulties, and using the additional bits for extra precision would have a significant performance
impact, because integers whose length is a multiple of 32 bits are easier for most CPUs to deal with
than the alternatives.

7 Promotions are not in fact a feature of C#. There is a more general mechanism: conversion
operators. C# defines intrinsic implicit conversion operators for the built-in data types. The
promotions discussed here occur as a result of the compiler following its usual rules for
conversions.

8 A property is a member of a type that represents a value that can be read or modified or both.
Chapter 3 describes properties in detail.

9 There are some specialized exceptions, such as pointer types.

10 Language pedants will note that it will also be meaningful in certain situations where custom
implicit conversions to bool are available. We’ll get to custom conversions in Chapter 3.

11 A continue statement complicates matters, because it provides a way to move to the next
iteration without getting all the way to the end of the loop body. Even so, you could still reproduce
the effect of the iterator when using continue statements—it would just require more work.

Chapter 3. Types

C# does not limit us to the built-in data types shown in Chapter 2. You can
define your own types. In fact, you have no choice: if you want to write
code at all, C# requires that code to be inside a type. Everything we write,
and any functionality we consume from the .NET runtime libraries (or any
other .NET library), will belong to a type.

C# recognizes multiple kinds of types. I’ll begin with the most important.

Classes
Most of the types you work with in C# will be classes. A class can contain
both code and data, and it can choose to make some of its features publicly
available while keeping others accessible only to code within the class. So
classes offer a mechanism for encapsulation—they can define a clear public
programming interface for other people to use while keeping internal
implementation details inaccessible.

If you’re familiar with object-oriented languages, this will all seem very
ordinary. If you’re not, then you might want to read a more introductory-
level book first, because this book is not meant to teach programming. I’ll
just describe the details specific to C# classes.

I’ve already shown examples of classes in earlier chapters, but let’s look at
the structure in more detail. Example 3-1 shows a simple class. (See the
sidebar “Naming Conventions” for information about names for types and
their members.)

Example 3-1. A simple class
public class Counter
{
 private int _count;

 public int GetNextValue()

 {
 _count += 1;
 return _count;
 }
}

Class definitions always contain the class keyword followed by the name
of the class. C# does not require the name to match the containing file, nor
does it limit you to having one class in a file. That said, most C# projects
make the class and filenames match by convention. In any case, class
names must follow the basic rules described in Chapter 2 for identifiers
such as variables; e.g., they cannot start with a number.

The first line of Example 3-1 contains an additional keyword: public.
Class definitions can optionally specify accessibility, which determines
what other code is allowed to use the class. Ordinary classes have just two
choices here: public and internal, with the latter being the default.
(As I’ll show later, you can nest classes inside other types, and nested
classes have a slightly wider range of accessibility options.) An internal
class is available for use only within the component that defines it. So if
you are writing a class library, you are free to define classes that exist
purely as part of your library’s implementation: by marking them as
internal, you prevent the rest of the world from using them.

NOTE
You can choose to make your internal types visible to selected external components.
Microsoft sometimes does this with its libraries. The runtime libraries are spread across
numerous DLLs, each of which defines many internal types, but some internal features
are used by other DLLs in the library. This is made possible by annotating a component
with the [assembly: Int ern als Vis ibl eTo("name")] attribute, specifying
the name of the component with which you wish to share. (Chapter 14 describes this in
more detail.) For example, you might want to make every class in your application
visible to a test project so that you can write unit tests for code that you don’t intend to
make publicly available.

The Counter class in Example 3-1 has chosen to be public, but that
doesn’t mean it has to make everything accessible. It defines two members
—a field called _count that holds an int and a method called
GetNextValue that operates on the information in that field. (The CLR
will automatically initialize this field to 0 when a Counter is created.) As
you can see, both of these members have accessibility qualifiers too. As is
very common with object-oriented programming, this class has chosen to
make the data member private, exposing public functionality through a
method.

Accessibility modifiers are optional for members, just as they are for
classes, and again, they default to the most restrictive option available:
private, in this case. So I could have left off the private keyword in
Example 3-1 without changing the meaning, but I prefer to be explicit. (If
you leave it unspecified, people reading your code may wonder whether the
omission was deliberate or accidental.)

NAMING CONVENTIONS
Microsoft defines a set of conventions for publicly visible identifiers,
which it (mostly) conforms to in its class libraries, and I usually follow
them in my examples. The .NET SDK incorporates a code analyzer that
can help enforce these conventions. It is enabled by default. If you just
want to read a description of the rules, they’re part of the design
guidelines for .NET class libraries.

In these conventions, the first letter of a class name is capitalized, and if
the name contains multiple words, each new word also starts with a
capital letter. (For historical reasons, this convention is called Pascal
casing, or sometimes PascalCasing as a self-referential example.)
Although it’s legal in C# for identifiers to contain underscores, the
conventions don’t allow them in class names. Methods also use Pascal
casing, as do properties. Fields are rarely public, but when they are,
they use the same casing.

Method parameters use a different convention known as camelCasing,
in which uppercase letters are used at the start of all but the first word.
The name refers to the way this convention produces one or more
humps in the middle of the word.

The class library design guidelines remain silent regarding
implementation details. (The original purpose of these rules was to
ensure a consistent feel across the whole public API of the .NET
runtime libraries.) So these rules say nothing about how private fields
are named. I’ve used an underscore prefix in Example 3-1 because I
like fields to look different from local variables. This makes it easy to
see what sort of data my code is working with, and it can also help to
avoid situations where method parameter names clash with field names.
(Microsoft often uses this same convention for instance fields in the
.NET runtime libraries, along with s_ and t_ prefixes for static and
thread-local fields.) Some people find this convention ugly and prefer
not to distinguish fields visibly but might choose to always access

https://oreil.ly/Ol2OS

members through the this reference (described later) so that the
distinction between variable and field access is still clear.

Fields hold data. They are a kind of variable, but unlike a local variable,
whose scope and lifetime is determined by its containing method, a field is
tied to its containing type. Example 3-1 is able to refer to the _count field
by its unqualified name because fields are in scope within their defining
class. But what about the lifetime? We know that each invocation of a
method gets its own set of local variables. How many sets of a class’s fields
are there? There are a couple of possibilities, depending on how you define
the field, and in this case, it’s one per instance. Example 3-2 uses the
Counter class from Example 3-1 to illustrate this.

Example 3-2. Using a custom class
var c1 = new Counter();
var c2 = new Counter();
Console.WriteLine("c1: " + c1.GetNextValue());
Console.WriteLine("c1: " + c1.GetNextValue());
Console.WriteLine("c1: " + c1.GetNextValue());

Console.WriteLine("c2: " + c2.GetNextValue());

Console.WriteLine("c1: " + c1.GetNextValue());

This uses the new operator to create new instances of my class. Since I use
new twice, I get two Counter objects, and each has its own _count
field. So we get two independent counts, as the program’s output shows:

c1: 1
c1: 2
c1: 3
c2: 1
c1: 4

As you’d expect, it begins counting up, and then a new sequence starts at 1
when we switch to the second counter. But when we go back to the first
counter, it carries on from where it left off. This demonstrates that each
instance has its own _count. But what if we don’t want that? Sometimes

you will want to keep track of information that doesn’t relate to any single
object.

Static Members
The static keyword lets us declare that a member is not associated with
any particular instance of the class. Example 3-3 shows a modified version
of the Counter class from Example 3-1. I’ve added two new members,
both static, for tracking and reporting counts across all instances.

Example 3-3. Class with static members
public class Counter
{
 private int _count;
 private static int _totalCount;

 public int GetNextValue()
 {
 _count += 1;
 _totalCount += 1;
 return _count;
 }

 public static int TotalCount => _totalCount;
}

TotalCount reports the count, but it doesn’t do any work—it just returns
a value that the class keeps up to date, and as I’ll explain in “Properties”,
this makes it an ideal candidate for being a property rather than a method.
The static field _totalCount keeps track of the total number of calls to
GetNextValue, unlike the nonstatic _count, which just tracks calls to
the current instance.

NOTE
The => syntax in the TotalCount property lets us define the property with a single
expression—in this case, whenever code reads the Counter.TotalCount property,
the result will be the value of the _totalCount field. As we’ll see later, there are
ways to write more complex properties, but this is a common approach for simple, read-
only properties.

Notice that I’m free to use that static field inside GetNextValue in
exactly the same way as I use the nonstatic _count. The difference in
behavior is clear if I add the line of code shown in Example 3-4 to the end
of the code in Example 3-2.

Example 3-4. Using a static property
Console.WriteLine(Counter.TotalCount);

This line displays 5, the sum of the two counts. To access a static member, I
just write ClassName.MemberName. In fact, Example 3-4 uses two
static members—as well as my class’s TotalCount property, it uses the
Console class’s static WriteLine method.

Because I’ve declared TotalCount as a static property, the code it
contains has access only to other static members. If it tried to use the
nonstatic _count field or call the nonstatic GetNextValue method, the
compiler would complain. Replacing _totalCount with _count in the
TotalCount property results in this error:

error CS0120: An object reference is required for the non-static
field, method,
 or property Counter._count'

Since nonstatic fields are associated with a particular instance of a class, C#
needs to know which instance to use. With a nonstatic method or property,
that’ll be whichever instance the method or property itself was invoked on.
So in Example 3-2, I wrote either c1.GetNextValue() or
c2.GetNextValue() to choose which of my two objects to use. C#

passed the reference stored in either c1 or c2, respectively, as an implicit
hidden first argument. You can get hold of that reference from code inside a
class by using the this keyword. Example 3-5 shows an alternative way
we could have written the first line of GetNextValue from Example 3-3,
indicating explicitly that we believe _count is a member of the instance
on which the GetNextValue method was invoked.

Example 3-5. The this keyword
this._count += 1;

Explicit member access through this is sometimes necessary due to name
collisions. Although all the members of a class are in scope for any code in
the same class, the code in a method does not share a declaration space
with the class. Remember from Chapter 2 that a declaration space is a
region of code in which a single name must not refer to two different
entities, and since methods do not share theirs with the containing class,
you are allowed to declare local variables and method parameters that have
the same name as class members. This can easily happen if you don’t use a
convention such as an underscore prefix for field names. You don’t get an
error in this case—locals and parameters just hide the class members. But
you can still get at the class members by qualifying access with this.

Static methods don’t get to use the this keyword, because they are not
associated with any particular instance.

Static Classes
Some classes only provide static members. There are several examples in
the Sys tem. Thr ead ing namespace, which contains various classes that
offer multithreading utilities. For example, the Interlocked class
provides atomic, lock-free, read-modify-write operations; the
LazyInitializer class provides helper methods for performing
deferred initialization in a way that guarantees to avoid double initialization
in multithreaded environments. These classes provide services only through
static methods. It makes no sense to create instances of these types, because
there’s no useful per-instance information they could hold.

You can declare that your class is intended to be used this way by putting
the static keyword in front of the class keyword. This compiles the
class in a way that prevents instances of it from being constructed. Anyone
attempting to construct instances of a class designed to be used this way
clearly doesn’t understand what it does, so the compiler error will be a
useful prod in the direction of the documentation.

You can declare that you want to be able to invoke static methods on certain
classes without naming the class every time. This can be useful if you are
writing code that makes heavy use of the static methods supplied by a
particular type. (This isn’t limited to static classes, by the way. You can use
this technique with any class that has static members, but it is likely to be
most useful with classes whose members are all static.) Example 3-6 uses a
static method (Sin) and a static property (PI) of the Math class (in the
System namespace). It also uses the Console class’s static WriteLine
method. (I’m showing the entire source file in this and the next example
because the using directives are particularly important. The first example
doesn’t need a using System; because default implicit global usings
make this available everywhere.)

Example 3-6. Using static members normally
public static class Normal
{
 public static void UseStatics()
 {
 Console.WriteLine(Math.Sin(Math.PI / 4));
 }
}

Example 3-7 is exactly equivalent, but the line that invokes the three static
members does not qualify any of them with their defining class’s name.

Example 3-7. Using static members without explicit qualification
using static System.Console;
using static System.Math;

public static class WithoutQualification
{
 public static void UseStatics()
 {

 WriteLine(Sin(PI / 4));
 }
}

To utilize this less verbose alternative, you must declare which classes you
want to use in this way with using static directives. Whereas using
directives normally specify a namespace, enabling types in that namespace
to be used without qualification, using static directives specify a
class, enabling its static members to be used without qualification. By the
way, as you saw in Chapter 1, C# 10.0 lets you add the global keyword to
using directives. That works for using static directives too, so if
you want, say, the Math type’s static members to be available without
qualification in any file in your project, you can write global using
static System.Math; in just one file, and it will apply to all of them.

Records
Although encapsulation is a powerful tool for managing complexity in
software development, it can sometimes be useful to have types that just
hold information. We might want to represent a message sent over a
network, or a row from a table in a database, for example. Types designed
for this are sometimes referred to as POD types, where POD stands for
plain old data. We might try to do this by writing a class containing nothing
but public fields, as Example 3-8 shows.

Example 3-8. Plain old data, using public fields
public class Person
{
 public string? Name;
 public string? FavoriteColor;
}

Some developers will recoil in horror at the lack of encapsulation here.
There’s nothing to stop anyone from reaching into a Person instance and
just changing the fields—oh, the humanity! In a type that was doing
anything more than just holding some data, that could indeed cause
problems. The type’s methods might contain code that relies on those fields

being used in particular ways, and the problem with making fields public is
that anything could change them, making it hard to know what state they
will be in. But this type has no code—its only job is to hold some data, so
this won’t be the end of the world. That said, this example has created a
problem: these fields contain strings, but I’ve had to put a ? after the type
name. This signifies the fact that these fields might contain the special value
null. If I don’t add those ? qualifiers, the compiler will issue a warning
telling me that I’ve done nothing to ensure that these fields are suitably
initialized, and so I shouldn’t go around claiming that they are definitely
going to contain strings. If I wanted to require that these fields always have
non-null values, I’d need to take control of how the type is initialized,
which I can do by writing a constructor. I’ll be describing these in more
detail later in the chapter, but Example 3-9 shows a simple example that
ensures that the fields are initialized, enabling us to remove the ? qualifiers.

Example 3-9. Enforcing initialization of fields with a constructor
public class Person
{
 public string Name;
 public string FavoriteColor;

 public Person(string name, string favoriteColor)
 {
 this.Name = name;
 this.FavoriteColor = favoriteColor;
 }
}

This is now looking rather verbose. Record types offer a much simpler way
to write a plain old data type, as Example 3-10 shows.

Example 3-10. A record type with positional syntax
public record Person(string Name, string FavoriteColor);

Example 3-11 shows how we can use this record type. If we have a variable
referring to a Person, like the p argument in the ShowPerson method,
we can write p.Name and p.FavoriteColor to access the data it
contains, just as we would if Person were defined as in Examples 3-8 or
3-9. (My record type isn’t exactly equivalent. Those earlier examples both

define public fields, but Example 3-11 is better aligned with normal .NET
practice, because it defines Name and FavoriteColor as properties. I’ll
be describing properties in more detail later in this chapter.) As you can see,
we create instances of record types with the new keyword, just as we do
with a class. When a record type is defined in the way Example 3-10 shows,
we have to pass in all of the properties to the constructor, and in the right
order. This way of defining a record is called the positional syntax.

Example 3-11. Using a record type
void ShowPerson(Person p)
{
 Console.WriteLine($"{p.Name}'s favorite color is
{p.FavoriteColor}");
}

var ian = new Person("Ian", "Blue");
var deborah = new Person("Deborah", "Green");
ShowPerson(ian);
ShowPerson(deborah);

When you use the syntax in Example 3-10, the resulting record type is
immutable: if you wrote code that tried to modify either of the properties of
an existing Person, the compiler would report an error. Immutable data
types can make it much easier to analyze code, especially multithreaded
code, because you can count on them not to change under your feet. This is
one of the reasons strings are immutable in .NET. However, before record
types were introduced, immutable custom types have typically been
inconvenient to work with in C#. For example, if you need to produce some
new value that is a modified version of an existing value, you can be in for
a lot of tedious work. Whereas the built-in string type provides
numerous methods for producing new strings built out of existing strings
(e.g., substrings, or conversions to lower- or uppercase), you’re on your
own when you write a class.

For example, suppose you are writing an application in which you’ve
defined a data type representing the state of someone’s payment account at
a particular moment in time. If you define this as an immutable type, then
when processing a new transaction, you will need to make a copy that’s

identical except for the current balance. Historically, doing this in C# meant
you ended up needing to write code to copy over any unchanged data when
creating the new instance. The main purpose of record types is to make it
much easier to define and use immutable data types, so they offer an easy
way to create a copy of an existing instance but with certain properties
modified. As Example 3-12 shows, you can write with after a record
expression, followed by a brace-delimited list of the properties you’d like to
change.

Example 3-12. Making a modified copy of an immutable record
var startingRecord = new Person("Ian", "Blue");
var modifiedCopy = startingRecord with
{
 FavoriteColor = "Green"
};

In this particular case, our type has only two properties, so this isn’t
dramatically better than just writing new
Person(startingRecord.Name, "Green"). However, for
records with larger numbers of properties, this syntax is much more
convenient than rebuilding the whole thing every time.

While records make it much easier to create and use immutable data types,
they don’t have to be immutable. Example 3-13 shows a Person record in
which the properties can be modified after construction. (The { get;
set; } syntax indicates that these are auto-implemented properties. I’ll be
describing them in more detail later, but they are essentially just simple
read/write properties.)

Example 3-13. A record type with modifiable properties
public record Person
{
 public Person(string name, string favoriteColor)
 {
 this.Name = name;
 this.FavoriteColor = favoriteColor;
 }

 public string Name { get; set; }

 public string FavoriteColor { get; set; }
}

At this point, we’re very nearly back to what we had in Example 3-9, with
the only difference being that Name and FavoriteColor are now
properties instead of fields. We could just replace the record keyword in
this example with class and it would still compile. So what exactly
changes when we make this a record?

Although the primary purpose of records is to make it easy to build
immutable data types, the record keyword also adds a couple of useful
features. In addition to the with syntax for building modified copies,
records get built-in support for equality testing and a ToString
implementation that reports all of the property values. The equality testing
enables you to use the == operator to compare two records, and as long as
all their properties have the same values, they are considered to be equal.
The same functionality is available through the Equals method. All types
provide an Equals method (which I’ll describe in more detail later), and
records arrange for this method to provide value-based comparison. You
might wonder why record types are special in this regard—wouldn’t
Equals work the same way for all types? Not so. Look at Example 3-14.

Example 3-14. Comparing two instances of a type
var p1 = new Person("Ian", "Blue");
var p2 = new Person("Ian", "Blue");
if (p1 == p2)
{
 Console.WriteLine("Equal");
}

If you run this against any of the Person types defined in earlier examples
as a record type, it will display the text Equal. However, if you were to
use the definition of Person in Example 3-9 (which defines it as a
class), this will not display that message. Even though all the properties
have the same value, Equals will report that they are not equal in that
case. That’s because the default comparison behavior for classes is identity
based: two variables are equal only if they refer to the very same object.

When variables refer to two different objects, then even if those objects are
of exactly the same type and have all the same property and field values,
they are still distinct, and Equals reflects that. You can change this
behavior when you write a class, but you have to write your own Equals
method. With record, the compiler generates that for you.

The other behavior record gives you is a specialized ToString
implementation. All types in .NET offer a ToString method, and you can
call this either directly or through some mechanism that invokes it
implicitly, such as string interpolation. In types that don’t provide their own
ToString, the default implementation just returns the type name, so if
you call ToString on the class defined in Example 3-9, it will always
return "Person", no matter what value the members have. Types are free
to supply their own ToString, and the compiler does this for you for any
record type. So if you call ToString on either of the Person instances
created in Example 3-14, it will return "Person { Name = Ian,
FavoriteColor = Blue }".

You can define records with properties whose types are also record types.
Example 3-15 defines a Person record type, and also a Relation record
type to indicate some way in which two people are related.

Example 3-15. Nested record types
public record Person(string Name, string FavoriteColor);
public record Relation(Person Subject, Person Other, string
RelationshipType);

When you have this sort of composite structure—records within records—
both Equals and ToString traverse into nested records. Example 3-16
demonstrates this.

Example 3-16. Using nested record types
var ian = new Person("Ian", "Blue");
var gina = new Person("Gina", "Green");
var ian2 = new Person("Ian", "Blue");
var gina2 = new Person("Gina", "Green");
var r1 = new Relation(ian, gina, "Sister");
var r2 = new Relation(gina, ian, "Brother");
var r3 = new Relation(ian2, gina2, "Sister");

Console.WriteLine(r1);
Console.WriteLine(r2);
Console.WriteLine(r3);
Console.WriteLine(r1 == r2);
Console.WriteLine(r1 == r3);
Console.WriteLine(r2 == r3);

Running this produces the following output (with lines split up to fit on the
page):

Relation { Subject = Person { Name = Ian, FavoriteColor = Blue },
 Other = Person { Name = Gina, FavoriteColor = Green },
 RelationshipType = Sister }
Relation { Subject = Person { Name = Gina, FavoriteColor = Green
},
 Other = Person { Name = Ian, FavoriteColor = Blue },
 RelationshipType = Brother }
Relation { Subject = Person { Name = Ian, FavoriteColor = Blue },
 Other = Person { Name = Gina, FavoriteColor = Green },
 RelationshipType = Sister }
False
True
False

As you can see, the Relation type’s ToString has shown all of the
properties of each of its nested Person records (and also the
RelationshipType property, which is just a plain string). Likewise,
the comparison logic works for nested records. Nothing special is
happening here—a record type compares each property in turn by calling
Equals on its value for that property, passing in the corresponding
property from the record with which it is being compared. So when it
happens to reach a record-type property, it calls its Equals method just as
it would any other property, at which point that record type’s own Equals
implementation will execute, comparing each nested property in turn.

None of the record keyword features I’ve described do anything you
couldn’t have done by hand. It would be tedious but uncomplicated to write
equivalent implementations of ToString and Equals by hand. (The
compiler also provides implementations of the == and != operators and

methods called GetHashCode and Deconstruct that I’ll be describing
later. But you could write all of those by hand too.) And as far as the .NET
runtime is concerned, there’s nothing special about record types—it just
sees them as ordinary classes.

Record types are a language-level feature. The C# compiler generates these
types in such a way that it can recognize when types in external libraries
were declared as records, but they are essentially just classes for which the
compiler generates a few extra members. In fact, you can be explicit about
this by declaring the type as record class instead of just record—
these two syntaxes are equivalent.

References and Nulls
Any type defined with the class keyword will be a reference type (as will
any type declared as record, or the equivalent record class). A
variable of any reference type will not contain the data that makes up an
instance of the type; instead, it can contain a reference to an instance of the
type. Consequently, assignments don’t copy the object; they just copy the
reference. Example 3-17 contains almost the same code as Example 3-2,
except instead of using the new keyword to initialize the c2 variable, it
initializes it with a copy of c1.

Example 3-17. Copying references
Counter c1 = new Counter();
var c2 = c1;
Console.WriteLine("c1: " + c1.GetNextValue());
Console.WriteLine("c1: " + c1.GetNextValue());
Console.WriteLine("c1: " + c1.GetNextValue());

Console.WriteLine("c2: " + c2.GetNextValue());

Console.WriteLine("c1: " + c1.GetNextValue());

Because this example uses new just once, there is only one Counter
instance, and the two variables both refer to this same instance. So we get
different output:

1

c1: 1
c1: 2
c1: 3
c2: 4
c1: 5

It’s not just locals that do this—if you use a reference type for any other
kind of variable, such as a field or property, assignment works the same
way, copying the reference and not the whole object. This is the defining
characteristic of a reference type, and it is different from the behavior we
saw with the built-in numeric types in Chapter 2. With those, each variable
contains a value, not a reference to a value, so assignment necessarily
involves copying the value. (This value-copying behavior is not available
for most reference types—see the next sidebar, “Copying Instances”.)

COPYING INSTANCES
Some C-family languages define a standard way to make a copy of an
object. For example, in C++ you can write a copy constructor, and you
can overload the assignment operator; the language has rules for how
these are applied when duplicating an object. In C#, some types can be
copied, such as the built-in numeric types. Later in this chapter you’ll
see how to define a struct, which is a custom value type, and these can
always be copied. There is no way to customize this process for value
types: assignment just copies all the fields, and if any fields are of
reference type, this just copies the reference. This is sometimes called a
shallow copy, because it copies only the contents of the struct; it does
not make copies of any of the things the struct refers to. Records can
always be copied through the with syntax. The compiler enables this
by generating a constructor that performs a shallow copy in any
record or record class, although when I come to describe
constructors I’ll show how you can customize this.

Although certain types get special copying behavior, there is no general
mechanism for making a copy of a class instance. The runtime libraries
define ICloneable, an interface for duplicating objects, but this is
not widely supported. It’s a problematic API, because it doesn’t specify
how to handle objects with references to other objects. Should a clone
also duplicate the objects to which it refers (a deep copy) or just copy
the references (a shallow copy)? In practice, classes that wish to allow
themselves to be copied often just provide an ad hoc method for the job,
rather than conforming to any pattern.

We can write code that detects whether two references refer to the same
thing. Example 3-18 arranges for three variables to refer to two counters
with the same count, and then compares their identities. By default, the ==
operator does exactly this sort of object identity comparison when its
operands are reference types. However, types are allowed to redefine the ==
operator. The string type changes == to perform value comparisons, so if

you pass two distinct string objects as the operands of ==, the result will be
true if they contain identical text. If you want to force comparison of object
identity, you can use the static object.ReferenceEquals method.

Example 3-18. Comparing references
var c1 = new Counter();
c1.GetNextValue();
Counter c2 = c1;
var c3 = new Counter();
c3.GetNextValue();

Console.WriteLine(c1.Count);
Console.WriteLine(c2.Count);
Console.WriteLine(c3.Count);
Console.WriteLine(c1 == c2);
Console.WriteLine(c1 == c3);
Console.WriteLine(c2 == c3);
Console.WriteLine(object.ReferenceEquals(c1, c2));
Console.WriteLine(object.ReferenceEquals(c1, c3));
Console.WriteLine(object.ReferenceEquals(c2, c3));

The first three lines of output confirm that all three variables refer to
counters with the same count:

1
1
1
True
False
False
True
False
False

It also illustrates that while they all have the same count, only c1 and c2
are considered to be the same thing. That’s because we assigned c1 into
c2, meaning that c1 and c2 will both refer to the same object, which is
why the first comparison succeeds. But c3 refers to a different object
entirely (even though it happens to have the same value), which is why the
second comparison fails. (I’ve used both the == and
object.ReferenceEquals comparisons here to illustrate that they do

the same thing in this case, because Counter has not defined a custom
meaning for ==.)

We could try the same thing with int instead of a Counter, as Example
3-19 shows. (This initializes the variables in a slightly idiosyncratic way in
order to resemble Example 3-18 as closely as possible.)

Example 3-19. Comparing values
int c1 = new int();
c1++;
int c2 = c1;
int c3 = new int();
c3++;

Console.WriteLine(c1);
Console.WriteLine(c2);
Console.WriteLine(c3);
Console.WriteLine(c1 == c2);
Console.WriteLine(c1 == c3);
Console.WriteLine(c2 == c3);
Console.WriteLine(object.ReferenceEquals(c1, c2));
Console.WriteLine(object.ReferenceEquals(c1, c3));
Console.WriteLine(object.ReferenceEquals(c2, c3));
Console.WriteLine(object.ReferenceEquals(c1, c1));

As before, we can see that all three variables have the same value:

1
1
1
True
True
True
False
False
False
False

This also illustrates that the int type defines a special meaning for ==.
With int, this operator compares the values, so those three comparisons
succeed. But obj ect. Ref ere nce Equ als never succeeds for value
types—in fact, I’ve added an extra, fourth comparison here, where I

compare c1 with itself, and even that fails! That surprising result occurs
because it’s not meaningful to perform a reference comparison with int—
it’s not a reference type. The compiler has to perform implicit conversions
from int to object for the last four lines of Example 3-19: it has
wrapped each argument to object.ReferenceEquals in something
called a box, which we’ll be looking at in Chapter 7. Each argument gets a
distinct box, which is why even the final comparison fails.

There’s another difference between reference types and types like int. By
default, any reference type variable can contain a special value, null,
meaning that the variable does not refer to any object at all. You cannot
assign this value into any of the built-in numeric types (although see the
next sidebar, “Nullable<T>”).

NULLABLE<T>
.NET defines a wrapper type called Nullable<T>, which adds
nullability to value types. Although an int variable cannot hold null,
a Nullable<int> can. The angle brackets after the type name
indicate that this is a generic type—you can plug various different types
into that T placeholder—and I’ll talk about those more in Chapter 4.

The compiler provides special handling for Nullable<T>. It lets you
use a more compact syntax, so you can write int? instead. When
nullable numerics appear inside arithmetic expressions, the compiler
treats them differently than normal values. For example, if you write a
+ b, where a and b are both int?, the result is an int? that will be
null if either operand was null, and will otherwise contain the sum
of the values. This also works if only one of the operands is an int?
and the other is an ordinary int.

While you can set an int? to null, it’s not a reference type. It’s more
like a combination of an int and a bool. (Although, as I’ll describe in
Chapter 7, the CLR performs some tricks with Nullable<T> that
sometimes makes it look more like a reference type than a value type.)

If you use the null-conditional operators described in Chapter 2 (?. and
?[index]) to access members with a value type, the resulting
expression will be of the nullable version of that type. For example, if
str is a variable of type string?, the expression str?.Length
has type Nullable<int> (or if you prefer, int?) because Length
is of type int, but the use of a null-conditional operator means the
expression could evaluate to null.

Banishing Null with Non-Nullable References
The widespread availability of null references in programming languages
dates back to 1965, when computer scientist Tony Hoare added them to the
highly influential ALGOL language. He has since apologized for this

invention, which he described as his “billion-dollar mistake.” The
possibility that a reference type variable might contain null makes it hard
to know whether it’s safe to attempt to perform an action with that variable.
(C# programs will throw a NullReferenceException if you attempt
this, which will typically crash your program. Chapter 8 discusses
exceptions.) Some modern programming languages avoid the practice of
allowing references to be nullable by default, offering instead some system
for optional values through an explicit opt-in mechanism in the type system.
In fact, as you’ve seen with Nullable<T>, this is already the case for
built-in numeric types (and also, as we’ll see, any custom value types that
you define), but until recently, nullability has not been optional for all
reference type variables.

C# 8.0 introduced a significant new feature to the language that extends the
type system to make a distinction between references that may be null and
ones that must not be. Before C# 10.0, this feature was disabled by default,
but now when you create a new project, it will be enabled. The feature’s
name is nullable references, which seems odd, because references have
been able to contain null since C# 1.0. However, this name refers to the
fact that with this feature enabled, nullability becomes an opt-in feature: a
reference will never contain null unless it is explicitly defined as a
nullable reference. At least, that’s the theory.

WARNING
Enabling the type system to distinguish between nullable and non-nullable references
was always going to be a tricky thing to retrofit to a language almost two decades into
its life. So the reality is that C# cannot always guarantee that a non-nullable reference
will never contain a null. However, it can make the guarantee if certain constraints
hold, and more generally it will significantly reduce the chances of encountering a
NullReferenceException even in cases where it cannot absolutely rule this out.

Enabling non-nullability is a radical change, which is why the feature was,
until recently, switched off until you enabled it explicitly. (Even now, the
change with C# 10.0 is that newly created .csproj files include the setting

that turns this feature on. Without that setting, the feature continues to be
off by default.) Switching it on can have a dramatic impact on existing
code, so it is possible to control the feature at a fine-grained level to enable
a gradual transition between the old world and the new nullable-references-
aware world.

C# provides two dimensions of control, which it calls the nullable
annotation context and the nullable warning context. Each line of code in a
C# program is associated with one of each kind of context. The default is
that all your code is in a disabled nullable annotation context and a disabled
nullable warning context. You can change these defaults at a project level
(and a newly created C# 10.0 project will do that). You can also use the
#nullable directive to change either of the nullable annotation contexts
at a more fine-grained level—a different one every line if you want. So how
do these two contexts work?

The nullable annotation context determines whether we get to declare the
nullability of a particular variable that uses a reference type. (I’m using
C#’s broader definition of variable here, which includes not just local
variables but also fields, parameters, and properties.) In a disabled
annotation context (the default), we cannot express this, and all references
are implicitly nullable. The official categorization describes these as
oblivious to nullability, distinguishing them from references you have
deliberately annotated as being nullable. However, in an enabled annotation
context, we get to choose. Example 3-20 shows how.

Example 3-20. Specifying nullability
string cannotBeNull = "Text";
string? mayBeNull = null;

This mirrors the syntax for nullability of built-in numeric types and custom
value types. If you just write the type name, that denotes something non-
nullable. If you want it to be nullable, you append a ?.

The most important point to notice here is that in an enabled nullable
annotation context, the old syntax gets the new behavior, and if you want
the old behavior, you need to use the new syntax. This means that if you

take existing code originally written without any awareness of nullability,
and you put it into an enabled annotation context, all reference type
variables are now effectively annotated as being non-nullable, the opposite
of how the compiler treated the exact same code before.

The most direct way to put code into an enabled nullable annotation context
is with a #nullable enable annotations directive. You can put
this at the top of a source file to enable it for the whole file, or you can use
it more locally, followed by a #nullable restore annotations to
put back the project-wide default. On its own this will produce no visible
change. The compiler won’t act on these annotations if the nullable warning
context is disabled, and it is disabled by default. You can enable it locally
with #nullable enable warnings (and #nullable restore
warnings reverts to the project-wide default). You can control the
project-wide defaults in the .csproj file by adding a <Nullable> property.
Example 3-21 sets the defaults to an enabled nullable warning context and
an enabled nullable annotation context. You will find a setting like this in
any newly created C# 10.0 project (whether created from Visual Studio or
using the dotnet new at the command line).

Example 3-21. Specifying enabled nullable warning and annotation
contexts as the project-wide default
<PropertyGroup>
 <Nullable>enable</Nullable>
</PropertyGroup>

This means that all code will be in an enabled nullable warning context and
also in an enabled nullable annotation context unless it explicitly opts out.
Other project-wide settings are disable (which has the same effect as not
setting <Nullable> at all), warnings (enables warnings but not
annotations), and annotations (enables annotations but not warnings).

If you’ve specified an enabled annotation context at the project level, you
can use #nullable disable annotations to opt out in individual
files. Likewise, if you’ve specified an enabled warning context at the
project level, you can opt out with #nullable disable warnings.

We have all this fine-grained control to make it easier to enable non-
nullability for existing code. If you just fully enable the feature for an entire
project in one step, you’re likely to encounter a lot of warnings. In practice,
it may make more sense to put all code in the project in an enabled warning
context but not to enable annotations anywhere to begin with. Since all of
your references will be deemed oblivious to nullability checking, the only
warnings you’ll see will relate to use of libraries. And any warnings at this
stage are quite likely to be indicative of potential problems, e.g., missing
tests for null. Once you’ve addressed these, you can start to move your own
code into an enabled annotation context one file at a time (or in even
smaller chunks if you prefer), making any necessary changes.

Over time, the goal would be to get all the code to the point where you can
fully enable non-nullable support at the project level. And for newly created
projects, it is usually best to have nullable references enabled from the start
so that you can prevent problematic null handling ever getting into your
code—that’s why new projects have this feature enabled.

What does the compiler do for us in code where we’ve fully enabled non-
nullability support? We get two main things. First, the compiler uses rules
similar to the definite assignment rules to ensure that we don’t attempt to
dereference a variable without first checking to see whether it’s null.
Example 3-22 shows some cases the compiler will accept and some that
would cause warnings in an enabled nullable warning context, assuming
that mayBeNull was declared in an enabled nullable annotation context as
being nullable.

Example 3-22. Dereferencing a nullable reference
if (mayBeNull is not null)
{
 // Allowed because we can only get here if mayBeNull is not
null
 Console.WriteLine(mayBeNull.Length);
}

// Allowed because it checks for null and handles it
Console.WriteLine(mayBeNull?.Length ?? 0);

// The compiler will warn about this in an enabled nullable warning

context
Console.WriteLine(mayBeNull.Length);

Second, in addition to checking whether dereferencing (use of . to access a
member) is safe, the compiler will also warn you when you’ve attempted to
assign a reference that might be null into something that requires a non-
nullable reference, or if you pass one as an argument to a method when the
corresponding parameter is declared as non-nullable.

Sometimes, you’ll run into a roadblock on the path to moving all your code
into fully enabled nullability contexts. Perhaps you depend on some
component that is unlikely to be upgraded with nullability annotations in
the foreseeable future, or perhaps there’s a scenario in which C#’s
conservative safety rules incorrectly decide that some code is not safe. What
can you do in these cases? You wouldn’t want to disable warnings for the
entire project, and it would be irritating to have to leave the code peppered
with #nullable directives. And while you can prevent warnings by
adding explicit checks for null, this is undesirable in cases where you are
confident that they are unnecessary. There is an alternative: you can tell the
C# compiler that you know something it doesn’t. If you have a reference
that the compiler presumes could be null but that you have good reason to
believe will never be null, you can tell the compiler this by using the null
forgiving operator, which you can see near the end of the second line of
Example 3-23. It is sometimes known informally as the dammit operator,
because being an exclamation mark makes it look like a slightly
exasperated kind of assertion.

Example 3-23. The null forgiving operator
string? referenceFromLegacyComponent =
legacy.GetReferenceWeKnowWontBeNull();
string nonNullableReferenceFromLegacyComponent =
referenceFromLegacyComponent!;

You can use the null forgiving operator in any enabled nullable annotation
context. It has the effect of converting a nullable reference to a non-nullable
reference. You can then go on to dereference that non-nullable reference or

otherwise use it in places where a nullable reference would not be allowed
without causing any compiler warnings.

WARNING
The null forgiving operator does not check its input. If you apply this in a scenario
where the value turns out to be null at runtime, it will not detect this. Instead, you will
get a runtime error at the point where you try to use the reference.

While the null forgiving operator can be useful at the boundary between
nullable-aware code and old code that you don’t control, there’s another
way to let the compiler know when an apparently nullable expression will
not in fact be null: nullable attributes. .NET defines several attributes that
you can use to annotate code to describe when it will or won’t return null
values. Consider the code in Example 3-24. If you do not enable the
nullable reference type features, this works fine, but if you turn them on,
you will get a warning. (This uses a dictionary, a collection type that is
described in detail in Chapter 5.)

Example 3-24. Nullability and the Try pattern—before nullable reference
types
public static string Get(IDictionary<int, string> d)
{
 if (d.TryGetValue(42, out string s))
 {
 return s;
 }

 return "Not found";
}

With nullability fully enabled, the compiler will complain at the out
string s. It will tell you, correctly, that TryGetValue might pass a
null through that out argument. (This kind of argument is discussed
later; it provides a way to return additional values besides the function’s
main return value.) This function checks whether the dictionary contains an
entry with the specified key. If it does, it will return true and put the

relevant value into the out argument, but if not, it returns false and sets
that out argument to null. We can modify our code to reflect this fact by
putting a ? after the out string. Example 3-25 shows this modification.

Example 3-25. Nullable-aware use of the Try pattern
public static string Get(IDictionary<int, string> d)
{
 if (d.TryGetValue(42, out string? s))
 {
 return s;
 }

 return "Not found";
}

You might expect this to cause a new problem. Our Get method returns a
string, not a string?, so how can that return s be correct? We just
modified our code to indicate that s might be null, so won’t the compiler
complain when we try to return this possibly null value from a method that
declares that it won’t return null? But in fact this compiles. The compiler
accepts this because it knows that TryGetValue will only set that out
argument to null if it returns false. That means that the compiler knows
that although the s variable’s type is string?, it will not be null inside
the body of the if statement. It knows this thanks to a nullable attribute
applied to the TryGetValue method’s definition. (Attributes are
described in Chapter 14.) Example 3-26 shows the attribute in the method’s
declaration. (This method is part of a generic type, which is why we see
TKey and TValue here and not the int and string types I used in my
examples. Chapter 4 discusses this kind of method in detail. In the
examples at hand, TKey and TValue are, in effect, int and string.)

Example 3-26. A nullable attribute
public bool TryGetValue(TKey key, [MaybeNullWhen(false)] out TValue
value)

This annotation is how C# knows that the value might be null if
TryGetValue returns false but won’t be if it returns true. Without
this attribute, Example 3-24 would have compiled successfully even with

nullable warnings enabled, because by writing IDictionary<int,
string> (and not IDictionary<int, string?>) I am indicating
that my dictionary does not permit null values. So normally, C# will assume
that when a method returns a value from the dictionary, it will also produce
a string. But TryGetValue sometimes has no value to return, which is
why it needs this annotation. Table 3-1 describes the various attributes you
can apply to give the C# compiler more information about what may or may
not be null.

T
a
b
l
e
3
-
1
.
N
u
ll
a
b
l
e
a
tt
ri
b
u
t
e
s

Type Usage

AllowNull Code is allowed to supply null even when the type is non-nullable.

DisallowNull Code must not supply null even when the type is nullable.

MaybeNull Code should be prepared for this to return the null value even when the
type is non-nullable.

MaybeNullWhen Used only with out or ref parameters; the output may be null if the
method returns the specified bool value.

NotNull Used with parameters. If the method returns without error, the argument was
not null. (With out or ref parameters, this typically means the method
makes sure to set them; with an inbound-only parameter, this implies the
method checks the value and only returns without error if it was not null.)

NotNullWhen Used only with out or ref parameters; the output may not be null if the
method returns the specified bool value.

NotNullIfNotN
ull

If you pass a non-null value as the argument for the parameter that this
attribute names, the value returned by this attribute’s target will not be null.

These attributes have been applied where appropriate to most of the .NET
runtime libraries to reduce the friction involved in adopting nullable
references.

Moving code into enabled nullable warning and annotation contexts can
provide a significant boost to code quality. Many developers who migrate
existing codebases often uncover some latent bugs in the process, thanks to
the additional checks the compiler performs. However, it is not perfect.
There are two holes worth being aware of, caused by the fact that nullability
was not baked into the type system from the start. The first is that legacy
code introduces blind spots—even if all your code is in an enabled nullable
annotation context, if it uses APIs that are not, references it obtains from

those will be oblivious to nullability. If you need to use the null forgiving
operator to keep the compiler happy, there’s always the possibility that you
are mistaken, at which point you’ll end up with a null in what is supposed
to be a non-nullable variable. The second is more vexing in that you can hit
it in brand-new code, even if you fully enabled this feature from the start:
certain storage locations in .NET have their memory filled with zero values
when they are initialized. If these locations are of a reference type, they will
end up starting out with a null value, and there’s currently no way that the
C# compiler can enforce their non-nullability. Arrays have this issue. Look
at Example 3-27.

Example 3-27. Arrays and nullability
var nullableStrings = new string?[10];
var nonNullableStrings = new string[10];

This code declares two arrays of strings. The first uses string?, so it
allows nullable references. The second does not. However, in .NET you
have to create arrays before you can put anything in them, and a newly
created array’s memory is always zero-initialized. This means that our
nonNullableStrings array will start life full of nulls. There is no way
to avoid this because of how arrays work in .NET. One way to mitigate this
problem is to avoid using arrays directly. If you use List<string>
instead (see Chapter 5), it will contain only items that you have added—
unlike an array, a List<T> does not provide a way to initialize it with
empty slots. But you can’t always substitute a List<T> for an array.
Sometimes you will simply need to take care that you initialize all the
elements in an array.

A similar problem exists with fields in value types, which are described in
the following section. If they have reference type fields, there are situations
in which you cannot prevent them from being initialized to null. So the
nullable references feature is not perfect. It is nonetheless very useful.
Teams that have made the necessary changes to existing projects to use it
have reported that this process tends to uncover many previously
undiscovered bugs. It is an important tool for improving the quality of your
code.

Although non-nullable references diminish one of the distinctions between
reference types and built-in numeric types, important differences remain. A
variable of type int is not a reference to an int. It contains the value of
the int—there is no indirection. In some languages, this choice between
reference-like and value-like behavior is determined by the way in which
you use a type, but in C#, it is a fixed feature of the type. Any particular
type is either a reference type or a value type. The built-in numeric types are
all value types, as is bool, whereas a class is always a reference type.
But this is not a distinction between built-in and custom types. You can
write custom value types.

Structs
Sometimes it will be appropriate for a custom type to get the same value-
like behavior as the built-in value types. The most obvious example would
be a custom numeric type. Although the CLR offers various intrinsic
numeric types, some kinds of calculations require a bit more structure than
these provide. For example, many scientific and engineering calculations
work with complex numbers. The runtime does not define an intrinsic
representation for these, but the runtime libraries support them with the
Complex type. It would be unhelpful if a numeric type such as this
behaved significantly differently from the built-in types. Fortunately, it
doesn’t, because it is a value type. The way to write a custom value type is
to use the struct keyword instead of class.

A struct can have most of the same features as a class; it can contain
methods, fields, properties, constructors, and any of the other member types
supported by classes (described in “Members”), and we can use the same
accessibility keywords, such as public and internal. There are a few
restrictions, but with the simple Counter type I wrote earlier, I could just
replace the class keyword with struct. However, this would not be a
useful transformation. Remember, one of the main distinctions between
reference types (classes) and value types is that the former have identity: it
might be useful for me to create multiple Counter objects so that I can

count different kinds of things. But with value types (either the built-in ones
or custom structs), the assumption is that they can be copied freely. If I have
an instance of the int type (e.g., 4) and I store that in several fields, there’s
no expectation that this value has a life of its own: one instance of the
number 4 is indistinguishable from another. The variables that hold values
have their own identities and lifetimes, but the values that they hold do not.
This is different from how reference types work: not only do the variables
that refer to them have identities and lifetimes, the objects they refer to have
their own identities and lifetimes independent of any particular variable.

If I add one to the int value 4, the result is a completely different int
value. If I call GetNextValue() on a Counter, its count goes up by
one, but it remains the same Counter instance. So although replacing
class with struct in Example 3-3 would compile, we really don’t want
our Counter type to become a struct. Example 3-28 shows a better
candidate.

Example 3-28. A simple struct
public struct Point
{
 private double _x;
 private double _y;
 public Point(double x, double y)
 {
 _x = x;
 _y = y;
 }

 public double X => _x;
 public double Y => _y;
}

This represents a point in two-dimensional space. And while it’s certainly
possible to imagine wanting the ability to represent particular points with
their own identity (in which case we’d want a class), it’s perfectly
reasonable to want to have a value-like type representing a point’s location.

Although Example 3-28 is OK as far as it goes, it’s common for values to
support comparison. As mentioned earlier, C# defines a default meaning for

the == operator for reference types: it is equivalent to
object.ReferenceEquals, which compares identities. That’s not
meaningful for value types, so C# does not automatically support == for a
struct. You are not strictly required to provide a definition, but the built-
in value types all do, so if we’re trying to make a type with similar
characteristics to those, we should do this. If you add an == operator on its
own, the compiler will inform you that you are required to define a
matching != operator. You might think C# would define != as the inverse
of ==, since they appear to mean the opposite. However, some types will
return false for both operators for certain pairs of operands, so C#
requires us to define both independently. As Example 3-29 shows, to define
a custom meaning for an operator, we use the operator keyword
followed by the operator we’d like to customize. This example defines the
behavior for == and !=, which are very straightforward for our simple type.
(Since all of the new methods in this example do nothing more than
returning the value of a single expression, I’ve implemented them using the
=> syntax, just as I’ve done with various properties in preceding examples.)

Example 3-29. Support custom comparison
public struct Point : IEquatable<Point>
{
 private double _x;
 private double _y;
 public Point(double x, double y)
 {
 _x = x;
 _y = y;
 }

 public double X => _x;
 public double Y => _y;

 public override bool Equals(object? o) => o is Point p &&
this.Equals(p);
 public bool Equals(Point o) => this.X == o.X && this.Y == o.Y;
 public override int GetHashCode() => HashCode.Combine(X, Y);

 public static bool operator ==(Point a, Point b) =>
a.Equals(b);

 public static bool operator !=(Point a, Point b) => !(a == b);
}

If you just add the == and != operators, you’ll find that the compiler
generates warnings recommending that you define two methods called
Equals and GetHashCode. Equals is a standard method available on
all .NET types, and if you have defined a custom meaning for ==, you
should ensure that Equals does the same thing. Example 3-29 does this,
and as you can see, it contains the same logic as the == operator, but it has
to do some extra work. The Equals method permits comparison with any
type, so we first check to see if our Point is being compared with another
Point. I’ve used a declaration pattern to perform this check and also to get
the incoming obj argument into a variable of type Point in the case
where the pattern matches. In fact it implements two versions of Equals:
the standard method that accepts any object and a more specialized one
that allows comparison only with other Point values. This allows for more
efficient comparisons by avoiding boxing (which is described in Chapter 7),
and as is common practice when offering this second form of Equals, I’ve
declared support for the IEquatable<Point> interface; I’ll be
describing interfaces in “Interfaces”. Example 3-29 also implements
GetHashCode, which we’re required to do if we implement Equals. See
the next sidebar, “GetHashCode”, for details.

GETHASHCODE
All .NET types have a GetHashCode method. It returns an int that
in some sense represents the value of your object. Some data structures
and algorithms are designed to work with this sort of simplified,
reduced version of an object’s value. A hash table, for example, can find
a particular entry in a very large table very efficiently, as long as the
type of value you’re searching for offers a good hash code
implementation. Some of the collection classes described in Chapter 5
rely on this. The details of this sort of algorithm are beyond the scope of
this book, but if you search the web for “hash table” you’ll find plenty
of information.

A correct implementation of GetHashCode must meet two
requirements. The first is that whatever number an instance returns as
its hash code, that instance must continue to return the same code as
long as its own value does not change. The second requirement is that
two instances that have equal values according to their Equals
methods must return the same hash code. Any type that fails to meet
either of these requirements might cause code that uses its
GetHashCode method to malfunction. The default implementation of
GetHashCode for reference types meets the first requirement but
makes no attempt to meet the second—pick any two objects that use the
default implementation, and most of the time they’ll have different hash
codes. That’s fine because the default reference type Equals
implementation only ever returns true if you compare an object with
itself, but this is why you need to override GetHashCode if you
override Equals. Value types get default implementations of
GetHashCode and Equals that meet both requirements. However,
these can sometimes be slow, so you should normally write your own.

Ideally, objects that have different values should have different hash
codes, but that’s not always possible—GetHashCode returns an int,
which has a finite number of possible values. (4,294,967,296, to be
precise.) If your data type offers more distinct values, then it’s clearly

not possible for every conceivable value to produce a different hash
code. For example, the 64-bit integer type, long, obviously supports
more distinct values than int. If you call GetHashCode on a long
with a value of 0, on .NET 6.0 it returns 0, and you’ll get the same hash
code for a long with a value of 4,294,967,297. Duplicates like these
are called hash collisions, and they are an unavoidable fact of life. Code
that depends on hash codes just has to be able to deal with these.

The rules do not require the mapping from values to hash codes to be
fixed forever—they only need to be consistent for the lifetime of the
process. In fact, there are good reasons to be inconsistent. Criminals
who attack online computer systems sometimes try to cause hash
collisions. Collisions decrease the efficiency of hash-based algorithms,
so an attack that attempts to overwhelm a server’s CPU will be more
effective if it can induce collisions for values that it knows the server
will use in hash-based lookups. Some types in the runtime libraries
deliberately change the way they produce hashes each time you restart a
program to avoid this problem.

Because hash collisions are unavoidable, the rules cannot forbid them,
which means you could return the same value (e.g., 0) from
GetHashCode every time, regardless of the instance’s actual value.
Although not technically against the rules, it tends to produce lousy
performance from hash tables and the like. Ideally, you will want to
minimize hash collisions. That said, if you don’t expect anything to
depend on your type’s hash code, there’s not much point in spending
time carefully devising a hash function that produces well-distributed
values. Sometimes a lazy approach, such as deferring to a single field,
is OK. Or you could defer to the HashCode.Combine method like
Example 3-29 does.

With the version of Point in Example 3-29, we can run a few tests.
Example 3-30 works similarly to Examples 3-18 and 3-19.

Example 3-30. Comparing struct instances
var p1 = new Point(40, 2);
Point p2 = p1;
var p3 = new Point(40, 2);

Console.WriteLine($"{p1.X}, {p1.Y}");
Console.WriteLine($"{p2.X}, {p2.Y}");
Console.WriteLine($"{p3.X}, {p3.Y}");
Console.WriteLine(p1 == p2);
Console.WriteLine(p1 == p3);
Console.WriteLine(p2 == p3);
Console.WriteLine(object.ReferenceEquals(p1, p2));
Console.WriteLine(object.ReferenceEquals(p1, p3));
Console.WriteLine(object.ReferenceEquals(p2, p3));
Console.WriteLine(object.ReferenceEquals(p1, p1));

Running that code produces this output:

40, 2
40, 2
40, 2
True
True
True
False
False
False
False

All three instances have the same value. With p2 that’s because I initialized
it by assigning p1 into it, and with p3 I constructed it from scratch but with
the same arguments. Then we have the first three comparisons, which,
remember, use ==. Since Example 3-29 defines a custom implementation
that compares values, all the comparisons succeed. And all the
object.ReferenceEquals values fail, because this is a value type,
just like int. In fact, this is the same behavior we saw with Example 3-19,
which used int instead of Counter. (Again, the compiler has generated
implicit conversions here that produce boxes, which we will look at in
Chapter 7.) So we have achieved our goal of defining a type with similar
behavior to built-in value types such as int.

When to Write a Value Type
I’ve shown some of the differences in observable behavior between a
reference type (class or record) and a struct, but although I argued
why Counter was a poor candidate for being a struct, I’ve not fully
explained what makes a good one. The short answer is that there are only
two circumstances in which you should write a value type. First, if you need
to represent something value-like, such as a number, a struct is likely to be
ideal. Second, if you have determined that a struct has usefully better
performance characteristics for the scenario in which you will use the type,
a struct may not be ideal but might still be a good choice. But it’s worth
understanding the pros and cons in more detail. And I will also address a
surprisingly persistent myth about value types.

With reference types, an object is distinct from a variable that refers to it.
This can be very useful, because we often use objects as models for real
things with identities of their own. But this has some performance
implications. An object’s lifetime is not necessarily directly related to the
lifetime of a variable that refers to it. You can create a new object, store a
reference to it in a local variable, and then later copy that reference to a
static field. The method that originally created the object might then return,
so the local variable that first referred to the object no longer exists, but the
object needs to stay alive because it’s still possible to reach it by other
means.

The CLR goes to considerable lengths to ensure that the memory an object
occupies is not reclaimed prematurely but is eventually freed once the
object is no longer in use. This is a fairly complex process (described in
detail in Chapter 7), and .NET applications can end up causing the CLR to
consume a considerable amount of CPU time just tracking objects in order
to work out when they fall out of use. Creating lots of objects increases this
overhead. Adding complexity in certain ways can also increase the costs of
object tracking—if a particular object remains alive only because it is
reachable through some very convoluted path, the CLR may need to follow
that path each time it tries to work out what memory is still in use. Each
level of indirection you add generates extra work. A reference is by

definition indirect, so every reference type variable creates work for the
CLR.

Value types can often be handled in a much simpler way. For example,
consider arrays. If you declare an array of some reference type, you end up
with an array of references. This is very flexible—elements can be null if
you want, and you’re also free to have multiple different elements all
referring to the same item. But if what you actually need is a simple
sequential collection of items, that flexibility is just overhead. A collection
of 1,000 reference type instances requires 1,001 blocks of memory: one
block to hold an array of references, and then 1,000 objects for those
references to refer to. But with value types, a single block can hold all the
values. This simplifies things for memory management purposes—either
the array is still in use or it’s not, and there’s no need for the CLR to check
the 1,000 individual elements separately.

It’s not just arrays that can benefit from this sort of efficiency. There’s also
an advantage for fields. Consider a class that contains 10 fields, all of type
int. The 40 bytes required to hold those fields’ values can live directly
inside the memory allocated for an instance of the containing class.
Compare that with 10 fields of some reference type. Although those
references can be stored inside the object instance’s memory, the objects
they refer to will be separate entities, so if the fields are all non-null and all
refer to different objects, you’ll now have 11 blocks of memory—one for
the instance that contains all the fields, and then one for each object those
fields refer to. Figure 3-1 illustrates these differences between references
and values for both arrays and objects (with smaller examples, because the
same principle applies even with a handful of instances).

Value types can also sometimes simplify lifetime handling. Often, the
memory allocated for local variables can be freed as soon as a method
returns (although, as we’ll see in Chapter 9, anonymous functions mean that
it’s not always that simple). This means the memory for local variables can
often live on the stack, which typically has much lower overheads than the
heap. For reference types, the memory for a variable is only part of the

story—the object it refers to cannot be handled so easily, because that
object may continue to be reachable by other paths after the method exits.

Figure 3-1. References versus values

In fact, the memory for a value may be reclaimed even before a method
returns. New value instances often overwrite older instances. For example,
C# can normally just use a single piece of memory to represent a variable,
no matter how many different values you put in there. Creating a new
instance of a value type doesn’t necessarily mean allocating more memory,
whereas with reference types, a new instance means a new heap block. This
is why it’s OK for each operation we perform with a value type—every
integer addition or subtraction, for example—to produce a new instance.

One of the most persistent myths about value types says that values are
allocated on the stack, unlike objects. It’s true that objects always live on
the heap, but value types don’t always live on the stack, and even in the2

situations where they do, that’s an implementation detail, not a fundamental
feature of C#. Figure 3-1 shows two counterexamples. An int value inside
an array of type int[] does not live on the stack; it lives inside the array’s
heap block. Likewise, if a class declares a nonstatic int field, the value of
that int lives inside the heap block for its containing object instance. And
even local variables of value types don’t necessarily end up on the stack.
For example, optimizations may make it possible for the value of a local
variable to live entirely inside the CPU’s registers, rather than needing to go
on the stack. And as you’ll see in Chapters 9 and 17, locals can sometimes
live on the heap.

You might be tempted to summarize the preceding few paragraphs as “there
are some complex details, but in essence, value types are more efficient.”
But that would be a mistake. There are some situations in which value types
are significantly more expensive. Remember that a defining feature of a
value type is that values get copied on assignment. If the value type is big,
that will be relatively expensive. For example, the runtime libraries define
the Guid type to represent the 16-byte globally unique identifiers that crop
up in lots of bits of Windows. This is a struct, so any assignment
statement involving a Guid is asking to make a copy of a 16-byte data
structure. This is likely to be more expensive than making a copy of a
reference, because the CLR uses a pointer-based implementation for
references; a pointer typically takes 4 or 8 bytes, but more importantly, it’ll
be something that fits naturally into a single CPU register.

It’s not just assignment that causes values to be copied. Passing a value type
argument to a method may require a copy. As it happens, with method
invocation, it is actually possible to pass a reference to a value, although as
we’ll see later, it’s a slightly limited kind of reference, and the restrictions it
imposes are sometimes undesirable, so you may end up deciding that the
cost of the copy is preferable. This is why Microsoft’s design guidelines
suggest that you should not make a type a struct unless it “has an
instance size under 16 bytes” (a guideline that the Guid type technically
violates, being exactly 16 bytes in size). But this is not a hard-and-fast rule
—it really depends on how you will be using it, and since more recent

versions of C# provide more flexibility for using values types indirectly, it
is increasingly common for performance-sensitive code to ignore this
restriction and instead to take care to minimize copying.

Value types are not automatically going to be more efficient than reference
types, so in most cases, your choice should be driven by the behavior you
require. The most important question is this: Does the identity of an
instance matter to you? In other words, is the distinction between one object
and another object important? For our Counter example, the answer is
yes: if we want something to keep count for us, it’s simplest if that counter
is a distinct thing with its own identity. (Otherwise, our Counter type
adds nothing beyond what int gives us.) But for our Point type, the
answer is no, so it’s a reasonable candidate for being a value type.

An important and related question is: Does an instance of your type contain
state that changes over time? Modifiable value types tend to be problematic,
because it’s all too easy to end up working with some copy of a value and
not the instance you meant to. (I’ll show an important example of this
problem later, in “Properties and mutable value types”, and another when I
describe List<T> in Chapter 5.) So it’s usually a good idea for value types
to be immutable. This doesn’t mean that variables of these types cannot be
modified; it just means that to modify the variable, you must replace its
contents entirely with a different value. For something simple like an int,
this will seem like splitting hairs, but the distinction is important with
structs that contain multiple fields, such as .NET’s Complex type, which
represents numbers that combine a real and an imaginary component. You
cannot change the Real or Imaginary property of an existing Complex
instance, because the type is immutable. And the Point type shown earlier
works the same way. If the value you’ve got isn’t the value you want,
immutability just means you need to create a new value, because you can’t
tweak the existing instance.

Immutability does not necessarily mean you should write a struct—the
built-in string type is immutable, and that’s a class. However, because
C# often does not need to allocate new memory to hold new instances of a
value type, value types are able to support immutability more efficiently

3

than classes in scenarios where you’re creating lots of new values (e.g., in a
loop). Immutability is not an absolute requirement for structs—there are
some unfortunate exceptions in .NET’s runtime libraries. But value types
should normally be immutable, so a requirement for mutability is usually a
good sign that you want a class rather than a struct.

A type should only be a struct if it represents something that is very clearly
similar in nature to other things that are value types. (In most cases it should
also be fairly small, because passing large types by value is expensive.) For
example, in the runtime libraries, Complex is a struct, which is
unsurprising because it’s a numeric type, and all of the built-in numeric
types are value types. TimeSpan is also a value type, which makes sense
because it’s effectively just a number that happens to represent a length of
time. In the UI framework WPF, types used for simple geometric data such
as Point and Rect are structs. But if in doubt, write a class.

Guaranteeing Immutability
You can declare your intention to make a struct read-only by adding the
readonly keyword in front of struct, as Example 3-31 shows. This is
similar to the Point type shown in Example 3-28, but I’ve made a couple
of other alterations. In addition to adding the readonly qualifier, I’ve also
used read-only auto-properties to reduce the clutter—the compiler will
generate code equivalent to the earlier example for these. I’ve also added a
member function for reasons that will soon become clear. Like the earlier
version, this has a constructor, and in this case that was mandatory: the
constructor provides the only opportunity to supply values for a Point’s
properties, so this type would be useless without one.

Example 3-31. A read-only struct
public readonly struct Point
{
 public Point(double x, double y)
 {
 X = x;
 Y = y;
 }

 public double X { get; }
 public double Y { get; }
 public double DistanceFromOrigin() => Math.Sqrt(X * X + Y * Y);
}

Applying the readonly keyword to a struct has two effects. First, the
C# compiler will keep you honest, preventing modification either from
outside or from within. If you declare any fields, the compiler will generate
an error unless these are also marked readonly. Similarly, if you try to
define a settable auto-property (one with a set; as well as a get;), the
compiler will produce an error.

Second, read-only structs enjoy certain optimizations. If in some other type
you declare a readonly field (either directly or indirectly with a read-
only auto-property) whose type is a readonly struct, the compiler
may be able to avoid making a copy of the data when something uses that
field. Consider the class in Example 3-32.

Example 3-32. A read-only struct in a read-only property
public class LocationData
{
 public LocationData(string label, Point location)
 {
 Label = label;
 Location = location;
 }

 public string Label { get; }
 public Point Location { get; }
}

Suppose you had a variable r containing a reference to a LocationData.
What would happen if you wrote the expression
r.Location.DistanceFromOrigin()? Logically, we’re asking
r.Location to retrieve the Point, and since Point is a value type,
that would entail making a copy of the value. Normally, C# will generate
code that really does make a copy because it cannot in general know
whether invoking some member of a struct will modify it. These are
known as defensive copies, and they ensure that expressions like this can’t

cause a nasty surprise such as changing the value of a property or field that
appears to be read-only. However, since Point is a readonly struct,
the compiler can know that it does not need to create a defensive copy here.
In this case, it would be safe for either the C# compiler or the JIT compiler
(or AoT code generator) to optimize this code by invoking
DistanceFromOrigin directly on the value stored inside the
LocationData without first making a copy.

TIP
You are allowed to use a readonly struct in writable fields and properties if you
want to. The readonly keyword guarantees only that any particular value of this type
will not change. If you want to overwrite an existing value with a completely different
value, that’s up to you.

Record Structs
When you saw Example 3-29, you might have thought to yourself that this
seems a lot like the kind of work that the compiler can do for us in a
record type. Can we get it do the same work with a struct? Starting
with C# 10.0, we can declare a record struct type, which adds the
same comparison behavior that we get with a class-based record—the
compiler would write GetHashCode and both forms of the Equals
methods for you, along with the == and != operators.

Besides the usual differences between classes and value types already
described, there are some other more subtle differences between record
and record struct types. For example, because struct types have a
way to declare explicitly that they are immutable (the readonly
qualifier), when you use the positional syntax with a record struct,
the compiler assumes that if you want a read-only type, you’ll say so by
declaring it as readonly record struct. So although properties
defined with the positional syntax are immutable on a readonly
record struct (just as they are on a record), they are modifiable on

a record struct. So whereas you cannot modify the X and Y properties
of a PointRecord type in Example 3-33 after construction, you could
change the properties of a PointStructRecord. But
Poi ntR ead on ly Str uct Rec ord gets immutable properties, just like
PointRecord.

Example 3-33. A read-only record, a mutable record struct, and a
readonly record struct
public record PointRecord(int X, int Y);
public record struct PointStructRecord(int X, int Y);
public readonly record struct PointReadonlyStructRecord(int X, int
Y);

record structs also have some subtle differences around constructors,
which I’ll describe in “Constructors”.

Class, Structs, Records, or Tuples?
As you’ve now seen, C# offers many ways to define types. How should we
choose between them? Suppose your code needs to work with a pair of
coordinates representing a position in two-dimensional space? How should
you represent this in C#?

The simplest possible answer would be to declare two variables of type
double, one for each dimension. This certainly works, but your code will
fail to capture something important: the two values are not two separate
things. If your chosen type doesn’t represent the fact that these two numbers
are a single entity, that will cause problems. It is inconvenient when you
want to write methods that take a position as an argument—you end up
needing two arguments. If you accidentally pass the X value from one
coordinate pair and the Y value from a different one, the compiler will have
no way of knowing this is wrong. Using two separate values is especially
troublesome if you want a function to return a position, because C#
methods can return only a single value.

Tuples, which were described in Chapter 2, can solve the problems I just
described because a single value can contain a pair of numbers: (1.0,
2.0). While this is certainly an improvement, the problem with tuples is
that they are unable to distinguish between different kinds of data that
happen to have the same structure. This isn’t unique to tuples: built-in types
have the same issue. A double representing a distance in feet has the same
C# type as one representing a distance in meters, even though there is a
significant difference in meaning. (NASA lost a space probe in 1999 due to
confusion over values with identical types but different units.) But these
problems go beyond mismatched units. Suppose you have a tuple (X:
10.0, Y: 10.0) representing the position of a rectangle in meters, and
another, (Width: 2.0, Height: 1.0) representing its size, also in
meters. The units are the same here, but position and size are quite different
concepts, and yet these two tuples have exactly the same type. This can
seem particularly surprising when the members of the tuples have different
names—the first has X and Y, but the second has Width and Height.
However, as you saw in the preceding chapter, these tuple member names
are a fiction the C# compiler provides for our convenience. The real names
are Item1 and Item2.

Given the limitations of tuples, it may be more appropriate to ask: When
would you ever want to use a tuple instead of a specialized type such as a
record? I have found tuples very useful in private implementation details in
places where there is little chance of the structural equivalence of
conceptually unrelated tuple types causing a problem. For example, when
using the Dictionary<TKey, TValue> container type described in
Chapter 5, it is sometimes useful for the dictionary key to be made up of
more than one value. Tuples are ideal for this sort of compound key. They
can also be useful when a method needs to return multiple related pieces of
data in cases where defining a whole new type seems like overkill. For
example, if the method is a private one called in only one or two places, is it
really worth defining a whole type just to act as the return type of that one
method?

Record types would work better than tuples for our structurally similar but
conceptually different position and dimension examples: if we define
public record Position(double X, double Y) and
public record Dimensions(double Width, double
Height), we now have two distinct types to represent these two separate
kinds of data. If we accidentally try to use positions when dimensions are
required, the compiler will point out the mistake. Moreover, unlike the
locally defined names we can give tuple members, the names of a record’s
properties are real, so code using Dimensions will always to refer to its
members as Width and Height. Record types automatically implement
equality comparisons and hash codes, so they work just as well as tuples as
compound keys in dictionaries. There are really only two reasons you might
choose a tuple over a record. One is when you actually want the structural
equivalence—there are some occasions where deliberately being a bit vague
about types can provide extra flexibility that might justify the possible
reduction in safety. And the second is in cases where defining a type seems
like overkill (e.g., when using a compound key for a dictionary that is used
only inside one method).

Since record types are full .NET types, they can contain more than just
properties—they can contain any of the other member types described in
the following section. Our Dimensions record type could include a
method that calculates the area, for example. And we are free to choose
between defining a reference type or a value type by using either record
or record struct.

When would we use a class (or struct) instead of a record? One reason
might be that you don’t want the equality logic. If your application has
entities with their own identities—perhaps certain objects correspond to
people or to particular devices—the value-based comparison logic
generated for record types will be inappropriate, because two items can be
distinct even if they happen to share the same characteristics. (Imagine
objects representing shapes in a drawing program. If you clone a shape, you
will have two identical objects, but it’s important that they are still
considered different because the cloned item may then go on to be moved

or otherwise modified.) So you might want to ask: does your type represent
a thing, or does it just hold some information? If it represents some
information, a record type is likely to be a good choice, but a class may well
be a better bet for entities that represent some real entity, especially if
instances of the type have behavior of their own. For example, when
building a user interface, an interactive element such as a button would be
better modeled as a class than a record. It’s not that a record type
couldn’t be made to work—they can be made to do more or less anything
ordinary classes and structs can do; it’s just that they are likely to be a less
good fit.

Members
Whether you’re writing a class, a struct, or a record, there are several
different kinds of members you can put in a custom type. We’ve seen
examples of some already, but let’s take a closer and more comprehensive
look.

Accessibility
You can specify the accessibility for most class and struct members. Just as
a type can be public or internal, so can each member. Members may
also be declared as private, making them accessible only to code inside
the type, and this is the default accessibility. As we’ll see in Chapter 6,
inheritance adds three more accessibility levels for members: protected,
protected internal, and protected private.

Fields
You’ve already seen that fields are named storage locations that hold either
values or references depending on their type. By default, each instance of a
type gets its own set of fields, but if you want a field to be singular, rather
than having one per instance, you can use the static keyword. You can

also apply the readonly keyword to a field, which states that it can be set
only during initialization and cannot change thereafter.

WARNING
The readonly keyword does not make any absolute guarantees. There are
mechanisms by which it is possible to contrive a change in the value of a readonly
field. The reflection mechanisms discussed in Chapter 13 provide one way, and unsafe
code, which lets you work directly with raw pointers, provides another. The compiler
will prevent you from modifying a field accidentally, but with sufficient determination,
you can bypass this protection. And even without such subterfuge, a readonly field is
free to change during construction.

C# offers a keyword that seems, superficially, to be similar: you can define
a const field. However, this is designed for a somewhat different purpose.
A readonly field is initialized and then never changed, whereas a const
field defines a value that is invariably the same. A readonly field is much
more flexible: it can be of any type, and its value can be calculated at
runtime, which means you can define either per-instance or static fields
as readonly. A const field’s value is determined at compile time, which
means it is defined at the class level (because there’s no way for individual
instances to have different values). This also limits the available types. For
most reference types, the only supported const value is null, so in
practice, it’s normally only useful to use const with types intrinsically
supported by the compiler. (Specifically, if you want to use values other
than null, a const’s type must be one of the built-in numeric types,
bool, string, or an enumeration type, as described later in this chapter.)

This makes a const field rather more limited than a readonly one, so
you could reasonably ask: What’s the point? Well, although a const field
is inflexible, it makes a strong statement about the unchanging nature of the
value. For example, .NET’s Math class defines a const field of type
double called PI that contains as close an approximation to the
mathematical constant π as a double can represent. That’s a value that’s
fixed forever—thus it is a constant in a very strong sense.

When it comes to less inherently constant values, you need to be a bit
careful about const fields; the C# specification allows the compiler to
assume that the value really will never change. Code that reads the value of
a readonly field will fetch the value from the memory containing the
field at runtime. But when you use a const field, the compiler can read the
value at compile time and copy it into the IL as though it were a literal. So
if you write a library component that declares a const field and you later
change its value, this change will not necessarily be picked up by code
using your library unless that code gets recompiled.

One of the benefits of a const field is that it is eligible for use in certain
contexts in which a readonly field is not. For example, if you want to use
a constant pattern (Chapter 2 introduced patterns), perhaps in the label for a
case in a switch statement, the value you specify has to be fixed at
compile time. So a constant pattern cannot refer to a readonly field, but
you can use a suitably typed const field. You can also use const fields
in the expression defining the value of another const field (as long as you
don’t introduce any circular references).

A const field is required to contain an expression defining its value, such
as the one shown in Example 3-34.

Example 3-34. A const field
const double kilometersPerMile = 1.609344;

While mandatory for a const, this initializer expression is optional for a
class’s ordinary and readonly fields. If you omit the initializing
expression, the field will automatically be initialized to a default value.
(That’s 0 for numeric values and the equivalents for other types—false,
null, etc.)

Instance field initializers run as part of construction, i.e., when you use the
new keyword (or some equivalent mechanism such as constructing an
instance through reflection, as described in Chapter 13). This means you
should be wary of using field initializers in value types. A struct can be
initialized implicitly, in which case its instance fields are set to 0 (or

4

false, etc.). Starting with C# 10.0, you can write instance field initializers
in a struct, but these will only run if that struct is explicitly
initialized. If you create an array whose elements are some value type with
field initializers, all the fields of all the elements in the array will start out
with values of 0; if you want the field initializers to run, you’ll need to write
a loop that uses new to initialize each element in the array. Likewise when
you use a struct type as a field, it will be zero-initialized, and its field
initializers will run only if you explicitly initialize the field with the new
keyword. (Instance field initializers in a class also run only when that
class is constructed, but the big difference is that it’s not possible to get
hold of an instance of a class without running one of its constructors.
There are common situations in which you will be able to use a struct
instance that was implicitly zero-initialized.) Initializers for noninstance
fields (i.e., const and static fields) will always be executed for structs,
though.

If you do supply an initializer expression for a non-const field, it does not
need to be evaluable at compile time, so it can do runtime work such as
calling methods or reading properties. Of course, this sort of code can have
side effects, so it’s important to be aware of the order in which initializers
run.

Nonstatic field initializers run for each instance you create, and they
execute in the order in which they appear in the file, immediately before the
constructor runs. Static field initializers execute no more than once, no
matter how many instances of the type you create. They also execute in the
order in which they are declared, but it’s harder to pin down exactly when
they will run. If your class has no static constructor, C# guarantees to run
field initializers before the first time a field in the class is accessed, but it
doesn’t necessarily wait until the last minute—it retains the right to run
field initializers as early as it likes. (The exact moment at which this
happens has varied across releases of .NET.) But if a static constructor does
exist, then things are slightly clearer: static field initializers run immediately
before the static constructor runs, but that merely raises the questions:

5

What’s a static constructor, and when does it run? So we had better take a
look at constructors.

Constructors
A newly created object may require some information to do its job. For
example, the Uri class in the System namespace represents a Uniform
Resource Identifier (URI) such as a URL. Since its entire purpose is to
contain and provide information about a URI, there wouldn’t be much point
in having a Uri object that didn’t know what its URI was. So it’s not
actually possible to create one without providing a URI. If you try the code
in Example 3-35, you’ll get a compiler error.

Example 3-35. Error: failing to provide a Uri with its URI
Uri oops = new Uri(); // Will not compile

The Uri class defines several constructors, members that contain code that
initializes a new instance of a type. If a particular class requires certain
information to work, you can enforce this requirement through constructors.
Creating an instance of a class almost always involves using a constructor
at some point, so if the constructors you define all demand certain
information, developers will have to provide that information if they want
to use your class. So all of the Uri class’s constructors need to be given the
URI in one form or another.

To define a constructor, you first specify the accessibility (public,
private, internal, etc.) and then the name of the containing type.
This is followed by a list of parameters in parentheses (which can be
empty). Example 3-36 shows a class that defines a single constructor that
requires two arguments: one of type decimal and one of type string.
The argument list is followed by a block containing code. So constructors
look a lot like methods but with the containing type name in place of the
usual return type and method name.

Example 3-36. A class with one constructor
public class Item
{

 public Item(decimal price, string name)
 {
 _price = price;
 _name = name;
 }
 private readonly decimal _price;
 private readonly string _name;
}

This constructor is pretty simple: it just copies its arguments to fields. A lot
of constructors do no more than that. You’re free to put as much code in
there as you like, but by convention, developers usually expect the
constructor to do very little—its main job is to ensure that the object is in a
valid initial state. That might involve checking the arguments and throwing
an exception if there’s a problem, but not much else. You are likely to
surprise developers who use your class if you write a constructor that does
something nontrivial, such as adding data to a database or sending a
message over the network.

Example 3-37 shows how to use the constructor defined by Example 3-36.
We just use the new operator, passing in suitably typed values as
arguments.

Example 3-37. Using a constructor
var item1 = new Item(9.99M, "Hammer");

You can define multiple constructors, but it must be possible to distinguish
between them: you cannot define two constructors that both take the same
number of arguments of the same types, because there would be no way for
the new keyword to know which one you meant.

Earlier, I showed how a record type can require certain properties to be
present. Example 3-38 shows a record similar to the Item class from
Example 3-36 (although this makes the relevant data public). When you do
this, you are in effect defining a constructor.

Example 3-38. Record type with compiler-generated constructors
public record Item(decimal Price, string Name);

With this example, the compiler will emit a constructor taking a decimal
and a string argument. The generated constructor will use those
arguments to initialize the Price and Name properties. As you saw earlier
in Example 3-13, you’re free to supply your own constructor if you want to,
but in cases where the compiler-generated one does what you need, it’s very
convenient. This is not the only kind of constructor that the compiler can
generate for you.

Default constructors and zero-argument constructors
If you do not define any constructors at all, C# will provide a default
constructor that is equivalent to an empty constructor that takes no
arguments. And if you’re writing a struct, you’ll get that even if you do
define other constructors.

NOTE
Although the C# specification unambiguously defines a default constructor as one
generated for you by the compiler, be aware that there’s another widely used meaning.
You will often see the term default constructor used to mean any public, parameterless
constructor, regardless of whether it was generated by the compiler. There’s some logic
to this—when using a class, it’s not possible to tell the difference between a compiler-
generated constructor and an explicit zero-argument constructor, so if the term default
constructor is to mean anything useful from that perspective, it can mean only a public
constructor that takes no arguments. However, that’s not how the C# specification
defines the term.

The compiler-generated default constructor does nothing beyond the zero
initialization of fields, which is the starting point for all new objects.
However, there are some situations in which it is necessary to write your
own parameterless constructor. You might need the constructor to execute
some code. Example 3-39 sets an _id field based on a static field that it
increments for each new object to give each instance a distinct ID. This
doesn’t require any arguments to be passed in, but it does involve running
some code.

Example 3-39. A nonempty zero-argument constructor
public class ItemWithId
{
 private static int _lastId;
 private int _id;

 public ItemWithId()
 {
 _id = ++_lastId;
 }
}

There is another way to achieve the same effect as Example 3-39. I could
have written a static method called GetNextId, and then used that in the
_id field initializer. Then I wouldn’t have needed to write this constructor.
However, there is one advantage to putting code in the constructor: field
initializers are not allowed to invoke the object’s own nonstatic methods but
constructors are. That’s because the object is in an incomplete state during
field initialization, so it may be dangerous to call its nonstatic methods—
they may rely on fields having valid values. But an object is allowed to call
its own nonstatic methods inside a constructor, because although the
object’s still not fully built yet, it’s closer to completion, and so the dangers
are reduced.

There are other reasons for writing your own zero-argument constructor. If
you define at least one constructor for a class, this will disable the default
constructor generation. If you need your class to provide parameterized
construction, but you still want to offer a no-arguments constructor, you’ll
need to write one, even if it’s empty. Alternatively, if you want to write a
class whose only constructor is an empty, zero-argument one, but with a
protection level other than the default of public—you might want to
make it private so that only your code can create instances, for example
—you would need to write the constructor explicitly even if it is empty so
that you have somewhere to specify the protection level.

NOTE
Some frameworks can use only classes that provide a public, zero-argument constructor.
For example, if you build a UI with Windows Presentation Foundation (WPF), classes
that can act as custom UI elements usually need such a constructor.

With structs, zero-argument constructors work slightly differently, because
value types need to support implicit initialization. When a value type is
used as a field of some other type, or the element type of an array, the
memory that holds the value is part of the containing object, and when you
create a new object or array, the CLR always fills its memory with zeros.
This means that it is always possible to initialize a value without passing
any constructor arguments. So whereas C# removes the default constructor
for a class when you add a constructor that takes arguments, it does not do
this for a struct (including record struct types)—even if it did hide it,
you’d still be able to invoke this implicit initialization indirectly, e.g., by
creating a one-element array of that type: MyStruct s = (new
MyStruct[1])[0];. Since implicit initialization is always available for
a struct, there would be no sense in the compiler hiding the corresponding
constructor.

Up until C# 10.0, you weren’t allowed to write a zero-argument constructor
for a struct because there are so many scenarios in which that constructor
would not run. (This is the same reason that structs didn’t use to support
instance field initializers: it’s essentially the same issue because field
initializers run as part of construction.) You can now write a zero-argument
constructor for a struct, but as with field initializers, be aware that it will
only run in cases where your code explicitly invokes the constructor. The
CLR’s zero initialization is used in most cases.

There’s one more important compiler-generated constructor type to be
aware of: when you write a record or record class, the compiler
generates a constructor that gets used to create a duplicate whenever you
use the with syntax shown back in Example 3-12. (This is known as a
copy constructor, although if you’re familiar with C++, don’t be misled:

this is used only within record types and is not a general-purpose copy
mechanism. C# has no support for using a copy constructor in an ordinary
class.) It performs a shallow copy by default, much as you get when
copying a struct, but if you want to, you can write your own
implementation, as Example 3-40 shows.

Example 3-40. Record type with customized copy constructor
public record ValueWithId(int Value, int Id)
{
 public ValueWithId(ValueWithId source)
 {
 Value = source.Value;
 Id = source.Id + 1;
 }
}

This prevents the compiler from generating the usual copy constructor.
Yours will be used whenever the with syntax causes a copy of your type to
be created.

The compiler does not generate a copy constructor for a record
struct. There’s no need, because all struct types are inherently
copyable. And although nothing stops you from writing a constructor
similar to the one in Example 3-40 for a record struct, the compiler
will not use it.

Chaining constructors
If you write a type that offers several constructors, you may find that they
have a certain amount in common—there are often initialization tasks that
all constructors have to perform. The class in Example 3-39 calculates a
numeric identifier for each object in its constructor, and if it were to provide
multiple constructors, they might all need to do that same work. Moving the
work into a field initializer would be one way to solve that, but what if only
some constructors wanted to do it? You might have work that was common
to most constructors, but you might want to make an exception by having
one constructor that allows the ID to be specified rather than calculated.
The field initializer approach would no longer be appropriate, because

you’d want individual constructors to be able to opt in or out. Example 3-41
shows a modified version of the code from Example 3-39, defining two
extra constructors.

Example 3-41. Optional chaining of constructors
public class ItemWithId
{
 private static int _lastId;
 private int _id;
 private string? _name;

 public ItemWithId()
 {
 _id = ++_lastId;
 }

 public ItemWithId(string name)
 : this()
 {
 _name = name;
 }

 public ItemWithId(string name, int id)
 {
 _name = name;
 _id = id;
 }
}

If you look at the second constructor in Example 3-41, its parameter list is
followed by a colon and then this(), which invokes the first constructor.
A constructor can invoke any other constructor that way. Example 3-42
shows a different way to structure all three constructors, illustrating how to
pass arguments.

Example 3-42. Chained constructor arguments
public ItemWithId()
 : this(null)
{
}

public ItemWithId(string? name)
 : this(name, ++_lastId)
{

}

private ItemWithId(string? name, int id)
{
 _name = name;
 _id = id;
}

The two-argument constructor here is now the only one that actually does
any work. The other constructors just pick suitable arguments for that main
constructor. This is arguably a cleaner solution than the previous examples,
because the work of initializing the fields is done in just one place, rather
than having different constructors each performing their own smattering of
field initialization.

Notice that I’ve made the two-argument constructor in Example 3-42
private. At first glance, it can look a bit odd to define a way of building
an instance of a class and then make it inaccessible, but it makes perfect
sense when chaining constructors. And there are other scenarios in which a
private constructor might be useful—we might want to write a method that
makes a clone of an existing ItemWithId, in which case that constructor
would be useful, but by keeping it private, we retain control of exactly how
new objects get created. It can sometimes even be useful to make all of a
type’s constructors private, forcing users of the type to go through
what’s sometimes called a factory method (a static method that creates
an object) to get hold of an instance. There are two common reasons for
doing this. One is if full initialization of the object requires additional work
of a kind that is inadvisable in a constructor (e.g., if you need to do slow
work that uses the asynchronous language features described in Chapter 17,
you cannot put that code inside a constructor). Another is if you want to use
inheritance (see Chapter 6) to provide multiple variations on a type, but you
want to be able to decide at runtime which particular type is returned.

Static constructors
The constructors we’ve looked at so far run when a new instance of an
object is created. Classes and structs can also define a static constructor.
This runs at most once in the lifetime of the application. You do not invoke

it explicitly—C# ensures that it runs automatically at some point before you
first use the class. So, unlike an instance constructor, there’s no opportunity
to pass arguments. Since static constructors cannot take arguments, there
can be only one per class. Also, because these are never accessed explicitly,
you do not declare any kind of accessibility for a static constructor.
Example 3-43 shows a class with a static constructor.

Example 3-43. Class with static constructor
public class Bar
{
 private static DateTime _firstUsed;
 static Bar()
 {
 Console.WriteLine("Bar's static constructor");
 _firstUsed = DateTime.Now;
 }
}

Just as an instance constructor puts the instance into a useful initial state,
the static constructor provides an opportunity to initialize any static fields.

By the way, you’re not obliged to ensure that a constructor (static or
instance) initializes every field. When a new instance of a class is created,
the instance fields are initially all set to 0 (or the equivalent, such as false
or null). Likewise, a type’s static fields are all zeroed out before the class
is first used. Unlike with local variables, you only need to initialize fields if
you want to set them to something other than the default zero-like value.

Even then, you may not need a constructor. A field initializer may be
sufficient. However, it’s useful to know exactly when constructors and field
initializers run. I mentioned earlier that the behavior varies according to
whether constructors are present, so now that we’ve looked at constructors
in a bit more detail, I can finally show a more complete picture of
initialization. (There will still be more to come—as Chapter 6 describes,
inheritance adds another dimension.)

At runtime, a type’s static fields will first be set to 0 (or equivalent values).
Next, the field initializers run in the order in which they are written in the
source file. This ordering matters if one field’s initializer refers to another.

In Example 3-44, fields a and c both have the same initializer expression,
but they end up with different values (1 and 42, respectively) due to the
order in which initializers run.

Example 3-44. Significant ordering of static fields
private static int a = b + 1;
private static int b = 41;
private static int c = b + 1;

The exact moment at which static field initializers run depends on whether
there’s a static constructor. As mentioned earlier, if there isn’t, then the
timing is not defined—C# guarantees to run them no later than the first
access to one of the type’s fields, but it reserves the right to run them
arbitrarily early. The presence of a static constructor changes matters: in
that case, the static field initializers run immediately before the constructor.
So when does the constructor run? It will be triggered by one of two events,
whichever occurs first: creating an instance or accessing any static member
of the class.

For nonstatic fields, the story is similar: the fields are first all initialized to 0
(or equivalent values), and then field initializers run in the order in which
they appear in the source file, and this happens before the constructor runs.
The difference is that instance constructors are invoked explicitly, so it’s
clear when this initialization occurs.

I’ve written a class called InitializationTestClass designed to
illustrate this construction behavior, shown in Example 3-45. The class has
both static and nonstatic fields, all of which call a method, GetValue, in
their initializers. That method always returns the same value, 1, but it prints
out a message so we can see when it is called. The class also defines a no-
arguments instance constructor and a static constructor, both of which print
out messages.

Example 3-45. Initialization order
public class InitializationTestClass
{
 public InitializationTestClass()
 {
 Console.WriteLine("Constructor");

 }

 static InitializationTestClass()
 {
 Console.WriteLine("Static constructor");
 }

 public static int s1 = GetValue("Static field 1");
 public int ns1 = GetValue("Non-static field 1");
 public static int s2 = GetValue("Static field 2");
 public int ns2 = GetValue("Non-static field 2");

 private static int GetValue(string message)
 {
 Console.WriteLine(message);
 return 1;
 }

 public static void Foo()
 {
 Console.WriteLine("Static method");
 }
}

class Program
{
 static void Main()
 {
 Console.WriteLine("Main");
 InitializationTestClass.Foo();
 Console.WriteLine("Constructing 1");
 var i = new InitializationTestClass();
 Console.WriteLine("Constructing 2");
 i = new InitializationTestClass();
 }
}

The Main method prints out a message, calls a static method defined by
Ini tia liz ati on Tes tCla ss, and then constructs a couple of
instances. Running the program, I see the following output:

Main
Static field 1
Static field 2
Static constructor
Static method

Constructing 1
Non-static field 1
Non-static field 2
Constructor
Constructing 2
Non-static field 1
Non-static field 2
Constructor

Notice that both static field initializers and the static constructor run before
the call to the static method (Foo) begins. The field initializers run before
the static constructor, and as expected, they run in the order in which they
appear in the source file. Because this class includes a static constructor, we
know when static initialization will begin—it is triggered by the first use of
that type, which in this example is when our Main method calls
InitializationTestClass.Foo. You can see that it happens
immediately before that point and no earlier, because our Main method
manages to print out its first message before the static initialization occurs.
If this example did not have a static constructor, and had only static field
initializers, there would be no guarantee that static initialization would
happen at the exact same point; the C# specification allows the initialization
to happen earlier.

You need to be careful about what you do in code that runs during static
initialization: it may run earlier than you expect. For example, suppose your
program uses some sort of diagnostic logging mechanism, and you need to
configure this when the program starts in order to enable logging of
messages to the proper location. There’s always a possibility that code that
runs during static initialization could execute before you’ve managed to do
this, meaning that diagnostic logging will not yet be working correctly. That
might make problems in this code hard to debug. Even when you narrow
down C#’s options by supplying a static constructor, it’s relatively easy to
run that earlier than you intended. Use of any static member of a class will
trigger its initialization, and you can find yourself in a situation where your
static constructor is kicked off by static field initializers in some other class
that doesn’t have a static constructor—this could happen before your Main
method even starts.

You could try to fix this by initializing the logging code in its own static
initialization. Because C# guarantees to run initialization before the first use
of a type, you might think that this would ensure that the logging
initialization would complete before the static initialization of any code that
uses the logging system. However, there’s a potential problem: C#
guarantees only when it will start static initialization for any particular
class. It doesn’t guarantee to wait for it to finish. It cannot make such a
guarantee, because if it did, code such as the peculiarly British Example 3-
46 would put it in an impossible situation.

Example 3-46. Circular static dependencies
public class AfterYou
{
 static AfterYou()
 {
 Console.WriteLine("AfterYou static constructor starting");
 Console.WriteLine("AfterYou: NoAfterYou.Value = " +
NoAfterYou.Value);
 Value = 123;
 Console.WriteLine("AfterYou static constructor ending");
 }

 public static int Value = 42;
}

public class NoAfterYou
{
 static NoAfterYou()
 {
 Console.WriteLine("NoAfterYou static constructor
starting");
 Console.WriteLine("NoAfterYou: AfterYou.Value: = " +
AfterYou.Value);
 Value = 456;
 Console.WriteLine("NoAfterYou static constructor ending");
 }

 public static int Value = 42;
}

There is a circular relationship between the two types in this example: both
have static constructors that attempt to use a static field defined by the other
class. The behavior will depend on which of these two classes the program

tries to use first. In a program that uses AfterYou first, I see the following
output:

AfterYou static constructor starting
NoAfterYou static constructor starting
NoAfterYou: AfterYou.Value: = 42
NoAfterYou static constructor ending
AfterYou: NoAfterYou.Value = 456
AfterYou static constructor ending

As you’d expect, the static constructor for AfterYou runs first, because
that’s the class my program is trying to use. It prints out its first message,
but then it tries to use the NoAfterYou.Value field. That means the
static initialization for NoAfterYou now has to start, so we see the first
message from its static constructor. It then goes on to retrieve the
AfterYou.Value field, even though the AfterYou static constructor
hasn’t finished yet. (It retrieved the value set by the field initializer, 42, and
not the value set by the static constructor, 123.) That’s allowed, because the
ordering rules say only when static initialization is triggered, and they do
not guarantee when it will finish. If they tried to guarantee complete
initialization, this code would be unable to proceed—the NoAfterYou
static constructor could not move forward, because the AfterYou static
construction is not yet complete, but that couldn’t move forward, because it
would be waiting for the NoAfterYou static initialization to finish.

The moral of this story is that you should not get too ambitious about what
you try to achieve during static initialization. It can be hard to predict the
exact order in which things will happen.

TIP
The Microsoft.Extensions.Hosting NuGet package provides a much better
way to handle initialization problems with its HostBuilder class. It is beyond the
scope of this chapter, but it is well worth finding and exploring.

Deconstructors
In Chapter 2, we saw how to deconstruct a tuple into its component parts,
but deconstruction is not just for tuples. You can enable deconstruction for
any type you write by adding a suitable Deconstruct member, as shown
in Example 3-47.

Example 3-47. Enabling deconstruction
public readonly struct Size
{
 public Size(double w, double h)
 {
 W = w;
 H = h;
 }

 public void Deconstruct(out double w, out double h)
 {
 w = W;
 h = H;
 }

 public double W { get; }
 public double H { get; }
}

C# recognizes this convention of a method named Deconstruct with a
list of out arguments (the next section will describe out in more detail)
and enables you to use the same deconstruction syntax as you can with
tuples. Example 3-48 uses this to extract the component values of a Size
to enable it to express succinctly the calculation it performs.

Example 3-48. Using a custom deconstructor
static double DiagonalLength(Size s)
{
 (double w, double h) = s;
 return Math.Sqrt(w * w + h * h);
}

Types with a deconstructor can also use positional pattern matching.
Chapter 2 showed how you can use a syntax very similar to deconstruction
in a pattern to match tuples. Any type with a custom deconstructor can use

this same syntax. Example 3-49 uses the Size type’s custom deconstructor
to define various patterns for a Size in a switch expression.

Example 3-49. Positional pattern using a custom deconstructor
static string DescribeSize(Size s) => s switch
{
 (0, 0) => "Empty",
 (0, _) => "Extremely narrow",
 (double w, 0) => $"Extremely short, and this wide: {w}",
 _ => "Normal"
};

Recall from Chapter 2 that positional patterns are recursive: each position
within the pattern contains a nested pattern. Since Size deconstructs into
two elements, each positional pattern has two positions in which to put
child patterns. Example 3-49 variously uses constant patterns, a discard, and
a declaration pattern.

To use a deconstructor in a pattern, C# needs to know the type to be
deconstructed at compile time. This works in Example 3-49 because the
input to the switch expression is of type Size. If a positional pattern’s
input is of type object, the compiler will presume that you’re trying to
match a tuple instead, unless you explicitly name the type, as Example 3-50
does.

Example 3-50. Positional pattern with explicit type
static string Describe(object o) => o switch
{
 Size (0, 0) => "Empty",
 Size (0, _) => "Extremely narrow",
 Size (double w, 0) => $"Extremely short, and this wide: {w}",
 Size _ => "Normal shape",
 _ => "Not a shape"
};

If you write a record type (either class-based or a record struct)
that uses the positional syntax, i.e., it requires certain properties to be
supplied on initialization as Example 3-51 does, the compiler generates a
Deconstruct method for you. So just as with a tuple, any record
defined in this way is automatically deconstructable.

Example 3-51. record struct using positional syntax
public readonly record struct Size(double W, double H);

Although the compiler provides special handling for the Deconstruct
member that these examples rely on, from the runtime’s perspective, this is
just an ordinary method. So this would be a good time to look in more
detail at methods.

Methods
Methods are named bits of code that can optionally return a result and that
may take arguments. C# makes the fairly common distinction between
parameters and arguments: a method defines a list of the inputs it expects—
the parameters—and the code inside the method refers to these parameters
by name. The values seen by the code could be different each time the
method is invoked, and the term argument refers to the specific value
supplied for a parameter in a particular invocation.

As you’ve already seen, when an accessibility specifier, such as public or
private, is present, it appears at the start of the method declaration. The
optional static keyword comes next, where present. After that, the
method declaration states the return type. As with many C-family
languages, you can write methods that return nothing, and you indicate this
by putting the void keyword in place of the return type. Inside the method,
you use the return keyword followed by an expression to specify the
value for the method to return. In the case of a void method, you can use
the return keyword without an expression to terminate the method,
although this is optional, because when execution reaches the end of a
void method, it terminates automatically. You normally only use return
in a void method if your code decides to exit early.

Passing arguments by reference
Methods can return only one item directly in C#. If you want to return
multiple values, you can of course make that item a tuple. Alternatively, you
can designate parameters as being for output rather than input. Example 3-

52 returns two values, both produced by integer division. The main return
value is the quotient, but it also returns the remainder through its final
parameter, which has been annotated with the out keyword.

Example 3-52. Returning multiple values with out
public static int Divide(int x, int y, out int remainder)
{
 remainder = x % y;
 return x / y;
}

Because tuples were only introduced in C# 7, whereas out parameters have
been around since the start, out crops up a lot in class libraries in scenarios
where tuples might have been simpler. For example, you’ll see lots of
methods following a similar pattern to int.TryParse, in which the
return type is a bool indicating success or failure, with the actual result
being passed through an out parameter.

Example 3-53 shows one way to call a method with an out parameter.
Instead of supplying an expression as we do with arguments for normal
parameters, we’ve written the out keyword followed by a variable
declaration. This introduces a new variable, which becomes the argument
for this out parameter. So in this case, we end up with a new variable r
initialized to 1 (the remainder of the division operation).

Example 3-53. Putting an out parameter’s result into a new variable
int q = Divide(10, 3, out int r);

A variable declared in an out argument follows the usual scoping rules, so
in Example 3-53, r will remain in scope for as long as q. Less obviously, r
is available in the rest of the expression. Example 3-54 uses this to attempt
to parse some text as an integer, returning the parsed result if that succeeds
and a fallback value of –1 if parsing fails.

Example 3-54. Using an out parameter’s result in the same expression
int value = int.TryParse(text, out int x) ? x : -1;

When you pass an out argument, this works by passing a reference to the
local variable. When Example 3-53 calls Divide, and when that method
assigns a value into remainder, it’s really assigning it into the caller’s r
variable. This is an int, which is a value type, so it would not normally be
passed by reference, and this kind of reference is limited compared to what
you can do with a reference type. For example, you can’t declare a field in
a class that can hold this kind of reference, because the local r variable will
cease to exist when it goes out of scope, whereas an instance of a class can
live indefinitely in a heap block. C# has to ensure that you cannot put a
reference to a local variable in something that might outlive the variable it
refers to.

WARNING
Methods annotated with the async keyword (described in Chapter 17) cannot have any
out arguments. This is because asynchronous methods may implicitly return to their
caller before they complete, continuing their execution some time later. This in turn
means that the caller may also have returned before the async method runs again, in
which case the variables passed by reference might no longer exist by the time the
asynchronous code is ready to set them. The same restriction applies to anonymous
functions (described in Chapter 9). Both kinds of methods are allowed to pass out
arguments into methods that they call, though.

You won’t always want to declare a new variable for each out argument.
As Example 3-55 shows, you can just write out followed by the name of
an existing variable. (This was once the only way to use out arguments, so
you’ll sometimes see code that declares a new variable in a separate
statement immediately before using it as an out argument, even though the
form shown in Example 3-53 would be simpler.)

Example 3-55. Putting an out parameter’s result into an existing variable
int r, q;
q = Divide(10, 3, out r);
Console.WriteLine($"3: {q}, {r}");
q = Divide(10, 4, out r);
Console.WriteLine($"4: {q}, {r}");

6

NOTE
When invoking a method with an out parameter, we are required to indicate explicitly
that we are aware of how the method uses the argument. Regardless of whether we use
an existing variable or declare a new one, we must use the out keyword at the call site
as well as in the declaration.

Sometimes you will want to invoke a method that has an out argument that
you have no use for—maybe you only need the main return value. As
Example 3-56 shows, you can put just an underscore after the out
keyword. This tells C# to discard the result.

Example 3-56. Discarding an out parameter’s result
int q = Divide(10, 3, out _);

TIP
You should avoid using _ (a single underscore) as the name of something in C#, because
it can prevent the compiler from interpreting it as a discard. If a local variable of this
name is in scope, writing out _ has, since C# 1.0, indicated that you want to assign an
out result into that variable, so for backward compatibility, current versions of C# have
to retain that behavior. You can only use this form of discard if there is no symbol
named _ in scope.

An out reference requires information to flow from the method back to the
caller, so if you try to write a method that returns without assigning
something into all of its out arguments, you’ll get a compiler error. C#
uses the definite assignment rules mentioned in Chapter 2 to check this.
(This requirement does not apply if the method throws an exception instead
of returning.) There’s a related keyword, ref, that has similar reference
semantics but allows information to flow bidirectionally. With a ref
argument, it’s as though the method has direct access to the variable the
caller passed in—we can read its current value, as well as modify it. (The
caller is obliged to ensure that variables passed with ref contain a value
before making the call, so in this case, the method is not required to set it

before returning.) If you call a method with a parameter annotated with
ref instead of out, you have to make clear at the call site that you meant
to pass a reference to a variable as the argument, as Example 3-57 shows.

Example 3-57. Calling a method with a ref argument
long x = 41;
Interlocked.Increment(ref x);

There’s a third way to add a level of indirection to an argument: you can
apply the in keyword. Whereas out only enables information to flow out
of the method, in only allows it to flow in. It’s like a ref argument but
where the called method is not allowed to modify the variable the argument
refers to. This may seem redundant: if there’s no way to pass information
back through the argument, why pass it by reference? An in int
argument doesn’t sound usefully different than an ordinary int argument.
In fact, you wouldn’t use in with int. You only use it with relatively large
types. As you know, value types are normally passed by value, meaning a
copy has to be made when passing a value as an argument. The in keyword
enables us to avoid this copy by passing a reference instead. In the past,
people have sometimes used the ref keyword to avoid making copies of
data, but this creates a risk that the method might modify the value when
the caller might not want that. C# 7.2 introduced in, giving us the same in-
only semantics we get when passing values the normal way but with the
potential efficiency gains of not having to pass the whole value.

You should only use in for types that are larger than a pointer. This is why
in int is not useful. An int is 32 bits long, so passing a reference to an
int doesn’t save us anything. In a 32-bit process, that reference will be a
32-bit pointer, so we have saved nothing, and we end up with the slight
extra inefficiency involved in using a value indirectly through a reference.
In a 64-bit process, the reference will be a 64-bit pointer, so we’ve ended up
having to pass more data into the method than we would have done if we
had just passed the int directly! (Sometimes the CLR can inline the
method and avoid the costs of creating the pointer, but this means that at

best in int would cost the same as an int. And since in is purely about
performance, that’s why in is not useful for small types such as int.)

Example 3-58 defines a fairly large value type. It contains four double
values, each of which is 8 bytes in size, so each instance of this type
occupies 32 bytes. The .NET design guidelines have always recommended
avoiding making value types this large, and the main reason for this is that
passing them as arguments is inefficient. Older versions of C# did not
support this use of the in keyword, making this guideline more important,
but now that in can reduce those costs, in some cases it might make sense
to define a struct this large.

Example 3-58. A large value type
public readonly record struct Rect(double X, double Y, double
Width, double Height);

Example 3-59 shows a method that calculates the area of a rectangle
represented by the Rect type defined in Example 3-58. We really wouldn’t
want to have to copy all 32 bytes to call this very simple method, especially
since it only uses half of the data in the Rect. Since this method annotates
its parameter with in, no such copying will occur: the argument will be
passed by reference, which in practice means that only a pointer needs to be
passed—either 4 or 8 bytes, depending on whether the code is running in a
32-bit or a 64-bit process.

Example 3-59. A method with an in parameter
public static double GetArea(in Rect r) => r.Width * r.Height;

You might expect that calling a method with in parameters would require
the call site to indicate that it knows that the argument will be passed by
reference by putting in in front of the argument, just like we need to write
out or ref at the call site for the other two by-reference styles. And as
Example 3-60 shows, you can do this, but it is optional. If you want to be
explicit about the by-reference invocation, you can be, but unlike with ref
and out, the compiler just passes the argument by reference anyway if you
don’t add in.

Example 3-60. Calling a method with an in parameter
var r = new Rect(10, 20, 100, 100);
double area = GetArea(in r);
double area2 = GetArea(r);

The in keyword is optional at the call site because defining such a
parameter as in is only a performance optimization that does not change
the behavior, unlike out and ref. Microsoft wanted to make it possible for
developers to introduce a source-level-compatible change in which an
existing method is modified by adding in to a parameter. This is a breaking
change at the binary level, but in scenarios where you can be sure people
will in any case need to recompile (e.g., when all the code is under your
control), it might be useful to introduce such a change for performance
reasons. Of course, as with all such enhancements you should measure
performance before and after the change to see if it has the intended effect.

Although the examples just shown work as intended, in sets a trap for the
unwary. It works only because I marked the struct in Example 3-58 as
readonly. If instead of defining my own Rect I had used the very
similar-looking struct with the same name from the System.Windows
namespace (part of the WPF UI framework), Example 3-60 would not avoid
the copy. It would have compiled and produced the correct results at
runtime, but it would not offer any performance benefit. That’s because
System.Windows.Rect is not read-only. Earlier, I discussed the
defensive copies that C# makes when you use a readonly field
containing a mutable value type. The same principle applies here, because
an in argument is in effect read-only: code that passes arguments expects
them not to be modified unless they are explicitly marked as out or ref.
So the compiler must ensure that in arguments are not modified even
though the method being called has a reference to the caller’s variable.
When the type in question is already read-only, the compiler doesn’t have to
do any extra work. But if it is a mutable value type, then if the method to
which this argument was passed in turn invokes a method on that value, the
compiler generates code that makes a copy and invokes the method on that,
because it can’t know whether the method might modify the value. You

might think that the compiler could enforce this by preventing the method
with the in parameter from doing anything that might modify the value,
but in practice that would mean stopping it from invoking any methods on
the value—the compiler cannot in general determine whether any particular
method call might modify the value. (And even if it doesn’t today, maybe it
will in a future version of the library that defines the type.) Since properties
are methods in disguise, this makes in arguments more or less useless
when used with mutable types.

TIP
You should use in only with readonly value types, because mutable value types can
undo the performance benefits. (Mutable value types are typically a bad idea in any
case.)

C# offers a feature that can loosen this constraint a little. It allows the
readonly keyword to be applied to members so that they can declare that
they will not modify the value of which they are a member. This makes it
possible to avoid these defensive copies on mutable values.

You can use the out and ref keywords with reference types too. That may
sound redundant, but it can be useful. It provides double indirection—the
method receives a reference to a variable that holds a reference. When you
pass a reference type argument to a method, that method gets access to
whatever object you choose to pass it. While the method can use members
of that object, it can’t normally replace it with a different object. But if you
mark a reference type argument with ref, the method has access to your
variable, so it could replace it with a reference to a completely different
object.

It’s technically possible for constructors to have out and ref parameters
too, although it’s unusual. Also, just to be clear, the out or ref qualifiers
are part of the method or constructor signature. A caller can pass an out (or
ref) argument if and only if the parameter was declared as out (or ref).

Callers can’t decide unilaterally to pass an argument by reference to a
method that does not expect it.

Reference variables and return values
Now that you’ve seen various ways in which you can pass a method a
reference to a value (or a reference to a reference), you might be wondering
whether you can get hold of these references in other ways. You can, as
Example 3-61 shows, but there are some constraints.

Example 3-61. A local ref variable
string rose = null;
ref string rosaIndica = ref rose;
rosaIndica = "smell as sweet";
Console.WriteLine($"A rose by any other name would {rose}");

This example declares a variable called rose. It then declares a new
variable of type ref string. The ref here has exactly the same effect
as it does on a method parameter: it indicates that this variable is a
reference to some other variable. Since the code initializes it with ref
rose, the variable rosaIndica is a reference to that rose variable. So
when the code assigns a value into rosaIndica, that value goes into the
rose variable that rosaIndica refers to. When the final line reads the
value of the rose variable, it will see the value that was written by the
preceding line.

So what are the constraints? C# has to ensure that you cannot put a
reference to a local variable in something that might outlive the variable it
refers to. So you cannot use this keyword on a field. Static fields live for as
long as their defining type is loaded (typically until the process exits), and
member fields of classes live on the heap enabling them to outlive any
particular method call. (This is also true of most structs. It is not true of a
ref struct, but even those do not currently support the ref keyword
on a field.) And even in cases where you might think lifetime isn’t a
problem (because the target of the reference is itself a field in an object, for
example), it turns out that the runtime simply doesn’t support storing this
kind of reference in a field, or as an element type in an array. More subtly,

this also means you can’t use a ref local variable in a context where C#
would store the variable in a class. That rules out their use in async
methods and iterators and also prevents them being captured by anonymous
functions (which are described in Chapters 17, 5, and 9, respectively).

Although types cannot define fields with ref, they can define methods that
return a ref-style reference (and since properties are methods in disguise, a
property getter may also return a reference). As always, the C# compiler has
to ensure that a reference cannot outlive the thing it refers to, so it will
prevent use of this feature in cases where it cannot be certain that it can
enforce this rule. Example 3-62 shows various uses of ref return types,
some of which the compiler accepts, and some it does not.

Example 3-62. Valid and invalid uses of ref returns
public class Referable
{
 private int i;
 private int[] items = new int[10];

 public ref int FieldRef => ref i;

 public ref int GetArrayElementRef(int index) => ref
items[index];

 public ref int GetBackSameRef(ref int arg) => ref arg;

 public ref int WillNotCompile()
 {
 int v = 42;
 return ref v;
 }

 public ref int WillAlsoNotCompile()
 {
 int i = 42;
 return ref GetBackSameRef(ref i);
 }

 public ref int WillCompile(ref int i)
 {
 return ref GetBackSameRef(ref i);
 }
}

The methods that return a reference to an int that is a field, or an element
in an array, are allowed, because ref-style references can always refer to
items inside objects on the heap. (They just can’t live in them.) Heap
objects can exist for as long as they are needed (and the garbage collector,
discussed in Chapter 7, is aware of these kinds of references and will ensure
that heap objects with references pointing to their interiors are kept alive). A
method can return any of its ref arguments, because the caller was already
required to ensure that they remain valid for the duration of the call.
However, a method cannot return a reference to one of its local variables,
because in cases where those variables end up living on the stack, the stack
frame will cease to exist when the method returns. It would be a problem if
a method could return a reference to a variable in a now-defunct stack
frame.

The rules get a little more subtle when it comes to returning a reference that
was obtained from some other method. The final two methods in Example
3-62 both attempt to return the reference returned by GetBackSameRef.
One works, and the other does not. The outcome makes sense:
WillAlsoNotCompile needs to be rejected for the same reason
WillNotCompile was: both attempt to return a reference to a local
variable, and WillAlsoNotCompile is just trying to disguise this by
going through another method, GetBackSameRef. In cases like these, the
C# compiler makes the conservative assumption that any method that
returns a ref and that also takes one or more ref arguments might choose
to return a reference to one of those arguments. So the compiler disallows
the call to GetBackSameRef in WillAlsoNotCompile on the
grounds that it might return a reference to the same local variable that was
passed in by reference. (And it happens to be right in this case. But it would
reject any call of this form even if the method in question returned a
reference to something else entirely.) But it allows WillCompile to
return the ref returned by GetBackSameRef because in that case, the
reference we pass in is one we would be allowed to return directly.

As with in arguments, the main reason for using ref returns is that they
can enable greater runtime efficiency by avoiding copies. Instead of

returning the entire value, methods of this kind can just return a pointer to
the existing value. It also has the effect of enabling callers to modify
whatever is referred to. For example, in Example 3-62, I can assign a value
into the FieldRef property, even though the property appears to be read-
only. The absence of a setter doesn’t matter in this case because its type is
ref int, which is valid as the target of an assignment. So by writing
r.FieldRef = 42; (where r is of type Referable), I get to modify
the i field. Likewise, the reference returned by GetArrayElementRef
can be used to modify the relevant element in the array. If this is not your
intention, you can make the return type ref readonly instead of just
ref. In this case, the compiler will not allow the resulting reference to be
used as the target of an assignment.

TIP
You should only use ref readonly returns with a readonly struct, because
otherwise you will run into the same defensive copy issues we saw earlier.

Optional arguments
You can make non-out, non-ref arguments optional by defining default
values. The method in Example 3-63 specifies the values that the arguments
should have if the caller doesn’t supply them.

Example 3-63. A method with optional arguments
public static void Blame(string perpetrator = "the youth of today",
 string problem = "the downfall of society")
{
 Console.WriteLine($"I blame {perpetrator} for {problem}.");
}

This method can then be invoked with no arguments, one argument, or both
arguments. Example 3-64 just supplies the first, taking the default for the
problem argument.

Example 3-64. Omitting one argument
Blame("mischievous gnomes");

Normally, when invoking a method, you specify the arguments in order.
However, what if you want to call the method in Example 3-63, but you
want to provide a value only for the second argument, using the default
value for the first? You can’t just leave the first argument empty—if you
tried to write Blame(, "everything"), you’d get a compiler error.
Instead, you can specify the name of the argument you’d like to supply,
using the syntax shown in Example 3-65. C# will fill in the arguments you
omit with the specified default values.

Example 3-65. Specifying an argument name
Blame(problem: "everything");

Obviously, you can omit arguments like this only when you’re invoking
methods that define default argument values. However, you are free to
specify argument names when invoking any method—sometimes it can be
useful to do this even when you’re not omitting any arguments, because it
can make it easier to see what the arguments are for when reading the code.
This is particularly helpful if you’re faced with an API that takes arguments
of type bool and it’s not immediately clear what they mean. Example 3-66
constructs a StreamReader and a StreamWriter (described in
Chapter 15), each using constructors taking many arguments. It’s arguably
clear enough what the stream, filepath, and the Encoding.UTF8
arguments represent, but the others are likely to be something of a mystery
to anyone reading the code, unless they happen to have committed all 13
StreamReader and 10 StreamWriter constructor overloads to
memory. (The using declaration syntax shown here is described in Chapter
7.)

Example 3-66. Unclear arguments
using var r = new StreamReader(stream, Encoding.UTF8, true, 8192,
false);
using var w = new StreamWriter(filepath, true, Encoding.UTF8);

Although argument names are not required here, we can make it much
easier to understand what the code does by including some anyway. As
Example 3-67 shows, we’re free just to name the more cryptic ones, as long
as we’re supplying arguments for all of the parameters.

Example 3-67. Improving clarity by naming arguments
using var r = new StreamReader(stream, Encoding.UTF8,
 detectEncodingFromByteOrderMarks: true, bufferSize: 8192,
leaveOpen: false);
using var w = new StreamWriter(filepath, append: true,
Encoding.UTF8);

It’s important to understand how C# implements default argument values
because it has an impact on evolving library design. When you invoke a
method without providing all the arguments, as Example 3-65 does, the
compiler generates code that passes a full set of arguments as normal. It
effectively rewrites your code, adding back in the arguments you left out.
The significance of this is that if you write a library that defines default
argument values like this, you will run into problems if you ever change the
defaults. Code that was compiled against the old version of the library will
have copied the old defaults into the call sites and won’t pick up the new
values unless it is recompiled.

Overloading
You will sometimes see an alternative mechanism used for allowing
arguments to be omitted, which avoids baking default values into call sites:
overloading. This is a slightly histrionic term for the rather mundane idea
that a single name or symbol can be given multiple meanings. In fact, we
already saw this technique with constructors—in Example 3-42, I defined
one main constructor that did the real work, and then two other constructors
that called into that one. We can use the same trick with methods, as
Example 3-68 shows.

Example 3-68. Overloaded method
public static void Blame(string perpetrator, string problem)
{
 Console.WriteLine($"I blame {perpetrator} for {problem}.");
}

public static void Blame(string perpetrator)
{
 Blame(perpetrator, "the downfall of society");
}

public static void Blame()
{
 Blame("the youth of today", "the downfall of society");
}

In one sense, this is slightly less flexible than default argument values,
because code calling the Blame method no longer has any way to specify a
value for the problem argument while picking up the default
perpetrator (although it would be easy enough to solve that by just
adding a method with a different name). On the other hand, method
overloading offers two potential advantages: it allows you to decide on the
default values at runtime if necessary, and it also provides a way to make
out and ref arguments optional. Those require references to local
variables, so there’s no way to define a default value, but you can always
provide overloads with and without those arguments if you need to. And
you can use a mixture of the two techniques—you might rely mainly on
optional arguments, using overloads only to enable out or ref arguments
to be omitted.

Variable argument count with the params keyword
Some methods need to be able to accept different amounts of data in
different situations. Take the mechanism that I’ve used a few times in this
book to display information. In most cases, I’ve passed a simple string to
Console.WriteLine, and when I’ve wanted to format and display
other pieces of information, I’ve used string interpolation to embed
expressions in strings. However, as you may recall from Chapter 2, in cases
where we want to embed a large number of expressions into a string, string
interpolation can become unwieldy, and it might be preferable instead to
use the older string.Format method, shown in Example 3-69.

Example 3-69. String formatting
var r = new Random();
Console.WriteLine(string.Format(
 "{0}, {1}, {2}, {3}",
 r.Next(10), r.Next(10), r.Next(10), r.Next(10)));

If you look at the documentation for string.Format, you’ll see that it
offers several overloads taking various numbers of arguments. The number
of overloads has to be finite, but if you try it, you’ll find that this is
nonetheless an open-ended arrangement. You can pass as many arguments
as you like after the string, and the numbers in the placeholders can go as
high as necessary to refer to these arguments. The final line of Example 3-
69 passes four arguments after the string, and even though the string
class does not define an overload accepting that many arguments, it works.

One particular overload of the string.Format method takes over once
you pass more than a certain number of arguments after the string (more
than three, as it happens). This overload just takes two arguments: a
string and an object[] array. The code that the compiler creates to
invoke the method builds an array to hold all the arguments after the string
and passes that. So the final statement of Example 3-69 is effectively
equivalent to the code in Example 3-70. (Chapter 5 describes arrays.)

Example 3-70. Explicitly passing multiple arguments as an array
Console.WriteLine(string.Format(
 "{0}, {1}, {2}, {3}",
 new object[] { r.Next(10), r.Next(10), r.Next(10), r.Next(10)
}));

The compiler will do this only with parameters that are annotated with the
params keyword. Example 3-71 shows how the relevant
string.Format method’s declaration looks.

Example 3-71. The params keyword
public static string Format(string format, params object[] args)

The params keyword can appear only on a method’s final parameter, and
that parameter type must be an array. In this case, it’s an object[],
meaning that we can pass objects of any type, but you can be more specific
to limit what can be passed in.

NOTE
When a method is overloaded, the C# compiler looks for the method whose parameters
best match the arguments supplied. It will consider using a method with a params
argument only if a more specific match is not available.

You may be wondering why the string class bothers to offer overloads
that accept one, two, or three object arguments. The presence of this
params version seems to make those redundant—it lets you pass any
number of arguments after the string, so what’s the point of the ones that
take a specific number of arguments? Those overloads exist to make it
possible to avoid allocating an array. That’s not to say that arrays are
particularly expensive; they cost no more than any other object of the same
size. However, allocating memory is not free. Every object you allocate will
eventually have to be freed by the garbage collector (except for objects that
hang around for the whole life of the program), so reducing the number of
allocations is usually good for performance. Because of this, most APIs in
the runtime libraries that accept a variable number of arguments through
params also offer overloads that allow a small number of arguments to be
passed without needing to allocate an array to hold them.

Local functions
You can define methods inside other methods. These are called local
functions, and Example 3-72 defines two of them. (You can also put them
inside other method-like features, such as constructors or property
accessors.)

Example 3-72. Local functions
static double GetAverageDistanceFrom(
 (double X, double Y) referencePoint,
 (double X, double Y)[] points)
{
 double total = 0;
 for (int i = 0; i < points.Length; ++i)
 {
 total += GetDistanceFromReference(points[i]);

 }
 return total / points.Length;

 double GetDistanceFromReference((double X, double Y) p)
 {
 return GetDistance(p, referencePoint);
 }

 static double GetDistance((double X, double Y) p1, (double X,
double Y) p2)
 {
 double dx = p1.X - p2.X;
 double dy = p1.Y - p2.Y;
 return Math.Sqrt(dx * dx + dy * dy);
 }
}

One reason for using local functions is that they can make the code easier to
read by moving steps into named methods—it’s easier to see what’s
happening when there’s a method call to GetDistance than it is if we
just have the calculations inline. Be aware that there can be overheads,
although in this particular example, when I run the Release build of this
code on .NET 6.0, the JIT compiler is smart enough to inline both of the
local calls here, so the two local functions vanish, and Get Ave ra ge
Dis tan ceF rom ends up being just one method. So we’ve paid no penalty
here, but with more complex nested functions, the JIT compiler may decide
not to inline. And when that happens, it’s useful to know how the C#
compiler enables this code to work.

The GetDistanceFromReference method here takes a single tuple
argument, but it uses the referencePoint variable defined by its
containing method. For this to work, the C# compiler moves that variable
into a generated struct, which it passes by reference to the
GetDistanceFromReference method as a hidden argument. This is
how a single local variable can be accessible to both methods. Since this
generated struct is passed by reference, the referencePoint
variable can still remain on the stack in this example. However, if you
obtain a delegate referring to a local method, any variables shared in this
way have to move into a class that lives on the garbage-collected heap,

which will have higher overheads. (See Chapters 7 and 9 for more details.)
If you want to avoid any such overheads, you can always just not share any
variables between the inner and outer methods. You can tell the compiler
that this is your intention by applying the static keyword to the local
function, as Example 3-72 does with GetDistance. This will cause the
compiler to report an error if the method attempts to use a variable from its
containing method.

Besides providing a way to split methods up for readability, local functions
are sometimes used to work around some limitations with iterators (see
Chapter 5) and async methods (Chapter 17). These are methods that might
return partway through execution and then continue later, which means the
compiler needs to arrange to store all of their local variables in an object
living on the heap so that those variables can survive for as long as is
required. This prevents these kinds of methods from declaring variables of
certain types, such as reference variables, or Span<T> (described in
Chapter 18). In cases where you need to use both async and Span<T>, it
is common to move code using the latter into a local, non-async function
that lives inside the async function. This enables the local function to use
local variables with these constrained types.

Expression-bodied methods
If you write a method simple enough to consist of nothing more than a
single return statement, you can use a more concise syntax. Example 3-73
shows an alternative way to write the GetDistanceFromReference
method from Example 3-72. (If you’re reading this book in order, you’ve
probably noticed that I’ve already used this in a few other examples.) By
the way, I can’t do this for GetDistance because that contains multiple
statements.

Example 3-73. An expression-bodied method
double GetDistanceFromReference((double X, double Y) p)
 => GetDistance(p, referencePoint);

Instead of a method body, you write => followed by the expression that
would otherwise have followed the return keyword. This => syntax
intentionally resembles the lambda syntax you can use for writing inline
functions and building expression trees. These are discussed in Chapter 9.
But when using => to write an expression-bodied member, it’s just a
convenient shorthand. The code works exactly as if you had written a full
method containing just a return statement.

Extension methods
C# lets you write methods that appear to be new members of existing types.
Extension methods, as they are called, look like normal static methods but
with the this keyword added before the first parameter. You are allowed
to define extension methods only in a static class. Example 3-74 adds a not
especially useful extension method to the string, called Show.

Example 3-74. An extension method
namespace MyApplication;

public static class StringExtensions
{
 public static void Show(this string s)
 {
 Console.WriteLine(s);
 }
}

I’ve shown the namespace declaration in this example because namespaces
are significant: extension methods are available only if you’ve written a
using directive for the namespace in which the extension is defined, or if
the code you’re writing is defined in the same namespace. In code that does
neither of these things, the string class will look normal and will not
acquire the Show method defined by Example 3-74. However, code such as
Example 3-75, which is defined in the same namespace as the extension
method, will find that the method is available.

Example 3-75. Extension method available due to namespace declaration
namespace MyApplication;

internal class Showy
{
 public static void Greet()
 {
 "Hello".Show();
 }
}

The code in Example 3-76 is in a different namespace, but it also has access
to the extension method, thanks to a using directive.

Example 3-76. Extension method available due to using directive
using MyApplication;

namespace Other;

internal class Vocal
{
 public static void Hail()
 {
 "Hello".Show();
 }
}

Extension methods are not really members of the class for which they are
defined—the string class does not truly gain an extra method in these
examples. It’s just an illusion maintained by the C# compiler, one that it
keeps up even in situations where method invocation happens implicitly.
This is particularly useful with C# features that require certain methods to
be available. In Chapter 2, you saw that foreach loops depend on a
GetEnumerator method. Many of the LINQ features we’ll look at in
Chapter 10 also depend on certain methods being present, as do the
asynchronous language features described in Chapter 17. In all cases, you
can enable these language features for types that do not support them
directly by writing suitable extension methods.

Properties
Classes and structs can define properties, which are really just methods in
disguise. To access a property, you use a syntax that looks like field access

but ends up invoking a method. Properties can be useful for signaling
intent. When something is exposed as a property, the implication is that it
represents information about the object, rather than an operation the object
performs, so reading a property is usually inexpensive and should have no
significant side effects. Methods, on the other hand, are more likely to cause
an object to do something.

Of course, since properties are just a kind of method, nothing enforces this.
You are free to write a property that takes hours to run and makes
significant changes to your application’s state whenever its value is read,
but that would be a pretty lousy way to design code.

Properties typically provide a pair of methods: one to get the value and one
to set it. Example 3-77 shows a very common pattern: a property with get
and set methods that provide access to a field. Why not just make the field
public? That’s often frowned upon, because it makes it possible for external
code to change an object’s state without the object knowing about it. It
might be that in future revisions of the code, the object needs to do
something—perhaps update the UI—every time the value changes. In any
case, because properties contain code, they offer more flexibility than
public fields. For example, you might want to store the data in a different
format than is returned by the property, or you may even be able to
implement a property that calculates its value from other properties.
Another reason for using properties is simply that some systems require it—
for example, some UI databinding systems are only prepared to consume
properties. Also, some types do not support instance fields; later in this
chapter, I’ll show how to define an abstract type using an interface, and
interfaces can contain properties but not instance fields.

Example 3-77. Class with simple property
public class HasProperty
{
 private int _x;
 public int X
 {
 get
 {
 return _x;

 }
 set
 {
 _x = value;
 }
 }
}

NOTE
Inside a set accessor, value has a special meaning. It’s a contextual keyword—text
that the language treats as a keyword in certain contexts. Outside of a property, you can
use value as an identifier, but within a property, it represents the value that the caller
wants to assign to the property.

In cases where the entire body of the get is just a return statement, or
where the set is a single expression statement, you can use the expression-
bodied member syntax shown in Example 3-78. (This is very similar to the
method syntax shown in Example 3-73.)

Example 3-78. Expression-bodied get and set
public class HasProperty
{
 private int _x;
 public int X
 {
 get => _x;
 set => _x = value;
 }
}

The pattern in Examples 3-77 and 3-78 is so common that C# can write
most of it for you. Example 3-79 is more or less equivalent—the compiler
generates a field for us and produces get and set methods that retrieve
and modify the value just like those in Example 3-77. The only difference is
that code elsewhere in the same class can’t get directly at the field in
Example 3-79, because the compiler hides it. The official name in the
language specification for this is an automatically implemented property,
but these are typically referred to as just auto-properties.

Example 3-79. An auto-property
public class HasProperty
{
 public int X { get; set; }
}

Whether you use explicit or automatic properties, this is just a fancy syntax
for a pair of methods. The get method returns a value of the property’s
declared type—an int, in this case—while the setter takes a single
argument of that type through the implicit value parameter. Example 3-77
makes use of that argument to update the field. You’re not obliged to store
the value in a field, of course. In fact, nothing even forces you to make the
get and set methods related in any way—you could write a getter that
returns random values and a setter that completely ignores the value you
supply. However, just because you can doesn’t mean you should. In
practice, anyone using your class will expect properties to remember the
values they’ve been given, not least because in use, properties look just like
fields, as Example 3-80 shows.

Example 3-80. Using a property
var o = new HasProperty();
o.X = 123;
o.X += 432;
Console.WriteLine(o.X);

If you’re using the full syntax shown in Example 3-77 to implement a
property, or the expression-bodied form shown in Example 3-78, you can
leave out either the set or the get to make a read-only or write-only
property. Read-only properties can be useful for aspects of an object that are
fixed for its lifetime, such as an identifier, or that are calculated from other
properties. Write-only properties are less useful, although they can crop up
in dependency injection systems. You can’t make a write-only property with
the auto-property syntax shown in Example 3-79, because you wouldn’t be
able to do anything useful with the value being set.

There are two variations on read-only properties. Sometimes it is useful to
have a property that is publicly read-only but that your class is free to
change. You can define a property where the getter is public but the setter is

not (or vice versa for a write-only property). You can do this with either the
full or the automatic syntax. Example 3-81 shows how this looks with the
latter.

Example 3-81. Auto-property with private setter
public int X { get; private set; }

If you want your property to be read-only in the sense that its value never
changes after construction, you can leave out the setter entirely when using
the auto-property syntax, as Example 3-82 shows.

Example 3-82. Auto-property with no setter
public int X { get; }

With no setter and no directly accessible field, you may be wondering how
you can set the value of such a property. The answer is that inside your
object’s constructor, the property appears to be settable. (There isn’t really a
setter if you omit the set—the compiler generates code that just sets the
backing field directly when you “set” the property in the constructor.) A get-
only auto-property is effectively equivalent to a readonly field wrapped
with an ordinary get-only property. As with fields, you can also write an
initializer to provide an initial value. Example 3-83 uses both styles; if you
use the constructor that takes no arguments, the property’s value will be 42,
and if you use the other constructor, it will have whatever value you supply.

Example 3-83. Initializing an auto-property with no setter
public class WithAutos
{
 public int X { get; } = 42;

 public WithAutos()
 {
 }

 public WithAutos(int val)
 {
 X = val;
 }
}

This initializer syntax works for read-write properties, by the way. You can
also use it if you want to create a record type that uses the positional
syntax but that wants the properties to be writable, as Example 3-84 shows.
This is slightly unusual, since the features offered by record types are
mainly intended to make it easier to define immutable data types. But
mutability is supported, and it can be useful to require certain properties to
be initialized even when they are writable, to avoid the nullable reference
type system complaining that your non-nullable property might initially
have a null value.

Example 3-84. Record requiring initial values but allowing later
modification
public record EnforcedInitButMutable(string Name, string
FavoriteColor)
{
 public string Name { get; set; } = Name;
 public string FavoriteColor { get; set; } = FavoriteColor;
}

Since the positional syntax is ultimately just a way to define a constructor,
you might be tempted in cases like Example 3-84 to use more
conventionally cased names for the constructor arguments, e.g., name and
favoriteColor. But the effect of that would be to create a record with
four properties: name, Name, favoriteColor, and FavoriteColor.
If you use the positional syntax, your record type will have all of the
properties named in that syntax. It might look here like we’ve defined the
same properties twice, but in fact the duplicate names are how C# knows
that we are just saying we want something other than the normal generated
properties here.

There’s a variation on the theme of read-only properties shown in Example
3-85. In place of the set, we have the init keyword. (This is how
properties generated in a record type due to the positional syntax look if you
don’t customize them, by the way.)

Example 3-85. Class with auto-property with init-only setter
public class WithInit
{

 public int X { get; init; }
}

This is almost identical to a read-only property: it indicates that the property
is not to be modified after the object is initialized. However, there’s one
significant difference: the compiler generates a public setter when you use
this syntax. It refuses to compile code that attempts to modify the property
after the object has been initialized, so for most scenarios it behaves just
like a read-only property, but this enables one critical scenario: it lets you
set the property in an object initializer. I’ll be describing object initializers
in full later, but Example 3-86 shows a simple example.

Example 3-86. Setting an init-only property
var x = new WithInit
{
 X = 42
};

This is the one extra place you can use an init-only property—besides this
you can only set them in places where it would also be permissible to set a
read-only property.

WARNING
The restrictions on init-only properties are enforced only by the compiler. From the
CLR’s perspective, they are read-write properties, meaning that if you were to use this
sort of property from some language that did not recognize this init-only feature (which
was new in C# 9.0), or using indirect means such as reflection (see Chapter 13), it
would be able to set the property at any time, not just during initialization.

Init-only properties provide a way to enable immutable struct types to
use the same with syntax that is available to record types. Example 3-87
shows another variation on the Point type used in various earlier
examples, this time featuring init-only properties.

Example 3-87. A readonly struct with init-only properties
public readonly struct Point
{

 public Point(double x, double y)
 {
 X = x;
 Y = y;
 }

 public double X { get; init; }
 public double Y { get; init; }
}

This defines setters for the properties, which would normally not be
allowed with a readonly struct, but because they can be set only
during initialization, they don’t cause a problem here. And they enable code
such as Example 3-88.

Example 3-88. Using the with syntax on a nonrecord readonly
struct
Point p1 = new(0, 10);
Point p2 = p1 with { X = 20 };

NOTE
Since you can use the with syntax with a nonrecord struct, you might be wondering
whether it also works for a nonrecord class. It doesn’t. The with keyword depends
on the ability to create a copy of an existing instance. This is not a problem with
struct types—their defining feature is that they can be copied. But there is no reliable
general-purpose way to clone an instance of a class, so with reference types, with
only works on records, because record types are reliably cloneable.

Sometimes it is useful to write a read-only property with a value calculated
entirely in terms of other properties. For example, if you have written a type
representing a vector with properties called X and Y, you could add a
property that returns the magnitude of the vector, calculated from those
other two properties, as shown in Example 3-89.

Example 3-89. A calculated property
public double Magnitude
{
 get

 {
 return Math.Sqrt(X * X + Y * Y);
 }
}

There is a more compact way of writing this. We could use the expression-
bodied syntax shown in Example 3-78, but for a read-only property, we can
go one step further: you can put the => and expression directly after the
property name. (This enables us to leave out the braces and the get
keyword.) Example 3-90 is exactly equivalent to Example 3-89.

Example 3-90. An expression-bodied read-only property
public double Magnitude => Math.Sqrt(X * X + Y * Y);

Speaking of read-only properties, there’s an important issue to be aware of
involving properties, value types, and immutability.

Properties and mutable value types
As I mentioned earlier, value types tend to be more straightforward if
they’re immutable, but it’s not a requirement. One reason to avoid
modifiable value types is that you can end up accidentally modifying a copy
of the value rather than the one you meant, and this issue becomes apparent
if you define a property that uses a mutable value type. The Point struct in
the System.Windows namespace is modifiable, so we can use it to
illustrate the problem. Example 3-91 defines a Location property of this
type.

Example 3-91. A property using a mutable value type
using System.Windows;

public class Item
{
 public Point Location { get; set; }
}

The Point type defines read/write properties called X and Y, so given a
variable of type Point, you can set these properties. However, if you try to
set either of these properties via another property, the code will not compile.

Example 3-92 tries this—it attempts to modify the X property of a Point
retrieved from an Item object’s Location property.

Example 3-92. Error: cannot modify a property of a value type property
var item = new Item();
item.Location.X = 123; // Will not compile

This example produces the following error:

error CS1612: Cannot modify the return value of 'Item.Location'
because it is
not a variable

C# considers fields to be variables as well as local variables and method
arguments, so if we were to modify Example 3-91 so that Location was a
public field rather than a property, Example 3-92 would then compile and
would work as expected. But why doesn’t it work with a property?
Remember that properties are just methods, so Example 3-91 is more or less
equivalent to Example 3-93.

Example 3-93. Replacing a property with methods
using System.Windows;

public class Item
{
 private Point _location;
 public Point get_Location()
 {
 return _location;
 }
 public void set_Location(Point value)
 {
 _location = value;
 }
}

Since Point is a value type, get_Location returns a copy. You might
be wondering if we could use the ref return feature described earlier. We
certainly could with plain methods, but there are a couple of constraints to
doing this with properties. First, you cannot define an auto-property with a
ref type. Second, you cannot define a writable property with a ref type.

However, you can define a read-only ref property, as Example 3-94
shows.

Example 3-94. A property returning a reference
using System.Windows;

public class Item
{
 private Point _location;

 public ref Point Location => ref _location;
}

With this implementation of Item, the code in Example 3-92 now works
fine. (Ironically, to make the property modifiable, we had to turn it into a
read-only property.)

Before ref returns were added in C# 7.0, there was no way to make this
work. All possible implementations of the property would end up returning
a copy of the property value, so if the compiler did allow Example 3-92 to
compile, we would be setting the X property on the copy returned by the
property, and not the actual value in the Item object that the property
represents. Example 3-95 makes this explicit, and it will in fact compile—
the compiler will let us shoot ourselves in the foot if we make it sufficiently
clear that we really want to. And with this version of the code, it’s quite
obvious that this will not modify the value in the Item object.

Example 3-95. Making the copy explicit
var item = new Item();
Point location = item.Location;
location.X = 123;

However, with the property implementation in Example 3-94, the code in
Example 3-92 does compile and ends up behaving like the code shown in
Example 3-96. Here we can see that we’ve retrieved a reference to a
Point, so when we set its X property, we’re acting on whatever that refers
to (the _location field in the Item in this case), rather than a local
copy.

Example 3-96. Making the reference explicit
var item = new Item();
ref Point location = ref item.Location;
location.X = 123;

Thanks to fairly recent additions to the language, it’s possible to make it
work, although there is arguably a loss of encapsulation here: the behavior
is now more or less equivalent to defining a public field. It’s also easy to get
it wrong. Fortunately, most value types are immutable, and this problem
arises only with mutable value types.

NOTE
Immutability doesn’t exactly solve the problem—you still can’t write the code you
might want to, such as item.Location.X = 123. But at least immutable structs
don’t mislead you by making it look like you should be able to do that.

Since all properties are really just methods (typically in pairs), in theory
they could accept more arguments in addition to the implicit value
argument used by set methods. The CLR allows this, but C# does not
support it except for one special kind of property: an indexer.

Indexers
An indexer is a property that takes one or more arguments and is accessed
with the same syntax as is used for arrays. This is useful when you’re
writing a class that contains a collection of objects. Example 3-97 uses one
of the collection classes provided by the runtime libraries, List<T>. It is
essentially a variable-length array, and it feels like a native array thanks to
its indexer, used on the second and third lines. (I’ll describe arrays and
collection types in detail in Chapter 5. And I’ll describe generic types, of
which List<T> is an example, in Chapter 4.)

Example 3-97. Using an indexer
var numbers = new List<int> { 1, 2, 1, 4 };
numbers[2] += numbers[1];
Console.WriteLine(numbers[0]);

From the CLR’s point of view, an indexer is a property much like any other,
except that it has been designated as the default property. This concept is a
holdover from the old COM-based versions of Visual Basic that got carried
over into .NET, and that C# mostly ignores. Indexers are the only C#
feature that treats default properties as being special. If a class designates a
property as being the default one, and if the property accepts at least one
argument, C# will let you use that property through the indexer syntax.

The syntax for declaring indexers is somewhat idiosyncratic. Example 3-98
shows a read-only indexer. You could add a set accessor to make it
read/write, just like with any other property.

Example 3-98. Class with indexer
public class Indexed
{
 public string this[int index]
 {
 get => index < 5 ? "Foo" : "bar";
 }
}

C# supports multidimensional indexers. These are indexers with more than
one parameter—since properties are really just methods, you can define
indexers with any number of parameters. You are free to use any mixture of
types for the parameters. Indexers also support overloading, so you can
define any number of indexers, as long as each takes a distinct set of
parameter types.

As you may recall from Chapter 2, C# offers null-conditional operators. In
that chapter, we saw this used to access properties and fields—e.g.,
myString?.Length will be of type int?—and its value will be null
if myString is null, and the value of the Length property otherwise.
There is one other form of null-conditional operator, which can be used
with an indexer, shown in Example 3-99.

Example 3-99. Null-conditional index access
string? s = objectWithIndexer?[2];

7

As with the null-conditional field or property access, this generates code
that checks whether the lefthand part (objectWithIndexer in this
case) is null. If it is, the whole expression evaluates to null; it only invokes
the indexer if the lefthand part of the expression is not null. It is effectively
equivalent to the code shown in Example 3-100.

Example 3-100. Code equivalent to null-conditional index access
string? s = objectWithIndexer == null ? null :
objectWithIndexer[2];

This null-conditional index syntax also works with arrays.

Initializer syntax
You will often want to set certain properties when you create an object,
because it might not be possible to supply all relevant information through
constructor arguments. This is particularly common with objects that
represent settings for controlling some operation. For example, the
ProcessStartInfo type enables you to configure many different
aspects of a newly created OS process. It has 16 properties, but you would
typically only need to set a few of these in any particular scenario. Even if
you assume that the name of the file to run should always be present, there
are still 32,768 possible combinations of properties. You wouldn’t want to
have a constructor for every one of those.

In practice, a class might offer constructors for a handful of particularly
common combinations, but for everything else, you just set the properties
after construction. C# offers a succinct way to create an object and set some
of its properties in a single expression. Example 3-101 uses this object
initializer syntax. This also works with fields, although it’s relatively
unusual to have writable public fields.

Example 3-101. Using an object initializer
Process.Start(new ProcessStartInfo
{
 FileName = "cmd.exe",
 UseShellExecute = true,
 WindowStyle = ProcessWindowStyle.Maximized,
});

You can supply constructor arguments too. Example 3-102 has the same
effect as Example 3-101 but chooses to supply the filename as a constructor
argument. (This is one of the few properties ProcessStartInfo lets
you supply that way.)

Example 3-102. Using a constructor and an object initializer
Process.Start(new ProcessStartInfo("cmd.exe")
{
 UseShellExecute = true,
 WindowStyle = ProcessWindowStyle.Maximized,
});

The object initializer syntax can remove the need for a separate variable to
refer to the object while you set the properties you need. As Examples 3-
101 and 3-102 show, you can pass an object initialized in this way directly
as an argument to a method. More generally, this style of initialization can
be contained entirely within a single expression. This is important in
scenarios that use expression trees, which we’ll be looking at in Chapter 9.
Another important benefit of initializers is that they can use an init
accessor—when a property defines an init accessor and if there are no
constructor overloads available that can set that property, the object
initializer syntax is the only mechanism available for setting that property.

There’s a variation on the object initializer syntax that enables you to
supply values to an indexer in an object initializer. Example 3-103 uses this
to initialize a dictionary. (Chapter 5 describes dictionaries and other
collection types in detail.)

Example 3-103. Using an indexer in an object initializer
var d = new Dictionary<string, int>
{
 ["One"] = 1,
 ["Two"] = 2,
 ["Three"] = 3
};

Operators
Classes and structs can define customized meanings for operators. I showed
some custom operators earlier: Example 3-29 supplied definitions for ==
and !=. A class or struct can support almost all of the arithmetic, logical,
and relational operators introduced in Chapter 2. Of the operators shown in
Tables 2-3, 2-4, 2-5, and 2-6, you can define custom meanings for all except
the conditional AND (&&) and conditional OR (||) operators. Those
operators are evaluated in terms of other operators, however, so by defining
logical AND (&), logical OR (|), and also the logical true and false
operators (described shortly), you can control the way that && and || work
for your type, even though you cannot implement them directly.

All custom operator implementations follow a certain pattern. They look
like static methods, but in the place where you’d normally expect the
method name, you instead have the operator keyword followed by the
operator for which you want to define a custom meaning. After that comes a
parameter list, where the number of parameters is determined by the
number of operands the operator requires. Example 3-104 shows how the
binary + operator would look for the Counter class defined earlier in this
chapter.

Example 3-104. Implementing the + operator
public static Counter operator +(Counter x, Counter y)
{
 return new Counter { _count = x._count + y._count };
}

Although the argument count must match the number of operands the
operator requires, only one of the arguments has to be the same as the
defining type. Example 3-105 exploits this to allow the Counter class to
be added to an int.

Example 3-105. Supporting other operand types
public static Counter operator +(Counter x, int y)
{
 return new Counter { _count = x._count + y };
}

public static Counter operator +(int x, Counter y)
{
 return new Counter { _count = x + y._count };
}

C# requires certain operators to be defined in pairs. We already saw this
with the == and != operators—it is illegal to define one and not the other.
Likewise, if you define the > operator for your type, you must also define
the < operator, and vice versa. The same is true for >= and <=. (There’s one
more pair, the true and false operators, but they’re slightly different;
I’ll get to those shortly.)

When you overload an operator for which a compound assignment operator
exists, you are in effect defining behavior for both. For example, if you
define custom behavior for the + operator, the += operator will
automatically work too.

The operator keyword can also define custom conversions—methods
that convert your type to or from some other type. For example, if we
wanted to be able to convert Counter objects to and from int, we could
add the two methods in Example 3-106 to the class.

Example 3-106. Conversion operators
public static explicit operator int(Counter value)
{
 return value._count;
}

public static explicit operator Counter(int value)
{
 return new Counter { _count = value };
}

I’ve used the explicit keyword here, which means that these
conversions are accessed with the cast syntax, as Example 3-107 shows.

Example 3-107. Using explicit conversion operators
var c = (Counter) 123;
var v = (int) c;

If you use the implicit keyword instead of explicit, your conversion
will be able to happen without needing a cast. In Chapter 2 we saw that
some conversions happen implicitly: in certain situations, C# will
automatically promote numeric types. For example, you can use an int
where a long is expected, perhaps as an argument for a method or in an
assignment. Conversion from int to long will always succeed and can
never lose information, so the compiler will automatically generate code to
perform the conversion without requiring an explicit cast. If you write
implicit conversion operators, the C# compiler will silently use them in
exactly the same way, enabling your custom type to be used in places where
some other type was expected. (In fact, the C# specification defines
numeric promotions such as conversion from int to long as built-in
implicit conversions.)

Implicit conversion operators are something you shouldn’t need to write
very often. You should do so only when you can meet the same standards as
built-in promotions: the conversion must always be possible and should
never throw an exception. Moreover, the conversion should be unsurprising
—implicit conversions are a little sneaky in that they allow you to
cause methods to be invoked in code that doesn’t look like it’s calling a
method. So unless you’re intending to confuse other developers, you should
write implicit conversions only where they seem to make unequivocal
sense.

C# recognizes two more operators: true and false. If you define either
of these, you are required to define both. These are a bit of an oddball pair,
because although the C# specification defines them as unary operator
overloads, they don’t correspond directly to any operator you can write in
an expression. They come into play in two scenarios.

If you have not defined an implicit conversion to bool, but you have
defined the true and false operators, C# will use the true operator if
you use your type as the expression for an if statement or a do or while
loop, or as the condition expression in a for loop. However, the compiler

prefers the implicit bool operator, so this is not the main reason the true
and false operators exist.

The main scenario for the true and false operators is to enable your
custom type to be used as an operand of a conditional Boolean operator
(either && or ||). Remember that these operators will evaluate their second
operand only if the first outcome does not fully determine the result. If you
want to customize the behavior of these operators, you cannot implement
them directly. Instead, you must define the nonconditional versions of the
operators (& and |), and you must also define the true and false
operators. When evaluating &&, C# will use your false operator on the
first operand, and if that indicates that the first operand is false, then it will
not bother to evaluate the second operand. If the first operand is not false, it
will evaluate the second operand and then pass both into your custom &
operator. The || operator works in much the same way but with the true
and | operators, respectively.

You may be wondering why we need special true and false operators—
couldn’t we just define an implicit conversion to the bool type? In fact we
can, and if we do that instead of providing &, |, true, and false, C# will
use that to implement && and || for our type. However, some types may
want to represent values that are neither true nor false—there may be a third
value representing an unknown state. The true operator allows C# to ask
the question “Is this definitely true?” and for the object to be able to answer
“no” without implying that it’s definitely false. A conversion to bool does
not support that.

NOTE
The true and false operators have been present since the first version of C#, and
their main application was to enable the implementation of types that support nullable
Boolean values with similar semantics to those offered by many databases. The nullable
type support added in C# 2.0 provides a better solution, so these operators are no longer
particularly useful, but there are still some old parts of the runtime libraries that depend
on them.

No other operators can be overloaded. For example, you cannot define
custom meanings for the . operator used to access members of a method, or
the conditional (? :) or null coalescing (??) operators.

Events
Structs and classes can declare events. This kind of member enables a type
to provide notifications when interesting things happen, using a
subscription-based model. For example, a UI object representing a button
might define a Click event, and you can write code that subscribes to that
event.

Events depend on delegates, and since Chapter 9 is dedicated to these
topics, I won’t go into any detail here. I’m mentioning them only because
this section on type members would otherwise be incomplete.

Nested Types
The final kind of member we can define in a class, a struct, or a record is a
nested type. You can define nested classes, structs, or any of the other types
described later in this chapter. A nested type can do anything its normal
counterpart would do, but it gets a couple of additional features.

When a type is nested, you have more choices for accessibility. A type
defined at global scope can be only public or internal—private
would make no sense, because that makes something accessible only from
within its containing type, and there is no containing type when you define
something at global scope. But a nested type does have a containing type,
so if you define a nested type and make it private, that type can be used
only from inside the type within which it is nested. Example 3-108 shows a
private class.

Example 3-108. A private nested class
internal static class FileSorter
{
 public static string[] GetByNameLength(string path)
 {
 string[] files = Directory.GetFiles(path);

 var comparer = new LengthComparer();
 Array.Sort(files, comparer);
 return files;
 }

 private class LengthComparer : IComparer<string>
 {
 public int Compare(string? x, string? y)
 {
 int diff = (x?.Length ?? 0) - (y?.Length ?? 0);
 return diff == 0
 ? StringComparer.OrdinalIgnoreCase.Compare(x, y)
 : diff;
 }
 }
}

Private classes can be useful in scenarios like this where you are using an
API that requires an implementation of a particular interface, and either you
don’t want to make that interface part of your type or, as in this case, you
couldn’t even if you wanted to. (My FileSorter type is static, so I
can’t create an instance of it to pass to Array.Sort.) In this case, I’m
calling Array.Sort to sort a list of files by the lengths of their names.
(This is not useful, but it looks nice.) I’m providing the custom sort order in
the form of an object that implements the IComparer<string>
interface. I’ll describe interfaces in detail in the next section, but this
interface is just a description of what the Array.Sort method needs us to
provide. I’ve written a custom class to implement this interface. This class
is just an implementation detail of the rest of my code, so I don’t want to
make it public. A nested private class is just what I need.

Code in a nested type is allowed to use nonpublic members of its containing
type. However, an instance of a nested type does not automatically get a
reference to an instance of its containing type. If you need nested instances
to have a reference to their container, then you will need to declare a field to
hold that and arrange for it to be initialized; this would work in exactly the
same way as any object that wants to hold a reference to another object.
Obviously, it’s an option only if the outer type is a reference type.

So far, we’ve looked only at classes, records, and structs, but there are some
other ways to define custom types in C#. One of these is complicated
enough to warrant getting its own chapter, but there are a couple of simpler
ones that I’ll discuss here.

Interfaces
C#’s interface keyword defines a programming interface. Interfaces are
very often entirely devoid of implementation, although you can define
default implementations for some or all methods. You can also define
nested types and static fields. (Interfaces cannot define nonstatic fields,
though.) Classes can choose to implement interfaces. If you write code that
works in terms of an interface, it will be able to work with anything that
implements that interface, instead of being limited to working with one
particular type.

For example, the .NET runtime libraries include an interface called
IEnumerable<T>, which defines a minimal set of members for
representing sequences of values. (It’s a generic interface, so it can
represent sequences of anything. For example, an IE num era ble
<st rin g> is a sequence of strings. Generic types are discussed in Chapter
4.) If a method has a parameter of type IEnumerable<string>, you
can pass it a reference to an instance of any type that implements the
interface, which means that a single method can work with arrays, various
collection classes provided by the .NET runtime libraries, certain LINQ
features, and many other things.

An interface declares methods, properties, and events, but it doesn’t have to
define their bodies, as Example 3-109 shows. Properties indicate whether
getters and/or setters should be present, but we have semicolons in place of
the bodies. An interface is effectively a list of the members that a type will
need to provide if it wants to implement the interface. Be aware that on
.NET Framework, these method-like members are the only kinds of
members interfaces can have. I’ll discuss the additional member types

available on .NET Core and .NET shortly, but the majority of interfaces you
are likely to come across today only contain these kinds of members.

Example 3-109. An interface
public interface IDoStuff
{
 string this[int i] { get; set; }
 string Name { get; set; }
 int Id { get; }
 int SomeMethod(string arg);
 event EventHandler? Click;
}

Individual method-like members are not allowed accessibility modifiers—
their accessibility is controlled at the level of the interface itself. (Like
classes, interfaces are either public or internal, unless they are
nested, in which case they can have any accessibility.) Interfaces cannot
declare constructors—an interface only gets to say what services an object
should supply once it has been constructed.

By the way, most interfaces in .NET follow the convention that their name
starts with an uppercase I followed by one or more words in PascalCasing.

A class declares the interfaces that it implements in a list after a colon
following the class name, as Example 3-110 shows. It must provide
implementations of all the members listed in the interface. You’ll get a
compiler error if you leave any out. Record types can also implement
interfaces, using a similar syntax. If the record type uses the positional
syntax, the colon and interface list come after the positional parameter list.

Example 3-110. Implementing an interface
public class DoStuff : IDoStuff
{
 public string this[int i] { get { return i.ToString(); } set {
} }
 public string Name { get; set; }
 ...etc
}

When we implement an interface in C#, we typically define each of that
interface’s methods as a public member of our class. However, sometimes

you may want to avoid this. Occasionally, some API may require you to
implement an interface that you feel pollutes the purity of your class’s API.
Or, more prosaically, you may already have defined a member with the
same name and signature as a member required by the interface, but that
does something different from what the interface requires. Or worse, you
may need to implement two different interfaces, both of which define
members that have the same name and signature but require different
behavior. You can solve any of these problems with a technique called
explicit implementation to define members that implement a member of a
specific interface without being public. Example 3-111 shows the syntax for
this, with an implementation of one of the methods from the interface in
Example 3-109. With explicit implementations, you do not specify the
accessibility, and you prefix the member name with the interface name.

Example 3-111. Explicit implementation of an interface member
int IDoStuff.SomeMethod(string arg)
{
 ...
}

When a type uses explicit interface implementation, those members cannot
be used through a reference of the type itself. They become visible only
when referring to an object through an expression of the interface’s type.

When a class implements an interface, it becomes implicitly convertible to
that interface type. So you can pass any expression of type DoStuff from
Example 3-110 as a method argument of type IDoStuff, for example.

Interfaces are reference types. Despite this, you can implement interfaces
on both classes and structs. However, you need to be careful when doing so
with a struct, because when you get hold of an interface-typed reference to
a struct, it will be a reference to a box, which is effectively an object that
holds a copy of a struct in a way that can be referred to via a reference.
We’ll look at boxing in Chapter 7.

Default Interface Implementation
An interface definition can include some implementation details. This
relatively new feature (added in C# 8.0) relies on runtime support, so it is
only available in code that targets .NET Core 3.1 or later, or .NET Standard
2.1 or later, so you can’t use this on .NET Framework. But as long as you’re
using a suitable runtime, your interface definition can supply static fields,
nested types, and bodies for methods, property accessors, and the add and
remove methods for events (which I will describe in Chapter 9). Example
3-112 shows this in use to define a default implementation of a property.

Example 3-112. An interface with a default property implementation
public interface INamed
{
 int Id { get; }
 string Name => $"{this.GetType()}: {this.Id}";
}

If a class chooses to implement INamed, it will only be required to provide
an implementation for this interface’s Id property. It can also supply a
Name property if it wants to, but this is optional. If the class does not define
its own Name, the definition from the interface will be used instead.

Default interface implementations provide a partial solution to a long-
standing limitation of interfaces: if you define an interface that you then
make available for other code to use (e.g., via a class library), adding new
members to that interface could cause problems for existing code that uses
it. Code that invokes methods on the interface won’t have a problem
because it will be blissfully unaware that new members were added, but any
class that implements your interface would, prior to C# 8.0, be broken if
you were to add new members. A concrete class is required to supply all the
members of an interface it implements, so if the interface gets new
members, formerly complete implementations will now be incomplete.
Unless you have some way of reaching out to everyone who has written
types that implement your interface and getting them to add the missing
members, you will cause them problems if they upgrade to the new version.

You might think that this would only be a problem if the authors of code
that works with an interface deliberately upgraded to the library containing
the updated interface, at which point they’d have an opportunity to fix the
problem. However, library upgrades can sometimes be forced on code. If
you write an application that uses multiple libraries, each of which was built
against different versions of some common library, then at least one of
those is going to end up getting a different version of that common library
at runtime than the version it was compiled against. (The poster child for
this is the Json.NET library for parsing JSON. It’s extremely widely used
and has had many versions released, so it’s common for a single application
to use multiple libraries, each with a dependency on a different version of
Json.NET. Only one version is used at runtime, so they can’t all have their
expectations met.) This means that even if you use schemes such as
semantic versioning, in which breaking changes are always accompanied by
a change to the component’s major version number, that might not be
enough to avoid trouble: you might find yourself needing to use two
components where one wants the v1.0 flavor of some interface, while
another wants the v2.0 edition.

The upshot of this was that interfaces were essentially frozen: you couldn’t
add new members over time, even across major version changes. But
default interface implementations loosen this restriction: you can add a new
member to an existing interface if you also provide a default
implementation for it. That way, existing types that implemented the older
version were able to supply a complete implementation of the updated
definition, because they automatically pick up the default implementation
of the newly added member without needing to be modified in any way.
(There is a small fly in the ointment, making it still sometimes preferable to
use the older solution to this problem, abstract base classes. Chapter 6
describes these issues. So although default interface implementation can
provide a useful escape hatch, you should still avoid modifying published
interfaces if at all possible.)

In addition to providing extra flexibility for backward compatibility, the
default interface implementation feature adds three more capabilities:

interfaces can now define constants, static fields, and types. Example 3-113
shows an interface that contains a nested constant and type.

Example 3-113. An interface with a const and a nested type
public interface IContainMultitudes
{
 public const string TheMagicWord = "Please";

 public enum Outcome
 {
 Yes,
 No
 }

 Outcome MayI(string request)
 {
 return request == TheMagicWord ? Outcome.Yes : Outcome.No;
 }
}

With non-method-like members such as these, we need to specify the
accessibility, because in some cases you may want to introduce these nested
members purely for the benefit of default method implementations, in
which case you’d want them to be private. In this case, I want the
relevant members to be accessible to all, since they form part of the API
defined by this interface, so I have marked them as public. You might be
looking at that nested Outcome type and wondering what’s going on.
Wonder no more.

Enums
The enum keyword declares a very simple type that defines a set of named
values. Example 3-114 shows an enum that defines a set of mutually
exclusive choices. You could say that this enumerates the options, which is
where the enum keyword gets its name.

Example 3-114. An enum with mutually exclusive options
public enum PorridgeTemperature
{
 TooHot,

 TooCold,
 JustRight
}

An enum can be used in most places you might use any other type—it
could be the type of a local variable, a field, or a method parameter, for
example. But one of the most common ways to use an enum is in a
switch statement, as Example 3-115 shows.

Example 3-115. Switching with an enum
switch (porridge.Temperature)
{
case PorridgeTemperature.TooHot:
 GoOutsideForABit();
 break;

case PorridgeTemperature.TooCold:
 MicrowaveMyBreakfast();
 break;

case PorridgeTemperature.JustRight:
 NomNomNom();
 break;
}

As this illustrates, to refer to enumeration members, you must qualify them
with the type name. In fact, an enum is really just a fancy way of defining a
load of const fields. The members are all just int values under the
covers. You can even specify the values explicitly, as Example 3-116 shows.

Example 3-116. Explicit enum values
[System.Flags]
public enum Ingredients
{
 Eggs = 0b1,
 Bacon = 0b10,
 Sausages = 0b100,
 Mushrooms = 0b1000,
 Tomato = 0b1_0000,
 BlackPudding = 0b10_0000,
 BakedBeans = 0b100_0000,
 TheFullEnglish = 0b111_1111
}

This example also shows an alternative way to use an enum. The options in
Example 3-116 are not mutually exclusive. I’ve used binary constants here,
so you can see that each value corresponds to a particular bit position being
set to 1. This makes it easy to combine them—Eggs and Bacon would be
3 (11 in binary), while Eggs, Bacon, Sausages, BlackPudding, and
BakedBeans (my preferred combination) would be 103 (1100111 in
binary, or 0x67 in hex).

NOTE
When combining flag-based enumeration values, we normally use the bitwise OR
operator. For example, you could write Ing red ien ts.
Eg gs| Ing red ien ts. Ba con. Not only is this significantly easier to read than using
the numeric values, but it also works well with the search tools in IDEs—you can find
all the places a particular symbol is used by right-clicking its definition and choosing
Find All References or Go to References, respectively, from the context menu. You
might come across code that uses + instead of |. This works for some combinations;
however, Ingredients.TheFullEnglish + Ingredients.Eggs would be
a value of 128, which does not correspond to anything, so it is safer to stick with |.

When you declare an enum that’s designed to be combined in this way,
you’re supposed to annotate it with the Flags attribute, which is defined in
the System namespace. (Chapter 14 will describe attributes in detail.)
Example 3-116 does this, although in practice, it doesn’t matter greatly if
you forget, because the C# compiler doesn’t care, and in fact, there are very
few tools that pay any attention to it. The main benefit is that if you call
ToString on an enum value, it will notice when the Flags attribute is
present. For this Ingredients type, ToString would convert the value
of 3 to the string Eggs, Bacon, which is also how the debugger would
show the value, whereas without the Flags attribute, it would be treated as
an unrecognized value, and you would just get a string containing the digit
3.

With this sort of flags-style enumeration, you can run out of bits fairly
quickly. By default, enum uses int to represent the value, and with a

sequence of mutually exclusive values, that’s usually sufficient. It would be
a fairly complicated scenario that needed billions of different values in a
single enumeration type. However, with 1 bit per flag, an int provides
space for just 32 flags. Fortunately, you can get a little more breathing
room, because you can specify a different underlying type—you can use
any built-in integer type, meaning that you can go up to 64 bits. As
Example 3-117 shows, you can specify the underlying type after a colon
following the enum type name.

Example 3-117. 64-bit enum
[Flags]
public enum TooManyChoices : long
{
 ...
}

All enum types are value types, incidentally, like the built-in numeric types
or any struct. But they are very limited. You cannot define any members
other than the constant values—no methods or properties, for example.

Enumeration types can sometimes enhance the readability of code. A lot of
APIs accept a bool to control some aspect of their behavior but might
often have done better to use an enum. Consider the code in Example 3-
118. It constructs a StreamReader, a class for working with data streams
that contain text. The second constructor argument is a bool.

Example 3-118. Unhelpful use of the bool type
using var rdr = new StreamReader(stream, true);

It’s not remotely obvious what that second argument does. If you happen to
be familiar with StreamReader, you may know that this argument
determines whether byte ordering in a multibyte text encoding should be set
explicitly from the code or determined from a preamble at the start of the
stream. (Using the named argument syntax would help here.) And if you’ve
got a really good memory, you might even know which of those choices
true happens to select. But most mere mortal developers will probably
have to reach for IntelliSense or even the documentation to work out what

that argument does. Compare that experience with Example 3-119, which
shows a different type.

Example 3-119. Clarity with an enum
using var fs = new FileStream(path, FileMode.Append);

This constructor’s second argument uses an enumeration type, which makes
for rather less opaque code. It doesn’t take an eidetic memory to work out
that this code intends to append data to an existing file.

As it happens, because this particular API has more than two options, it
couldn’t use a bool. So FileMode really had to be an enum. But these
examples illustrate that even in cases where you’re selecting between just
two choices, it’s well worth considering defining an enum for the job so
that it’s completely obvious which choice is being made when you look at
the code.

Other Types
We’re almost done with our survey of types and what goes in them. There’s
one kind of type that I’ll not discuss until Chapter 9: delegates. We use
delegates when we need a reference to a function, but the details are
somewhat involved.

I’ve also not mentioned pointers. C# supports pointers that work in a pretty
similar way to C-style pointers, complete with pointer arithmetic. (If you’re
not familiar with these, they provide a reference to a particular location in
memory.) These are a little weird, because they are slightly outside of the
rest of the type system. For example, in Chapter 2, I mentioned that a
variable of type object can refer to “almost anything.” The reason I had
to qualify that is that pointers are one of the two exceptions—object can
work with any C# data type except a pointer or a ref struct. (Chapter
18 discusses the latter.)

But now we really are done. Some types in C# are special, including the
fundamental types discussed in Chapter 2 and the records, structs,

interfaces, enums, delegates, and pointers just described, but everything else
looks like a class. There are a few classes that get special handling in
certain circumstances—notably attribute classes (Chapter 14) and exception
classes (Chapter 8)—but except for certain special scenarios, even those are
otherwise completely normal classes. Even though we’ve seen all the kinds
of types that C# supports, there’s one way to define a class that I’ve not
shown yet.

Anonymous Types
C# offers two mechanisms for grouping a handful of values together.
You’ve already seen tuples, which were described in Chapter 2. These were
introduced in C# 7.0, but there is an alternative that has been available since
C# 3.0: Example 3-120 shows how to create an instance of an anonymous
type and how to use it.

Example 3-120. An anonymous type
var x = new { Title = "Lord", Surname = "Voldemort" };

Console.WriteLine($"Welcome, {x.Title} {x.Surname}");

As you can see, we use the new keyword without specifying a type name.
Instead, we just use the object initializer syntax. The C# compiler will
provide a type that has one read-only property for each entry inside the
initializer. So in Example 3-120, the variable x will refer to an object that
has two properties, Title and Surname, both of type string. (You do
not state the property types explicitly in an anonymous type. The compiler
infers each property’s type from the initialization expression in the same
way it does for the var keyword.) Since these are just normal properties,
we can access them with the usual syntax, as the final line of the example
shows.

TIP
The with syntax available for record types and struct types also works with
anonymous types. The reason with is not available for all reference types is the lack of
a general, universal cloning mechanism, but that’s not a problem with anonymous types.
They are always generated by the compiler, so the compiler knows exactly how to copy
them.

The compiler generates a fairly ordinary class definition for each
anonymous type. It is immutable, because all the properties are read-only.
Much like a record, it overrides Equals so that you can compare instances
by value, and it also provides a matching GetHashCode implementation.
The only unusual thing about the generated class is that it’s not possible to
refer to the type by name in C#. Running Example 3-120 in the debugger, I
find that the compiler has chosen the name <>f__AnonymousType0'2.
This is not a legal identifier in C# because of those angle brackets (<>) at
the start. C# uses names like this whenever it wants to create something that
is guaranteed not to collide with any identifiers you might use in your own
code, or that it wants to prevent you from using directly. This sort of
identifier is called, rather magnificently, an unspeakable name.

Because you cannot write the name of an anonymous type, a method cannot
declare that it returns one, or that it requires one to be passed as an
argument (unless you use an anonymous type as an inferred generic type
argument, something we’ll see in Chapter 4). Of course, an expression of
type object can refer to an instance of an anonymous type, but only the
method that defines the type can use its properties (unless you use the
dynamic type described in Chapter 2). So anonymous types are of
somewhat limited value. They were added to the language for LINQ’s
benefit: they enable a query to select specific columns or properties from
some source collection and also to define custom grouping criteria, as
you’ll see in Chapter 10.

These limitations provide a clue as to why Microsoft felt the need to add
tuples in C# 7.0 when the language already had a pretty similar-looking

feature. However, if the inability to use anonymous types as parameters or
return types was the only problem, an obvious solution might have been to
introduce a syntax enabling them to be identified. The syntax for referring
to tuples could arguably have worked—we can now write (string
Name, double Age) to refer to a tuple type, but why introduce a whole
new concept? Why not just use that syntax to name anonymous types?
(Obviously we’d no longer be able to call them anonymous types, but at
least we wouldn’t have ended up with two confusingly similar language
features.) However, the lack of names isn’t the only problem with
anonymous types.

As C# has been used in increasingly diverse applications, and across a
broader range of hardware, efficiency has become more of a concern. In the
database access scenarios for which anonymous types were originally
introduced, the cost of object allocations would have been a relatively small
part of the picture, but the basic concept—a small bundle of values—is
potentially useful in a much wider range of scenarios, some of which are
more performance sensitive. However, anonymous types are all reference
types, and while in many cases that’s not a problem, it can rule them out in
some hyper-performance-sensitive scenarios. Tuples, on the other hand, are
all value types, making them viable even in code where you are attempting
to minimize the number of allocations. (See Chapter 7 for more detail on
memory management and garbage collection, and Chapter 18 for
information about some of the newer language features aimed at enabling
more efficient memory usage.) Also, since tuples are all based on a set of
generic types under the covers, they may end up reducing the runtime
overhead required to keep track of loaded types: with anonymous types,
you can end up with a lot more distinct types loaded. For related reasons,
anonymous types would have problems with compatibility across
component boundaries.

Does this mean that anonymous types are no longer of any use? In fact, they
still offer some advantages. The most significant one is that you cannot use
a tuple in a lambda expression that will be converted into an expression
tree. This issue is described in detail in Chapter 9, but the practical upshot is

that you cannot use tuples in the kinds of LINQ queries mentioned earlier
that anonymous types were added to support.

More subtle is the fact that with tuples, property names are a convenient
fiction, whereas with anonymous types, they are real. This has two upshots.
One regards equivalence: the tuples (X: 10, Y:20) and (W:10,
H:20) are considered interchangeable, where any variable capable of
holding one is capable of holding the other. That is not true for anonymous
types: new { X = 10, Y = 20 } has a different type than new { W
= 10, H = 20 }, and attempting to pass one to code that expects the
other will cause a compiler error. This difference can make tuples more
convenient, but it can also make them more error prone, because the
compiler looks only at the shape of the data when asking whether you’re
using the right type. Anonymous types can still enable errors: if you have
two types with exactly the same property names and types but that are
semantically different, there’s no way to express that with anonymous
types. (In practice you’d probably just define two record types to deal with
this.) The second upshot of anonymous types offering genuine properties is
that you can pass them to code that inspects an object’s properties. Many
reflection-driven features such as certain serialization frameworks, or UI
framework databinding, depend on being able to discover properties at
runtime through reflection (see Chapter 13). Anonymous types may work
better with these frameworks than tuples, in which the properties’ real
names are all things like Item1, Item2, etc.

Partial Types and Methods
There’s one last topic I want to discuss relating to types. C# supports what it
calls a partial type declaration. This is a very simple concept: it means that
the type declaration might span multiple files. If you add the partial
keyword to a type declaration, C# will not complain if another file defines
the same type—it will simply act as though all the members defined by the
two files had appeared in a single declaration in one file.

This feature exists to make it easier to write code-generation tools. Various
features in Visual Studio can generate bits of your class for you. This is
particularly common with UIs. UI applications typically have markup that
defines the layout and content of each part of the UI, and you can choose
for certain UI elements to be accessible in your code. You usually achieve
this by adding a field to a class associated with the markup file. To keep
things simple, all the parts of the class that Visual Studio generates go in a
separate file from the parts that you write. This means that the generated
parts can be remade from scratch whenever needed without any risk of
overwriting the code that you’ve written. Before partial types were
introduced to C#, all the code for a class had to go in one file, and from
time to time, code generation tools would get confused, leading to loss of
code.

NOTE
Partial classes are not limited to code-generation scenarios, so you can of course use this
to split your own class definitions across multiple files. However, if you’ve written a
class so large and complex that you feel the need to split it into multiple source files just
to keep it manageable, that’s probably a sign that the class is too complex. A better
response to this problem might be to change your design. However, it can be useful if
you need to maintain code that is built in different ways for different target platforms:
you can use partial classes to put target-specific parts in separate files.

Partial methods are also designed for code-generation scenarios, but they
are slightly more complex. They allow one file, typically a generated file, to
declare a method, and for another file to implement the method. (Strictly
speaking, the declaration and implementation are allowed to be in the same
file, but they usually won’t be.) This may sound like the relationship
between an interface and a class that implements that interface, but it’s not
quite the same. With partial methods, the declaration and implementation
are in the same class—they’re in different files only because the class has
been split across multiple files.

If you do not provide an implementation of a partial method, then as long as
the method definition does not specify any accessibility, has a void return
type, and no out arguments, the compiler acts as though the method isn’t
there at all, and any code that invokes the method is ignored at compile
time. The main reason for this is to support code-generation mechanisms
that are able to offer many kinds of notifications but where you want zero
runtime overhead for notifications that you don’t need. Partial methods
enable this by letting the code generator declare a partial method for each
kind of notification it provides and to generate code that invokes all of these
partial methods where necessary. All code relating to notifications for which
you do not write a handler method will be stripped out at compile time.

It’s an idiosyncratic mechanism, but it was driven by frameworks that
provide extremely fine-grained notifications and extension points. There are
some more obvious runtime techniques you could use instead, such as
interfaces, or features that I’ll cover in later chapters, such as callbacks or
virtual methods. However, any of these would impose a relatively high cost
for unused features. Unused partial methods get stripped out at compile
time, reducing the cost of the bits you don’t use to nothing, which is a
considerable improvement.

Up until recently, partial methods were required not to specify their
accessibility and not return any data. C# 9.0 relaxed this to support
additional code-generation scenarios, in which a developer writes a partial
method in the expectation that a code-generation tool will supply the
implementation. When a partial method specifies the accessibility (even if it
is private and returns no data), it is an error for the method not to be
implemented.

Summary
You’ve now seen most of the kinds of types you can write in C# and the
sorts of members they support. Classes are the most widely used, but structs
are useful if you need value-like semantics for assignment and arguments;
both support the same member types—namely, fields, constructors,

methods, properties, indexers, events, custom operators, and nested types.
Records provide a more convenient syntax for defining types that consist
mostly of properties, especially if you want to be able to compare the values
of such types. And while they do not have to be immutable, record types
make it easier to define and work with immutable data. Interfaces are
abstract, so at the instance level they support only methods, properties,
indexers, and events. They can also provide static fields, nested types, and
default implementations for other members. And enums are very limited,
providing just a set of known values.

There’s another feature of the C# type system that makes it possible to write
very flexible types, called generic types. We’ll look at these in the next
chapter.

1 Specifically, it generates a method with a special name, <Clone>$. That name is an illegal
identifier in C#, so this method is in effect hidden from your code, but you will be using it
indirectly if you use the with syntax to build a modified copy of a record.

2 There are certain exceptions, described in Chapter 18.

3 You wouldn’t want it to be a value type, because strings can be large, so passing them by
value would be expensive. In any case, it cannot be a struct, because strings vary in length.
However, that’s not a factor you need to consider, because you can’t write your own variable-
length data types in C#. Only strings and array types have variable size.

4 If you omit the initializer for a readonly field, you should set it in the constructor or a
property’s init accessor instead; otherwise it’s not very useful.

5 There are two exceptions. If a class supports a CLR feature called serialization, objects of that
type can be deserialized directly from a data stream, bypassing constructors. But even here,
you can dictate what data is required. And there’s the MemberwiseClone method described
in Chapter 6.

6 The CLR calls this kind of reference a Managed Pointer, to distinguish it from the kind of
reference that refers to an object on the heap. Unfortunately, C#’s terminology is less clear: it
calls both of these things references.

7 Incidentally, the default property has a name, because all properties are required to. C# calls
the indexer property Item and automatically adds the annotation indicating that it’s the default
property. You won’t normally refer to an indexer by name, but the name is visible in some
tools. The .NET documentation lists indexers under Item, even though it’s rare to use that
name in code.

Chapter 4. Generics

In Chapter 3, I showed how to write types and described the various kinds
of members they can contain. However, there’s an extra dimension to
classes, structs, interfaces, and methods that I did not show. They can define
type parameters, placeholders that let you plug in different types at compile
time. This allows you to write just one type and then produce multiple
versions of it. A type that does this is called a generic type. For example, the
runtime libraries define a generic class called List<T> that acts as a
variable-length array. T is a type parameter here, and you can use almost
any type as an argument, so List<int> is a list of integers,
List<string> is a list of strings, and so on. You can also write a
generic method, which is a method that has its own type arguments,
independently of whether its containing type is generic.

Generic types and methods are visually distinctive because they always
have angle brackets (< and >) after the name. These contain a comma-
separated list of parameters or arguments. The same parameter/argument
distinction applies here as with methods: the declaration specifies a list of
parameters, and then when you come to use the method or type, you supply
arguments for those parameters. So List<T> defines a single type
parameter, T, and List<int> supplies a type argument, int, for that
parameter.

You can use any name you like for type parameters, within the usual
constraints for identifiers in C#, but there are some popular conventions. It’s
common (but not universal) to use T when there’s only one parameter. For
multiparameter generics, you tend to see slightly more descriptive names.
For example, the runtime libraries define the Dictionary<TKey,
TValue> collection class. Sometimes you will see a descriptive name like
that even when there’s just one parameter, but in any case, you will tend to

1

see a T prefix so that the type parameters stand out when you use them in
your code.

Generic Types
Classes, structs, records, and interfaces can all be generic, as can delegates,
which we’ll be looking at in Chapter 9. Example 4-1 shows how to define a
generic class.

Example 4-1. Defining a generic class
public class NamedContainer<T>
{
 public NamedContainer(T item, string name)
 {
 Item = item;
 Name = name;
 }

 public T Item { get; }
 public string Name { get; }
}

The syntax for structs, records, and interfaces is much the same: the type
name is followed immediately by a type parameter list. Example 4-2 shows
how to write a generic record similar to the class in Example 4-1.

Example 4-2. Defining a generic record
public record NamedContainer<T>(T Item, string Name);

Inside the definition of a generic type, I can use the type parameter T
anywhere you would normally see a type name. In the first example, I’ve
used it as the type of a constructor argument, and in both examples as the
Item property’s type. I could define fields of type T too. (In fact I have,
albeit not explicitly. Automatic properties generate hidden fields, so my
Item property will have an associated hidden field of type T.) You can also
define local variables of type T. And you’re free to use type parameters as
arguments for other generic types. My NamedContainer<T> could
declare members of type List<T>, for example.

The types that Examples 4-1 and 4-2 define are, like any generic type, not
complete types. A generic type declaration is unbound, meaning that there
are type parameters that must be filled in to produce a complete type. Basic
questions, such as how much memory a NamedContainer<T> instance
will require, cannot be answered without knowing what T is—the hidden
field for the Item property would need 4 bytes if T were an int but 16
bytes if it were a decimal. The CLR cannot produce executable code for a
type if it does not know how the contents will be arranged in memory. So to
use this, or any other generic type, we must provide type arguments.
Example 4-3 shows how. When type arguments are supplied, the result is
sometimes called a constructed type. (This has nothing to do with
constructors, the special kind of member we looked at in Chapter 3. In fact,
Example 4-3 uses those too—it invokes the constructors of a couple of
constructed types.)

Example 4-3. Using a generic class
var a = new NamedContainer<int>(42, "The answer");
var b = new NamedContainer<int>(99, "Number of red balloons");
var c = new NamedContainer<string>("Programming C#", "Book title");

You can use a constructed generic type anywhere you would use a normal
type. For example, you can use them as the types for method parameters
and return values, properties, or fields. You can even use one as a type
argument for another generic type, as Example 4-4 shows.

Example 4-4. Constructed generic types as type arguments
// ...where a, and b come from Example 4-3.
var namedInts = new List<NamedContainer<int>>() { a, b };
var namedNamedItem = new NamedContainer<NamedContainer<int>>(a,
"Wrapped");

Each different type I supply as an argument to NamedContainer<T>
constructs a distinct type. (And for generic types with multiple type
arguments, each distinct combination of type arguments would construct a
distinct type.) This means that NamedContainer<int> is a different
type than NamedContainer<string>. That’s why there’s no conflict
in using NamedContainer<int> as the type argument for another

NamedContainer, as the final line of Example 4-4 does—there’s no
infinite recursion here.

Because each different set of type arguments produces a distinct type, in
most cases there is no implied compatibility between different forms of the
same generic type. You cannot assign a NamedContainer<int> into a
variable of type Nam ed Con tai ner <str ing> or vice versa. It makes
sense that those two types are incompatible, because int and string are
quite different types. But what if we used object as a type argument? As
Chapter 2 described, you can put almost anything in an object variable.
If you write a method with a parameter of type object, it’s OK to pass a
string, so you might expect a method that takes a
NamedContainer<object> to be happy with a
NamedContainer<string>. That won’t work, but some generic types
(specifically, interfaces and delegates) can declare that they want this kind
of compatibility relationship. The mechanisms that support this (called
covariance and contravariance) are closely related to the type system’s
inheritance mechanisms. Chapter 6 is all about inheritance and type
compatibility, so I will discuss this aspect of generic types there.

The number of type parameters forms part of an unbound generic type’s
identity. This makes it possible to introduce multiple types with the same
name as long as they have different numbers of type parameters. (The
technical term for number of type parameters is arity.)

So you could define a generic class called, say, Operation<T>, and then
another class, Operation<T1, T2>, and also Operation<T1, T2,
T3>, and so on, all in the same namespace, without introducing any
ambiguity. When you are using these types, it’s clear from the number of
arguments which type was meant—Operation<int> clearly uses the
first, while Operation<string, double> uses the second, for
example. And for the same reason, a nongeneric Operation class would
be distinct from generic types of the same name.

My NamedContainer<T> example doesn’t do anything to instances of
its type argument, T—it never invokes any methods or uses any properties

or other members of T. All it does is accept a T as a constructor argument,
which it stores away for later retrieval. This is also true of many generic
types in the runtime libraries—I’ve mentioned some collection classes,
which are all variations on the same theme of containing data for later
retrieval.

There is a reason for this: a generic class can find itself working with any
type, so it can presume little about its type arguments. However, it doesn’t
have to be this way. You can specify constraints for your type arguments.

Constraints
C# allows you to state that a type argument must fulfill certain
requirements. For example, suppose you want to be able to create new
instances of the type on demand. Example 4-5 shows a simple class that
provides deferred construction—it makes an instance available through a
static property but does not attempt to construct that instance until the first
time you read the property.

Example 4-5. Creating a new instance of a parameterized type
// For illustration only. Consider using Lazy<T> in a real program.
public static class Deferred<T>
 where T : new()
{
 private static T? _instance;

 public static T Instance
 {
 get
 {
 if (_instance == null)
 {
 _instance = new T();
 }
 return _instance;
 }
 }
}

WARNING
You wouldn’t write a class like this in practice, because the runtime libraries offer
Lazy<T>, which does the same job but with more flexibility. Lazy<T> can work
correctly in multithreaded code, which Example 4-5 will not. Example 4-5 is just to
illustrate how constraints work. Don’t use it!

For this class to do its job, it needs to be able to construct an instance of
whatever type is supplied as the argument for T. The get accessor uses the
new keyword, and since it passes no arguments, it clearly requires T to
provide a parameterless constructor. But not all types do, so what happens if
we try to use a type without a suitable constructor as the argument for
Deferred<T>?

The compiler will reject it, because it violates a constraint that this generic
type has declared for T. Constraints appear just before the class’s opening
brace, and they begin with the where keyword. The new() constraint in
Example 4-5 states that T is required to supply a zero-argument constructor.

If that constraint had not been present, the class in Example 4-5 would not
compile—you would get an error on the line that attempts to construct a
new T. A generic type (or method) is allowed to use only features of its type
parameters that it has specified through constraints, or that are defined by
the base object type. (The object type defines a ToString method,
for example, so you can invoke that on instances of any type without
needing to specify a constraint.)

C# offers only a very limited suite of constraints. You cannot demand a
constructor that takes arguments, for example. In fact, C# supports only six
kinds of constraints on a type argument: a type constraint, a reference type
constraint, a value type constraint, notnull, unmanaged, and the
new() constraint. We just saw that last one, so let’s look at the rest.

Type Constraints
You can constrain the argument for a type parameter to be compatible with
a particular type. For example, you could use this to demand that the
argument type implements a certain interface. Example 4-6 shows the
syntax.

Example 4-6. Using a type constraint
public class GenericComparer<T> : IComparer<T>
 where T : IComparable<T>
{
 public int Compare(T? x, T? y)
 {
 if (x == null) { return y == null ? 0 : -1; }
 return x.CompareTo(y);
 }
}

I’ll just explain the purpose of this example before describing how it takes
advantage of a type constraint. This class provides a bridge between two
styles of value comparison that you’ll find in .NET. Some data types
provide their own comparison logic, but at times, it can be more useful for
comparison to be a separate function implemented in its own class. These
two styles are represented by the IComparable<T> and
IComparer<T> interfaces, which are both part of the runtime libraries.
(They are in the System and System.Collections.Generics
namespaces, respectively.) I showed IComparer<T> in Chapter 3—an
implementation of this interface can compare two objects or values of type
T. The interface defines a single Compare method that takes two
arguments and returns either a negative number, 0, or a positive number if
the first argument is, respectively, less than, equal to, or greater than the
second. IComparable<T> is very similar, but its CompareTo method
takes just a single argument, because with this interface, you are asking an
instance to compare itself to some other instance.

Some of the runtime libraries’ collection classes require you to provide an
IComparer<T> to support ordering operations such as sorting. They use
the model in which a separate object performs the comparison, because this

offers two advantages over the IComparable<T> model. First, it enables
you to use data types that don’t implement IComparable<T>. Second, it
allows you to plug in different sorting orders. (For example, suppose you
want to sort some strings with a case-insensitive order. The string type
implements IComparable<string>, but it provides a case-sensitive,
locale-specific order.) So IComparer<T> is the more flexible model.
However, what if you are using a data type that implements
IComparable<T>, and you’re perfectly happy with the order that
provides? What would you do if you’re working with an API that demands
an IComparer<T>?

Actually, the answer is that you’d probably just use the .NET feature
designed for this very scenario: Comparer<T>.Default. If T
implements IComparable<T>, that property will return an
IComparer<T> that does precisely what you want. So in practice you
wouldn’t need to write the code in Example 4-6, because Microsoft has
already written it for you. However, it’s instructive to see how you’d write
your own version, because it illustrates how to use a type constraint.

The line starting with the where keyword states that this generic class
requires the argument for its type parameter T to implement
IComparable<T>. Without this addition, the Compare method would
not compile—it invokes the CompareTo method on an argument of type
T. That method is not present on all objects, and the C# compiler allows this
only because we’ve constrained T to be an implementation of an interface
that does offer such a method.

Interface constraints are somewhat odd: at first glance, it may look like we
really shouldn’t need them. If a method needs a particular argument to
implement a particular interface, you would normally just use that interface
as the argument’s type. However, Example 4-6 can’t do this. You can
demonstrate this by trying Example 4-7. It won’t compile.

Example 4-7. Will not compile: interface not implemented
public class GenericComparer<T> : IComparer<T>
{

 public int Compare(IComparable<T>? x, T? y)
 {
 if (x == null) { return y == null ? 0 : -1; }
 return x.CompareTo(y);
 }
}

The compiler will complain that I’ve not implemented the
IComparer<T> interface’s Compare method. Example 4-7 has a
Compare method, but its signature is wrong—that first argument should
be a T. I could also try the correct signature without specifying the
constraint, as Example 4-8 shows.

Example 4-8. Will not compile: missing constraint
public class GenericComparer<T> : IComparer<T>
{
 public int Compare(T? x, T? y)
 {
 if (x == null) { return y == null ? 0 : -1; }
 return x.CompareTo(y);
 }
}

That will also fail to compile, because the compiler can’t find that
CompareTo method I’m trying to use. It’s the constraint for T in Example
4-6 that enables the compiler to know what that method really is.

Type constraints don’t have to be interfaces, by the way. You can use any
type. For example, you can require a particular type argument to derive
from a particular base class. More subtly, you can also define one
parameter’s constraint in terms of another type parameter. Example 4-9
requires the first type argument to derive from the second, for example.

Example 4-9. Constraining one argument to derive from another
public class Foo<T1, T2>
 where T1 : T2
...

Type constraints are fairly specific—they require either a particular
inheritance relationship, or the implementation of certain interfaces.
However, you can define slightly less specific constraints.

Reference Type Constraints
You can constrain a type argument to be a reference type. As Example 4-10
shows, this looks similar to a type constraint. You just put the keyword
class instead of a type name. If you are in an enabled nullable annotation
context, the meaning of this annotation changes: it requires the type
argument to be a non-nullable reference type. If you specify class?, that
allows the type argument to be either a nullable or a non-nullable reference
type.

Example 4-10. Constraint requiring a reference type
public class Bar<T>
 where T : class
...

This constraint prevents the use of value types such as int, double, or
any struct as the type argument. Its presence enables your code to do
three things that would not otherwise be possible. First, it means that you
can write code that tests whether variables of the relevant type are null.
If you’ve not constrained the type to be a reference type, there’s always a
possibility that it’s a value type, and those can’t have null values. The
second capability is that you can use it as the target type of the as operator,
which we’ll look at in Chapter 6. This is really just a variation on the first
feature—the as keyword requires a reference type because it can produce a
null result.

NOTE
A class constraint prevents the use of nullable types such as int? (or
Nullable<int>, as the CLR calls it). Although you can test an int? for null and
use it with the as operator, the compiler generates quite different code for nullable types
for both operations than it does for a reference type. It cannot compile a single method
that can cope with both reference types and nullable types if you use these features.

The third feature that a reference type constraint enables is the ability to use
certain other generic types. It’s often convenient for generic code to use one

2

of its type arguments as an argument for another generic type, and if that
other type specifies a constraint, you’ll need to put the same constraint on
your own type parameter. So if some other type specifies a class constraint,
this might require you to constrain one of your own arguments in the same
way.

Of course, this does raise the question of why the type you’re using needs
the constraint in the first place. It might be that it simply wants to test for
null or use the as operator, but there’s another reason for applying this
constraint. Sometimes, you just need a type argument to be a reference type
—there are situations in which a generic method might be able to compile
without a class constraint, but it will not work correctly if used with a
value type. To illustrate this, I’ll describe a scenario in which I sometimes
find myself needing to use this kind of constraint.

I regularly write tests that create an instance of the class I’m testing and that
also need one or more fake objects to stand in for real objects with which
the object under test wants to interact. Using these stand-ins reduces the
amount of code any single test has to exercise and can make it easier to
verify the behavior of the object being tested. For example, my test might
need to verify that my code sends messages to a server at the right moment,
but I don’t want to have to run a real server during a unit test, so I provide
an object that implements the same interface as the class that would
transmit the message but that won’t really send the message. This
combination of an object under test plus a fake is such a common pattern
that it might be useful to put the code into a reusable base class. Using
generics means that the class can work for any combination of the type
being tested and the type being faked. Example 4-11 shows a simplified
version of a kind of helper class I sometimes write in these situations.

Example 4-11. Constrained by another constraint
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Moq;

public class TestBase<TSubject, TFake>
 where TSubject : new()
 where TFake : class
{

 public TSubject? Subject { get; private set; }
 public Mock<TFake>? Fake { get; private set; }

 [TestInitialize]
 public void Initialize()
 {
 Subject = new TSubject();
 Fake = new Mock<TFake>();
 }
}

There are various ways to build fake objects for test purposes. You could
just write new classes that implement the same interface as your real
objects, but there are also third-party libraries that can generate them. One
such library is called Moq (an open source project available for free), and
that’s where the Mock<T> class in Example 4-11 comes from. It’s capable
of generating a fake implementation of any interface or of any nonsealed
class. (Chapter 6 describes the sealed keyword.) It will provide empty
implementations of all members by default, and you can configure more
interesting behaviors if necessary. You can also verify whether the code
under test used the fake object in the way you expected.

How is that relevant to constraints? The Mock<T> class specifies a
reference type constraint on its own type argument, T. This is due to the
way in which it creates dynamic implementations of types at runtime; it’s a
technique that can work only for reference types. Moq generates a type at
runtime, and if T is an interface, that generated type will implement it,
whereas if T is a class, the generated type will derive from it. There’s
nothing useful it can do if T is a struct, because you cannot derive from a
value type. That means that when I use Mock<T> in Example 4-11, I need
to make sure that whatever type argument I pass is not a struct (i.e., it must
be a reference type). But the type argument I’m using is one of my class’s
type parameters: TFake. So I don’t know what type that will be—that’ll be
up to whoever is using my class.

For my class to compile without error, I have to ensure that I have met the
constraints of any generic types that I use. I have to guarantee that
Mock<TFake> is valid, and the only way to do that is to add a constraint

3

https://github.com/Moq

on my own type that requires TFake to be a reference type. And that’s
what I’ve done on the third line of the class definition in Example 4-11.
Without that, the compiler would report errors on the two lines that refer to
Mock<TFake>.

To put it more generally, if you want to use one of your own type
parameters as the type argument for a generic that specifies a constraint,
you’ll need to specify the same constraint on your own type parameter.

Value Type Constraints
Just as you can constrain a type argument to be a reference type, you can
also constrain it to be a value type. As shown in Example 4-12, the syntax is
similar to that for a reference type constraint but with the struct
keyword.

Example 4-12. Constraint requiring a value type
public class Quux<T>
 where T : struct
...

Before now, we’ve seen the struct keyword only in the context of
custom value types, but despite how it looks, this constraint permits bool,
enum types, and any of the built-in numeric types such as int, as well as
custom structs.

.NET’s Nullable<T> type imposes this constraint. Recall from Chapter 3
that Nullable<T> provides a wrapper for value types that allows a
variable to hold either a value or no value. (We normally use the special
syntax C# provides, so we’d write, say, int? instead of
Nullable<int>.) The only reason this type exists is to provide
nullability for types that would not otherwise be able to hold a null value.
So it only makes sense to use this with a value type—reference type
variables can already be set to null without needing this wrapper. The
value type constraint prevents you from using Nullable<T> with types
for which it is unnecessary.

Value Types All the Way Down with Unmanaged
Constraints
You can specify unmanaged as a constraint, which requires that the type
argument be a value type but also that it contains no references. All of the
type’s fields must be value types, and if any of those fields is not a built-in
primitive type, then its type must in turn contain only fields that are value
types, and so on all the way down. In practice this means that all the actual
data needs to be either one of a fixed set of built-in types (essentially, all the
numeric types, bool, or a pointer) or an enum type. This is mainly of
interest in interop scenarios, because types that match the unmanaged
constraint can be passed safely and efficiently to unmanaged code.

Not Null Constraints
If you use the nullable references feature described in Chapter 3 (which is
enabled by default when you create new projects), you can specify a
notnull constraint. This allows either value types or non-nullable
reference types but not nullable reference types.

Other Special Type Constraints
Chapter 3 described various special kinds of types, including enumeration
types (enum) and delegate types (covered in detail in Chapter 9). It is
sometimes useful to constrain type arguments to be one of these kinds of
types. There’s no special trick to this, though: you can just use type
constraints. All delegate types derive from System.Delegate, and all
enumeration types derive from System.Enum. As Example 4-13 shows,
you can just write a type constraint requiring a type argument to derive
from either of these.

Example 4-13. Constraints requiring delegate and enum types
public class RequireDelegate<T>
 where T : Delegate
{
}

public class RequireEnum<T>
 where T : Enum
{
}

Multiple Constraints
If you’d like to impose multiple constraints for a single type argument, you
can just put them in a list, as Example 4-14 shows. There are some
restrictions. You cannot combine the class, struct, notnull, or
unmanaged constraints—these are mutually exclusive. If you do use one
of these keywords, it must come first in the list. If the new() constraint is
present, it must be last.

Example 4-14. Multiple constraints
public class Spong<T>
 where T : IEnumerable<T>, IDisposable, new()
...

When your type has multiple type parameters, you write one where clause
for each type parameter you wish to constrain. In fact, we saw this earlier—
Example 4-11 defines constraints for both of its parameters.

Zero-Like Values
There are certain features that all types support and that therefore do not
require a constraint. This includes the set of methods defined by the
object base class, covered in Chapters 3 and 6. But there’s a more basic
feature that can sometimes be useful in generic code.

Variables of any type can be initialized to a default value. As you have seen
in the preceding chapters, there are some situations in which the CLR does
this for us. For example, all the fields in a newly constructed object will
have a known value even if we don’t write field initializers and don’t
supply values in the constructor. Likewise, a new array of any type will
have all of its elements initialized to a known value. The CLR does this by
filling the relevant memory with zeros. The exact meaning of this depends

on the data type. For any of the built-in numeric types, the value will quite
literally be the number 0, but for nonnumeric types, it’s something else. For
bool, the default is false, and for a reference type, it is null.

Sometimes, it can be useful for generic code to be able to set a variable to
this initial default zero-like value. But you cannot use a literal expression to
do this in most situations. You cannot assign null into a variable whose
type is specified by a type parameter unless that parameter has been
constrained to be a reference type. And you cannot assign the literal 0 into
any such variable, because there is currently no way to constrain a type
argument to be a numeric type.

Instead, you can request the zero-like value for any type using the
default keyword. (This is the same keyword we saw inside a switch
statement in Chapter 2 but used in a completely different way. C# keeps up
the C-family tradition of defining multiple, unrelated meanings for each
keyword.) If you write default(SomeType), where SomeType is
either a specific type or a type parameter, you will get the default initial
value for that type: 0 if it is a numeric type, and the equivalent for any other
type. For example, the expression default(int) has the value 0,
default(bool) is false, and default(string) is null. You can
use this with a generic type parameter to get the default value for the
corresponding type argument, as Example 4-15 shows.

Example 4-15. Getting the default (zero-like) value of a type argument
static void ShowDefault<T>()
{
 Console.WriteLine(default(T));
}

Inside a generic type or method that defines a type parameter T, the
expression default(T) will produce the default, zero-like value for T—
whatever T may be—without requiring constraints. So you could use the
generic method in Example 4-15 to verify that the defaults for int, bool,
and string are the values I stated.

NOTE
When the nullable references feature (described in Chapter 3) is enabled, the compiler
will consider a default(T) to be a potentially null value, unless you’ve ruled out the
use of reference types by applying the struct constraint.

In cases where the compiler is able to infer what type is required, you can
use a simpler form. Instead of writing default(T), you can just write
default. That wouldn’t work in Example 4-15 because
Console.WriteLine can accept pretty much anything, so the compiler
can’t narrow it down to one option, but it will work in Example 4-16
because the compiler can see that the generic method’s return type is T, so
this must need a default(T). Since it can infer that, it’s enough for us to
write just default.

Example 4-16. Getting the default (zero-like) value of an inferred type
static T? GetDefault<T>() => default;

And since I’ve just shown you an example of one, this seems like a good
time to talk about generic methods.

Generic Methods
As well as generic types, C# also supports generic methods. In this case, the
generic type parameter list follows the method name and precedes the
method’s normal parameter list. Example 4-17 shows a method with a
single type parameter. It uses that parameter as its return type and also as
the element type for an array to be passed in as the method’s argument. This
method returns the final element in the array, and because it’s generic, it
will work for any array element type.

Example 4-17. A generic method
public static T GetLast<T>(T[] items) => items[^1];

NOTE
You can define generic methods inside either generic types or nongeneric types. If a
generic method is a member of a generic type, all of the type parameters from the
containing type are in scope inside the method, as well as the type parameters specific to
the method.

Just as with a generic type, you can use a generic method by specifying its
name along with its type arguments, as Example 4-18 shows.

Example 4-18. Invoking a generic method
int[] values = { 1, 2, 3 };
int last = GetLast<int>(values);

Generic methods work in a similar way to generic types but with type
parameters that are only in scope within the method declaration and body.
You can specify constraints in much the same way as with generic types.
The constraints appear after the method’s parameter list and before its body,
as Example 4-19 shows.

Example 4-19. A generic method with a constraint
public static T MakeFake<T>()
 where T : class
{
 return new Mock<T>().Object;
}

There’s one significant way in which generic methods differ from generic
types, though: you don’t always need to specify a generic method’s type
arguments explicitly.

Type Inference
The C# compiler is often able to infer the type arguments for a generic
method. I can modify Example 4-18 by removing the type argument list
from the method invocation, as Example 4-20 shows. This doesn’t change
the meaning of the code in any way.

Example 4-20. Generic method type argument inference
int[] values = { 1, 2, 3 };
int last = GetLast(values);

When presented with this sort of ordinary-looking method call, if there’s no
nongeneric method of that name available, the compiler starts looking for
suitable generic methods. If the method in Example 4-17 is in scope, it will
be a candidate, and the compiler will attempt to deduce the type arguments.
This is a pretty simple case. The method expects an array of some type T,
and we’ve passed an array with elements of type int, so it’s not a massive
stretch to work out that this code should be treated as a call to
GetLast<int>.

It gets more complex with more intricate cases. The C# specification has
about six pages dedicated to the type inference algorithm, but it’s all to
support one goal: letting you leave out type arguments when they would be
redundant. By the way, type inference is always performed at compile time,
so it’s based on the static type of the method arguments.

With APIs that make extensive use of generics (such as LINQ, which is the
topic of Chapter 10), explicitly listing every type argument can make the
code very hard to follow, so it is common to rely on type inference. And if
you use anonymous types, then type argument inference becomes essential
because it is not possible to supply the type arguments explicitly.

Generics and Tuples
C#’s lightweight tuples have a distinctive syntax, but as far as the runtime is
concerned, there is nothing special about them. They are all just instances of
a set of generic types. Look at Example 4-21. This uses (int, int) as
the type of a local variable to indicate that it is a tuple containing two int
values.

Example 4-21. Declaring a tuple variable in the normal way
(int, int) p = (42, 99);

Now look at Example 4-22. This uses the ValueTuple<int, int>
type in the System namespace. But this is exactly equivalent to the
declaration in Example 4-21. In Visual Studio or VS Code, if you hover the
mouse over the p2 variable, it will report its type as (int, int).

Example 4-22. Declaring a tuple variable with its underlying type
ValueTuple<int, int> p2 = (42, 99);

One thing that C#’s special syntax for tuples adds is the ability to name the
tuple elements. The ValueTuple family names its elements Item1,
Item2, Item3, etc., but in C# we can pick other names. When you declare
a local variable with named tuple elements, those names are a fiction
maintained by C#—they have no runtime representation at all. However,
when a method returns a tuple, as in Example 4-23, it’s different: the names
need to be visible so that code consuming this method can use the same
names. Even if this method is in some library component that my code has
referenced, I want to be able to write Pos().X, instead of having to use
Pos().Item1.

Example 4-23. Returning a tuple
public static (int X, int Y) Pos() => (10, 20);

To make this work, the compiler applies an attribute named
TupleElementNames to the method’s return value, and this contains an
array listing the property names to use. (Chapter 14 describes attributes.)
You can’t actually write code that does this yourself: if you write a method
that returns a ValueTuple<int, int> and you try to apply the
TupleElementNamesAttribute as a return attribute, the compiler
will produce an error telling you not to use this attribute directly and to use
the tuple syntax instead. But that attribute is how the compiler reports the
tuple element names.

Be aware that there’s another family of tuple types in the runtime libraries,
Tuple<T>, Tuple<T1, T2>, and so on. These look almost identical to
the ValueTuple family. The difference is that the Tuple family of
generic types are all classes, whereas all the ValueTuple types are

structs. The C# lightweight tuple syntax only uses the ValueTuple
family. The Tuple family has been around in the runtime libraries for
much longer, though, so you often see them used in older code that needed
to bundle a set of values together without defining a new type just for that
job.

Inside Generics
If you are familiar with C++ templates, you will by now have noticed that
C# generics are quite different than templates. Superficially, they have some
similarities and can be used in similar ways—both are suitable for
implementing collection classes, for example. However, there are some
template-based techniques that simply won’t work in C#, such as the code
in Example 4-24.

Example 4-24. A template technique that doesn’t work in C# generics
public static T Add<T>(T x, T y)
{
 return x + y; // Will not compile
}

You can do this sort of thing in a C++ template but not in C#, and you
cannot fix it completely with a constraint. You could add a type constraint
requiring T to derive from some type or implement some interface that
defines a custom + operator, which would get this to compile, but it would
be pretty limited—it would work only for types derived from that base type.
In C++, you can write a template that will add together two items of any
type that supports addition, whether that is a built-in type or a custom one.
Moreover, C++ templates don’t need constraints; the compiler is able to
work out for itself whether a particular type will work as a template
argument.

This issue is not specific to arithmetic. The fundamental problem is that
because generic code relies on constraints to know what operations are
available on its type parameters, it can use only features represented as
members of interfaces or shared base classes. If arithmetic in .NET were

interface-based, it would be possible to define a constraint that requires it.
But operators are all static methods, and although interfaces can contain
static members, there’s no supported way for individual types to supply
their own implementation—the dynamic dispatch mechanism that enables
each type to supply its own interface implementation only works for
instance members.

The limitations of C# generics are an upshot of how they are designed to
work, so it’s useful to understand the mechanism. (These limitations are not
specific to any particular CLR implementation, by the way. They are an
inevitable result of how generics fit into the design of the .NET runtime.)

Generic methods and types are compiled without knowing which types will
be used as arguments. This is the fundamental difference between C#
generics and C++ templates—in C++, the compiler gets to see every
instantiation of a template. But with C#, you can instantiate generic types
without access to any of the relevant source code, long after the code has
been compiled. After all, Microsoft wrote the generic List<T> class years
ago, but you could write a brand-new class today and plug that in as the
type argument just fine. (You might point out that the C++ standard
library’s std::vector has been around even longer. However, the C++
compiler has access to the source file that defines the class, which is not
true of C# and List<T>. C# sees only the compiled library.)

The upshot of this is that the C# compiler needs to have enough information
to be able to generate type-safe code at the point at which it compiles
generic code. Take Example 4-24. It cannot know what the + operator
means here, because it would be different for different types. With the built-
in numeric types, that code would need to compile to the specialized
intermediate language (IL) instructions for performing addition. If that code
were in a checked context (i.e., using the checked keyword shown in
Chapter 2), we’d already have a problem, because the code for adding
integers with overflow checking uses different IL opcodes for signed and
unsigned integers. Furthermore, since this is a generic method, we may not
be dealing with the built-in numeric types at all—perhaps we are dealing
with a type that defines a custom + operator, in which case the compiler

4

5

would need to generate a method call. (Custom operators are just methods
under the covers.) Or if the type in question turns out not to support
addition, the compiler should generate an error.

There are several possible outcomes for compiling a simple addition
expression, depending on the actual types involved. That is fine when the
types are known to the compiler, but it has to compile the code for generic
types and methods without knowing which types will be used as arguments.

You might argue that perhaps Microsoft could have supported some sort of
tentative semicompiled format for generic code, and in a sense, it did. When
introducing generics, Microsoft modified the type system, file format, and
IL instructions to allow generic code to use placeholders representing type
parameters to be filled in when the type is fully constructed. So why not
extend it to handle operators? Why not let the compiler generate errors at
the point at which you compile code that attempts to use a generic type
instead of insisting on generating errors when the generic code itself is
compiled? Well, it turns out that you can plug in new sets of type arguments
at runtime—the reflection API that we’ll look at in Chapter 13 lets you
construct generic types. There isn’t necessarily a compiler available at the
point at which an error would become apparent, since not all versions of
.NET ship with a copy of the C# compiler. In any case, what should happen
if a generic class was written in C# but consumed by a completely different
language, perhaps one that didn’t support operator overloading? Which
language’s rules should apply when it comes to working out what to do with
that + operator? Should it be the language in which the generic code was
written or the language in which the type argument was written? (What if
there are multiple type parameters, and for each argument, you use a type
written in a different language?) Or perhaps the rules should come from the
language that decided to plug the type arguments into the generic type or
method, but what about cases where one piece of generic code passes its
arguments through to some other generic entity? Even if you could decide
which of these approaches would be best, it supposes that the rules used to
determine what a line of code actually means are available at runtime, a

presumption that once again founders on the fact that the relevant compilers
will not necessarily be installed on the machine running the code.

.NET generics solve this problem by requiring the meaning of generic code
to be fully defined when the generic code is compiled, using the rules of the
language in which the generic code was written. If the generic code
involves using methods or other members, they must be resolved statically
(i.e., the identity of those members must be determined precisely at compile
time). Critically, that means compile time for the generic code itself, not for
the code consuming the generic code. These requirements explain why C#
generics are not as flexible as the consumer-compile-time substitution
model that C++ uses. The payoff is that you can compile generics into
libraries in binary form, and they can be used by any .NET language that
supports generics, with completely predictable behavior.

Summary
Generics enable us to write types and methods with type arguments, which
can be filled in at compile time to produce different versions of the types or
methods that work with particular types. One of the most important use
cases for generics back when they were first introduced was to make it
possible to write type-safe collection classes such as List<T>. We’ll look
at some of these collection types in the next chapter.

1 When saying the names of generic types, the convention is to use the word of as in “List of T”
or “List of int.”

2 This is permitted even if you used the plain class constraint in an enabled nullable
annotation context. The nullable references feature does not provide watertight guarantees of
non-null-ness, so it permits comparison with null.

3 Moq relies on the dynamic proxy feature from the Castle Project to generate this type. If you
would like to use something similar in your code, you can find this at the Castle Project.

4 Static interface members are not available in .NET Framework.

5 A proposal exists for adding dynamic dispatch for static interface members. Although it is not
officially part of C# 10.0, the .NET 6.0 SDK includes a preview implementation. You can try it

http://castleproject.org/

out by setting the EnablePreviewFeatures project property to true. If this becomes
supported in a future version, perhaps we will see an IAddable<T>.

Chapter 5. Collections

Most programs need to deal with multiple pieces of data. Your code might
have to iterate through some transactions to calculate the balance of an
account, for example, or display recent messages in a social media web
application, or update the positions of characters in a game. In most kinds
of applications, the ability to work with collections of information is likely
to be important.

C# offers a simple kind of collection called an array. The CLR’s type
system supports arrays intrinsically, so they are efficient, but for some
scenarios they can be too basic, so the runtime libraries build on the
fundamental services provided by arrays to provide more powerful and
flexible collection types. I’ll start with arrays, because they are the
foundation of most of the collection classes.

Arrays
An array is an object that contains multiple elements of a particular type.
Each element is a storage location similar to a field, but whereas with fields
we give each storage slot a name, array elements are simply numbered. The
number of elements is fixed for the lifetime of the array, so you must
specify the size when you create it. Example 5-1 shows the syntax for
creating new arrays.

Example 5-1. Creating arrays
int[] numbers = new int[10];
string[] strings = new string[numbers.Length];

As with all objects, we construct an array with the new keyword followed
by a type name, but instead of parentheses with constructor arguments, we
put square brackets containing the array size. As the example shows, the
expression defining the size can be a constant, but it doesn’t have to be—

the second array’s size will be determined by evaluating
numbers.Length at runtime. In this case, the second array will have 10
elements, because we’re using the first array’s Length property. All arrays
have this read-only property, and it returns the total number of elements in
the array.

The Length property’s type is int, which means it can cope with arrays
of up to about 2.1 billion elements. In a 32-bit process, the limiting factor
on array size is likely to be available address space, but back when .NET
added support for 64-bit processes, larger arrays became possible, so there’s
also a LongLength property of type long. However, you don’t see that
used much, because the runtime does not currently support creation of
arrays with more than 2,147,483,591 (0x7FFFFFC7) elements in any single
dimension. So only rectangular multidimensional arrays (described later in
this chapter) can contain more elements than Length can report. And even
those have an upper limit of 4,294,967,295 (0xFFFFFFFF) elements on
current versions of .NET.

NOTE
If you’re using .NET Framework, you’ll run into another limit first: a single array
cannot normally take more than 2 GB of memory. (This is an upper limit on the size of
any single object. In practice, only arrays usually run into this limit, although you could
conceivably hit it with a particularly long string.) You can overcome this by adding a
<gcAllowVeryLargeObjects enabled="true" /> element inside the
<runtime> section of a project’s App.config file. The limits in the preceding
paragraph still apply, along with an additional restriction that arrays with an element
type other than byte cannot have more than 0x7FFEFFFF elements. Even so, these are
significantly less restrictive than a 2 GB ceiling.

In Example 5-1, I’ve broken my normal rule of avoiding redundant type
names in variable declarations. The initializer expressions make it clear that
the variables are arrays of int and string, respectively, so I’d normally
use var for this sort of code, but I’ve made an exception here so that I can
show how to write the name of an array type. Array types are distinct types

in their own right, and if we want to refer to the type that is a single
dimensional array of some particular element type, we put [] after the
element type name.

All array types derive from a common base class called System.Array.
This defines the Length and LongLength properties and various other
members we’ll be looking at in due course. You can use array types in all
the usual places you can use other types. So you could declare a field, or a
method parameter of type string[]. You can also use an array type as a
generic type argument. For example, IEnumerable<int[]> would be a
sequence of arrays of integers (each of which could be a different size).

An array type is always a reference type, regardless of the element type.
Nonetheless, the choice between reference type and value type elements
makes a significant difference in an array’s behavior. As discussed in
Chapter 3, when an object has a field with a value type, the value itself lives
inside the memory allocated for the object. The same is true for arrays—
when the elements are value types, the value lives in the array element
itself, but with a reference type, elements contain only references. Each
instance of a reference type has its own identity, and since multiple
variables may all end up referring to that instance, the CLR needs to
manage its lifetime independently of any other object, so it will end up with
its own distinct block of memory. So while an array of 1,000 int values
can all live in one contiguous memory block, with reference types, the array
just contains the references, not the actual instances. An array of 1,000
different strings would need 1,001 heap blocks—one for the array and one
for each string.

NOTE
When using reference type elements, you’re not obliged to make every element in an
array of references refer to a distinct object. You can leave as many elements as you like
set to null, and you’re also free to make multiple elements refer to the same object.
This is just another variation on the theme that references in array elements work in
much the same way as they do in local variables and fields.

To access an element in an array, we use square brackets containing the
index of the element we’d like to use. The index is zero-based. Example 5-2
shows a few examples.

Example 5-2. Accessing array elements
// Continued from Example 5-1
numbers[0] = 42;
numbers[1] = numbers.Length;
numbers[2] = numbers[0] + numbers[1];
numbers[numbers.Length - 1] = 99;

As with the array’s size at construction, the array index can be a constant,
but it can also be a more complex expression, calculated at runtime. In fact,
that’s also true of the part that comes directly before the opening bracket. In
Example 5-2, I’ve just used a variable name to refer to an array, but you can
use brackets after any array-typed expression. Example 5-3 retrieves the
first element of an array returned by a method call. (The details of the
example aren’t strictly relevant, but in case you’re wondering, it finds the
copyright message associated with the component that defines an object’s
type. For example, if you pass a string to the method, it will return “©
Microsoft Corporation. All rights reserved.” This uses the reflection API
and custom attributes, the topics of Chapters 13 and 14.)

Example 5-3. Convoluted array access
public static string GetCopyrightForType(object o)
{
 Assembly asm = o.GetType().Assembly;
 var copyrightAttribute = (AssemblyCopyrightAttribute)
 asm.GetCustomAttributes(typeof(AssemblyCopyrightAttribute),
true)[0];
 return copyrightAttribute.Copyright;
}

Expressions involving array element access are special, in that C# considers
them to be a kind of variable. This means that as with local variables and
fields, you can use them on the lefthand side of an assignment statement,
whether they’re simple, like the expressions in Example 5-2, or more
complex, like those in Example 5-3. You can also use them with the ref
keyword (as described in Chapter 3) to pass a reference to a particular

element to a method, to store it in a ref local variable, or to return it from
a method with a ref return type.

The CLR always checks the index against the array size. If you try to use
either a negative index or an index greater than or equal to the length of the
array, the runtime will throw an IndexOutOfRangeException.

Although the size of an array is invariably fixed, its contents are always
modifiable—there is no such thing as a read-only array. (As we’ll see in
“ReadOnlyCollection<T>”, .NET provides a class that can act as a read-
only façade for an array.) You can, of course, create an array with an
immutable element type, and this will prevent you from modifying the
element in place. So Example 5-4, which uses the immutable Complex
value type provided by .NET, will not compile.

Example 5-4. How not to modify an array with immutable elements
var values = new Complex[10];
// These lines both cause compiler errors:
values[0].Real = 10;
values[0].Imaginary = 1;

The compiler complains because the Real and Imaginary properties are
read-only; Complex does not provide any way to modify its values.
Nevertheless, you can modify the array: even if you can’t modify an
existing element in place, you can always overwrite it by supplying a
different value, as Example 5-5 shows.

Example 5-5. Modifying an array with immutable elements
var values = new Complex[10];
values[0] = new Complex(10, 1);

Read-only arrays wouldn’t be much use in any case, because all arrays start
out filled with a default value that you don’t get to specify. The CLR fills
the memory for a new array with zeros, so you’ll see 0, null, or false,
depending on the array’s element type.

WARNING
C# 10.0 adds the ability to write a zero-argument constructor for a struct. You might
have expected array creation to invoke constructors of this kind automatically. It does
not.

For some applications, all-zero (or equivalent) content might be a useful
initial state for an array, but in some cases, you’ll want to set some other
content before starting to work.

Array Initialization
The most straightforward way to initialize an array is to assign values into
each element in turn. Example 5-6 creates a string array, and since
string is a reference type, creating a five-element array doesn’t create
five strings. Our array starts out with five nulls. (This is true even if you’ve
enabled C#’s nullable references feature, as described in Chapter 3.
Unfortunately, array initialization is one of the holes that make it impossible
for that feature to offer absolute guarantees of non-nullness.) So the
example goes on to populate each array element with a reference to a string.

Example 5-6. Laborious array initialization
var workingWeekDayNames = new string[5];
workingWeekDayNames[0] = "Monday";
workingWeekDayNames[1] = "Tuesday";
workingWeekDayNames[2] = "Wednesday";
workingWeekDayNames[3] = "Thursday";
workingWeekDayNames[4] = "Friday";

This works, but it is unnecessarily verbose. C# supports a shorter syntax
that achieves the same thing, shown in Example 5-7. The compiler turns
this into code that works like Example 5-6.

Example 5-7. Array initializer syntax
var workingWeekDayNames = new string[]
 { "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" };

You can go further. Example 5-8 shows that if you specify the type
explicitly in the variable declaration, you can write just the initializer list,
leaving out the new keyword. This works only in initializer expressions, by
the way; you can’t use this syntax to create an array in other expressions,
such as assignments or method arguments. (The more verbose initializer
expression in Example 5-7 works in all those contexts.)

Example 5-8. Shorter array initializer syntax
string[] workingWeekDayNames =
 { "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" };

We can go further still: if all the expressions inside the array initializer list
are of the same type, the compiler can infer the array type, so we can write
just new[] without an explicit element type. Example 5-9 does this.

Example 5-9. Array initializer syntax with element type inference
var workingWeekDayNames = new[]
 { "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" };

That was actually slightly longer than Example 5-8. However, as with
Example 5-7, this style is not limited to variable initialization. You can also
use it when you need to pass an array as an argument to a method, for
example. If the array you are creating will only be passed into a method and
never referred to again, you may not want to declare a variable to refer to it.
It might be neater to write the array directly in the argument list. Example
5-10 passes an array of strings to a method using this technique.

Example 5-10. Array as argument
SetHeaders(new[] { "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday" });

Searching and Sorting
Sometimes, you will not know the index of the array element you need. For
example, suppose you are writing an application that shows a list of
recently used files. Each time the user opens a file in your application, you
would want to bring that file to the top of the list, and you’d need to detect
when the file was already in the list to avoid having it appear multiple

times. If the user happened to use your recent file list to open the file, you
would already know it’s in the list and at what offset. But what if the user
opens the file some other way? In that case, you’ve got a filename, and you
need to find out where that appears in your list, if it’s there at all.

Arrays can help you find the item you want in this kind of scenario. There
are methods that examine each element in turn, stopping at the first match,
and there are also methods that can work considerably faster if your array
stores its elements in a particular order. To help with that, there are also
methods for sorting the contents of an array into whichever order you
require.

The static Array.IndexOf method provides the most straightforward
way to search for an element. It does not need your array elements to be in
any particular order: you just pass it the array in which to search and the
value you’re looking for, and it will walk through the elements until it finds
a value equal to the one you want. It returns the index at which it found the
first matching element, or −1 if it reached the end of the array without
finding a match. Example 5-11 shows how you might use this method as
part of the logic for updating a list of recently opened files.

Example 5-11. Searching with IndexOf
int recentFileListIndex = Array.IndexOf(myRecentFiles, openedFile);
if (recentFileListIndex < 0)
{
 AddNewRecentEntry(openedFile);
}
else
{
 MoveExistingRecentEntryToTop(recentFileListIndex);
}

That example starts its search at the beginning of the array, but you have
other options. The IndexOf method is overloaded, and you can pass an
index from which to start searching and optionally a second number
indicating how many elements you want it to look at before it gives up.
There’s also a LastIndexOf method, which works in reverse. If you do
not specify an index, it starts from the end of the array and works backward.

As with IndexOf, you can provide one or two more arguments, indicating
the offset at which you’d like to start and the number of elements to check.

These methods are fine if you know precisely what value you’re looking
for, but often, you’ll need to be a bit more flexible: you may want to find
the first (or last) element that meets some particular criteria. For example,
suppose you have an array representing the bin values for a histogram. It
might be useful to find out which is the first nonempty bin. So rather than
searching for a particular value, you’d want to find the first element with
any value other than zero. Example 5-12 shows how to use the
FindIndex method to locate the first such entry.

Example 5-12. Searching with FindIndex
public static int GetIndexOfFirstNonEmptyBin(int[] bins)
 => Array.FindIndex(bins, IsNonZero);

private static bool IsNonZero(int value) => value != 0;

My IsNonZero method contains the logic that decides whether any
particular element is a match, and I’ve passed that method as an argument
to FindIndex. You can pass any method with a suitable signature—
FindIndex requires a method that takes an instance of the array’s element
type and returns a bool. (Strictly speaking, it takes a Predicate<T>,
which is a kind of delegate, something I’ll discuss in Chapter 9.) Since any
method with a suitable signature will do, we can make our search criteria as
simple or as complex as we like.

By the way, the logic for this particular example is so simple that writing a
separate method for the condition is probably overkill. For simple cases
such as these, you’d almost certainly use the lambda syntax (using => to
indicate that an expression represents an inline function) instead. That’s also
something I’ll be discussing in Chapter 9, so this is jumping ahead, but I’ll
just show how it looks because it’s more concise. Example 5-13 has exactly
the same effect as Example 5-12 but doesn’t require us to declare and write
a whole extra method explicitly. (And at the time of writing this, it’s also
more efficient, because with a lambda, the compiler generates code that

reuses the Predicate<T> object that it creates, whereas Example 5-12
will construct a new one each time.)

Example 5-13. Using a lambda with FindIndex
public static int GetIndexOfFirstNonEmptyBin(int[] bins)
 => Array.FindIndex(bins, value => value != 0);

As with IndexOf, FindIndex provides overloads that let you specify
the offset at which to start searching and the number of elements to check
before giving up. The Array class also provides FindLastIndex,
which works backward—it corresponds to LastIndexOf, much as
FindIndex corresponds to IndexOf.

When you’re searching for an array entry that meets some particular
criteria, you might not be all that interested in the index of the matching
element—you might need to know only the value of the first match.
Obviously, it’s pretty easy to get that: you can just use the value returned by
FindIndex in conjunction with the array index syntax. However, you
don’t need to, because the Array class offers Find and FindLast
methods that search in precisely the same way as FindIndex and
FindLastIndex but that return the first or last matching value instead of
returning the index at which that value was found.

An array could contain multiple items that meet your criteria, and you
might want to find all of them. You could write a loop that calls
FindIndex, adding one to the index of the previous match and using that
as the starting point for the next search, repeating until either reaching the
end of the array or getting a result of −1, indicating that no more matches
were found. And that would be the way to go if you needed to know the
index of each match. But if you are interested only in knowing all of the
matching values, and do not need to know exactly where those values were
in the array, you could use the FindAll method shown in Example 5-14 to
do all the work for you.

Example 5-14. Finding multiple items with FindAll
public static T[] GetNonNullItems<T>(T[] items) where T : class
 => Array.FindAll(items, value => value != null);

This takes any array with reference type elements and returns an array that
contains only the non-null elements in that array.

All of the search methods I’ve shown so far run through an array’s elements
in order, testing each element in turn. This works well enough, but with
large arrays it may be unnecessarily expensive, particularly in cases where
comparisons are relatively complex. Even for simple comparisons, if you
need to deal with arrays with millions of elements, this sort of search can
take long enough to introduce visible delays. However, we can do much
better. For example, given an array of values sorted into ascending order, a
binary search can perform many orders of magnitude better. Example 5-15
shows two methods. The first, Sort, sorts an array of numbers into
ascending order. And if we have such a sorted array, we can then pass it to
Find, which uses the Array.BinarySearch method.

Example 5-15. Sorting an array, and BinarySearch
void Sort(int[] numbers)
{
 Array.Sort(numbers);
}

int Find(int[] numbers, int searchFor)
{
 return Array.BinarySearch(numbers, searchFor);
}

Binary search is a widely used algorithm that exploits the fact that its input
is sorted to be able to rule out half of the array at each step. It starts with the
element in the middle of the array. If that happens to be the value required,
it can stop, but otherwise, depending on whether the value it found is higher
or lower than the value we want, it can know instantly which half of the
array the value will be in (if it’s present at all). It then leaps to the middle of
the remaining half, and if that’s not the right value, again it can determine
which quarter will contain the target. At each step, it narrows the search
down by half, and after halving the size a few times, it will be down to a
single item. If that’s not the value it’s looking for, the item it wants is
missing.

TIP
BinarySearch produces negative numbers when the value is not found. In these
cases, this binary chop process will finish at the value nearest to the one we are looking
for, and that might be useful information. So a negative number still tells us the search
failed, but that number is the negation of the index of the closest match.

A binary search is more complex than a simple linear search, but with large
arrays, it pays off because far fewer iterations are needed. Given an array of
100,000,000 elements, it has to perform only 27 steps instead of
100,000,000. Obviously, with smaller arrays, the improvement is reduced,
and there will be some minimum size of array at which the relative
complexity of a binary search outweighs the benefit. If your array contains
only 10 values, a linear search may well be faster. But a binary search is
certainly the clear winner with 100,000,000 int elements. The cases that
require the most work are where it finds no match (producing a negative
result), and in these cases, BinarySearch determines that an element is
missing over 19,000 times faster than the linear search performed by
Array.IndexOf does. However, you need to take care: a binary search
works only for data that is already ordered, and the cost of getting your data
into order could well outweigh the benefits. With an array of 100,000,000
ints, you would need to do about 500 searches before the cost of sorting
was outweighed by the improved search speed, and, of course, that would
work only if nothing changed in the meantime that forced you to redo the
sort. With performance tuning, it’s always important to look at the whole
scenario and not just the microbenchmarks.

Incidentally, Array.BinarySearch offers overloads for searching
within some subsection of the array, similar to those we saw for the other
search methods. It also lets you customize the comparison logic. This works
with the comparison interfaces I showed in earlier chapters. By default, it
will use the IComparable<T> implementation provided by the array
elements themselves, but you can provide a custom IComparer<T>
instead. The Array.Sort method I used to put the elements into order

also supports narrowing down the range and using custom comparison
logic.

There are other searching and sorting methods besides the ones provided by
the Array class itself. All arrays implement IEnumerable<T> (where T
is the array’s element type), which means you can also use any of the
operations provided by .NET’s LINQ to Objects functionality. This offers a
much wider range of features for searching, sorting, grouping, filtering, and
generally working with collections of objects; Chapter 10 will describe
these features. Arrays have been in .NET for longer than LINQ, which is
one reason for this overlap in functionality, but where arrays provide their
own equivalents of standard LINQ operators, the array versions can
sometimes be more efficient because LINQ is a more generalized solution.

Multidimensional Arrays
The arrays I’ve shown so far have all been one-dimensional, but C#
supports two multidimensional forms: jagged arrays and rectangular
arrays.

Jagged arrays
A jagged array is simply an array of arrays. The existence of this kind of
array is a natural upshot of the fact that arrays have types that are distinct
from their element type. Because int[] is a type, you can use that as the
element type of another array. Example 5-16 shows the syntax, which is
very nearly unsurprising.

Example 5-16. Creating a jagged array
int[][] arrays = new int[5][]
{
 new[] { 1, 2 },
 new[] { 1, 2, 3, 4, 5, 6 },
 new[] { 1, 2, 4 },
 new[] { 1 },
 new[] { 1, 2, 3, 4, 5 }
};

Again, I’ve broken my usual rule for variable declarations—normally I’d
use var on the first line because the type is evident from the initializer, but
I wanted to show the syntax both for declaring the variable and for
constructing the array. And there’s a second redundancy in Example 5-16:
when using the array initializer syntax, you don’t have to specify the size
explicitly, because the compiler will work it out for you. I’ve exploited that
for the nested arrays, but I’ve set the size (5) explicitly for the outer array to
show where the size appears, because it might not be where you would
expect.

The type name for a jagged array is simple enough. In general, array types
have the form ElementType[], so if the element type is int[], we’d
expect the resulting array type to be written as int[][], and that’s what
we see. The constructor syntax is a bit more peculiar. It declares an array of
five arrays, and at a first glance, new int[5][] seems like a perfectly
reasonable way to express that. It is consistent with array index syntax for
jagged arrays; we can write arrays[1][3], which fetches the second of
those five arrays and then retrieves the fourth element from that second
array. (This is not a specialized syntax, by the way—there is no need for
special handling here, because any expression that evaluates to an array can
be followed by the index in square brackets. The expression arrays[1]
evaluates to an int[] array, and so we can follow that with [3].)

However, the new keyword does treat jagged arrays specially. It makes
them look consistent with array element access syntax, but it has to twist
things a little to do that. With a one-dimensional array, the pattern for
constructing a new array is new ElementType[length], so for
creating an array of five things, you’d expect to write new
ElementType[5]. If the things you are creating are arrays of int,
wouldn’t you expect to see int[] in place of ElementType? That
would imply that the syntax should be new int[][5].

That would be logical, but it looks like it’s the wrong way around, and
that’s because the array type syntax itself is effectively reversed. Arrays are
constructed types, like generics. With generics, the name of the generic type

from which we construct the actual type comes before the type argument
(e.g., List<int> takes the generic List<T> type and constructs it with
a type argument of int). If arrays had generic-like syntax, we might expect
to see array<int> for a one-dimensional array, array<array<int>>
for two dimensions, and so on—the element type would come after the part
that signifies that we want an array. But array types do it the other way
around—the arrayness is signified by the [] characters, so the element type
comes first. This is why the hypothetical logically correct syntax for array
construction looks weird. C# avoids the weirdness by not getting overly
stressed about logic here and just puts the size where most people expect it
to go rather than where it arguably should go.

NOTE
The syntax extends in the obvious way—for example, int[][][] for the type and
new int[5][][] for construction. C# does not define particular limits to the number
of dimensions, but there are some implementation-specific runtime limits. (Microsoft’s
compiler didn’t flinch when I asked for a 5,000-dimensional jagged array, but the CLR
refused to load the resulting program. In fact, it wouldn’t load anything with more than
1,166 dimensions.)

Example 5-16 initializes the array with five one-dimensional int[] arrays.
The layout of the code should make it fairly clear why this sort of array is
referred to as jagged: each row has a different length. With arrays of arrays,
there is no requirement for a rectangular layout. I could go further. Arrays
are reference types, so I could have set some rows to null. If I abandoned
the array initializer syntax and initialized the array elements individually, I
could have decided to make some of the one-dimensional int[] arrays
appear in more than one row.

Because each row in this jagged array contains an array, I’ve ended up with
six objects here—the five int[] arrays and then the int[][] array that
contains references to them. If you introduce more dimensions, you’ll get
yet more arrays. For certain kinds of work, the nonrectangularity and the

large numbers of objects can be problematic, which is why C# supports
another kind of multidimensional array.

Rectangular arrays
A rectangular array is a single array object that supports multidimensional
indexing. If C# didn’t offer multidimensional arrays, we could build
something a bit like them by convention. If you want an array with 10 rows
and 5 columns, you could construct a one-dimensional array with 50
elements, and then use code like myArray[i + (5 * j)] to access it,
where i is the column index and j is the row index. That would be an array
that you had chosen to think of as being two-dimensional, even though it’s
really just one big contiguous block. A rectangular array is essentially the
same idea, but where C# does the work for you. Example 5-17 shows how
to declare and construct rectangular arrays.

NOTE
Rectangular arrays are not just about convenience. There’s a type safety aspect too:
int[,] is a different type than int[] or int[,,], so if you write a method that
expects a two-dimensional rectangular array, C# will not allow anything else to be
passed.

Example 5-17. Rectangular arrays
int[,] grid = new int[5, 10];
var smallerGrid = new int[,]
{
 { 1, 2, 3, 4 },
 { 2, 3, 4, 5 },
 { 3, 4, 5, 6 }
};

Rectangular array type names use only a single pair of square brackets, no
matter how many dimensions they have. The number of commas inside the
brackets denotes the number of dimensions, so these examples with one
comma are two-dimensional. The runtime seems to impose a much lower
limit on the number of dimensions than for a jagged array. .NET 6.0 won’t

load a program that tries to use more than 32 dimensions in a rectangular
array.

The initializer syntax is very similar to that for multidimensional arrays (see
Example 5-16), except I do not start each row with new[], because this is
one big array, not an array of arrays. The numbers in Example 5-17 form a
shape that is clearly rectangular, and if you attempt to make things jagged
(with different row sizes), the compiler will report an error. This extends to
higher dimensions. If you wanted a three-dimensional “rectangular” array, it
would need to be a cuboid. Example 5-18 shows a cuboid array. You could
think of the initializer as being a list of two rectangular slices making up the
cuboid. And you can go higher, with hypercuboid arrays (although they are
still known as rectangular arrays, regardless of how many dimensions you
use).

Example 5-18. A 2 × 3 × 5 cuboid “rectangular” array
var cuboid = new int[,,]
{
 {
 { 1, 2, 3, 4, 5 },
 { 2, 3, 4, 5, 6 },
 { 3, 4, 5, 6, 7 }
 },
 {
 { 2, 3, 4, 5, 6 },
 { 3, 4, 5, 6, 7 },
 { 4, 5, 6, 7, 8 }
 }
};

The syntax for accessing rectangular arrays is predictable enough. If the
second variable from Example 5-17 is in scope, we could write
smallerGrid[2, 3] to access the final item in the array; as with
single-dimensional arrays, indices are zero-based, so this refers to the third
row’s fourth item.

Remember that an array’s Length property returns the total number of
elements in the array. Since rectangular arrays have all the elements in a
single array (rather than being arrays that refer to some other arrays), this
will return the product of the sizes of all the dimensions. A rectangular array

with 5 rows and 10 columns would have a Length of 50, for example. If
you want to discover the size along a particular dimension at runtime, use
the GetLength method, which takes a single int argument indicating the
dimension for which you’d like to know the size.

Copying and Resizing
Sometimes you will want to move chunks of data around in arrays. You
might want to insert an item in the middle of an array, moving the items that
follow it up by one position (and losing one element at the end, since array
sizes are fixed). Or you might want to move data from one array to another,
perhaps one of a different size.

The static Array.Copy method takes two references to arrays, along with
a number indicating how many elements to copy. It offers overloads so that
you can specify the positions in the two arrays at which to start the copy.
(The simpler overload starts at the first element of each array.) You are
allowed to pass the same array as the source and destination, and it will
handle overlap correctly: the copy acts as though the elements were first all
copied to a temporary location before starting to write them to the target.

WARNING
As well as the static Copy method, the Array class defines a nonstatic CopyTo
method, which copies the entire array into a target array, starting at the specified offset.
This method is present because all arrays implement certain collection interfaces,
including ICollection<T> (where T is the array’s element type), which defines this
CopyTo method. It is less flexible than Copy—CopyTo cannot copy a subrange of the
array. In cases where either method would work, the documentation recommends using
Array.Copy—CopyTo is just for the benefit of general-purpose code that can work
with any implementation of a collection interface.

Copying elements from one array to another can become necessary when
you need to deal with variable amounts of data. You would typically
allocate an array larger than initially necessary, and if this eventually fills
up, you’ll need a new, larger array, and you’d need to copy the contents of

the old array into the new one. In fact, the Array class can do this for you
for one-dimensional arrays with its Resize method. The method name is
slightly misleading, because arrays cannot be resized, so it allocates a new
array and copies the data from the old one into it. Resize can build either
a larger or a smaller array, and if you ask it for a smaller one, it will just
copy as many elements as will fit.

While I’m talking about methods that copy the array’s data around, I should
mention Reverse, which simply reverses the order of the array’s
elements. Also, while this isn’t strictly about copying, the Array.Clear
method is often useful in scenarios where you’re juggling array sizes—it
allows you to reset some range of the array to its initial zero-like state.

These methods for moving data around within arrays are useful for building
more flexible data structures on top of the basic services offered by arrays.
But you often won’t need to use them yourself, because the runtime
libraries provide several useful collection classes that do this for you.

List<T>
The List<T> class, defined in the System.Collections.Generic
namespace, contains a variable-length sequence of elements of type T. It
provides an indexer that lets you get and set elements by number, so a
List<T> behaves like a resizable array. It’s not completely
interchangeable—you cannot pass a List<T> as the argument for a
parameter that expects a T[] array—but both arrays and List<T>
implement various common generic collection interfaces that we’ll be
looking at later. For example, if you write a method that accepts an
IList<T>, it will be able to work with either an array or a List<T>.

Although code that uses an indexer resembles array element access, it is not
quite the same thing. An indexer is a kind of property, so it has the same
issues with mutable value types that I discussed in Chapter 3. Given a
variable pointList of type List<Point> (where Point is the
mutable value type in the System.Windows namespace), you cannot

write pointList[2].X = 2, because pointList[2] returns a copy
of the value, and this code is effectively asking to modify that temporary
copy. This would lose the update, so C# forbids it. But this does work with
arrays. If pointArray is of type Point[], pointArray[2] does not
get an element, it identifies an element, making it possible to modify an
array element’s value in situ by writing pointArray[2].X = 2. (Since
ref return values were added to C#, it has become possible to write
indexers that work this way, but List<T> and IList<T> were created
long before that.) With immutable value types such as Complex, this
distinction is moot, because you cannot modify their values in place in any
case—you would have to overwrite an element with a new value whether
using an array or a list.

Unlike an array, a List<T> provides methods that change its size. The
Add method appends a new element to the end of the list, while
AddRange can add several. Insert and InsertRange add elements at
any point in the list, shuffling all the elements after the insertion point down
to make space. These four methods all make the list longer, but List<T>
also provides Remove, which removes the first instance of the specified
value; RemoveAt, which removes an element at a particular index; and
RemoveRange, which removes multiple elements starting at a particular
index. These all shuffle elements back down, closing up the gap left by the
removed element or elements, making the list shorter.

NOTE
List<T> uses an array internally to store its elements. This means all the elements live
in a single block of memory, and it stores them contiguously. This makes normal
element access very efficient, but it is also why insertion needs to shift elements up to
make space for the new element, and removal needs to shift them down to close up the
gap.

Example 5-19 shows how to create a List<T>. It’s just a class, so we use
the normal constructor syntax. It shows how to add and remove entries and

also how to access elements using the array-like indexer syntax. This also
shows that List<T> provides its size through a Count property. This
name may seem needlessly different than the Length provided by arrays,
but there is a reason: this property is defined by ICollection<T>,
which List<T> implements. Not all ICollection<T>
implementations are sequences, so Length would in some cases be a
misnomer. (As it happens, arrays also offer Count, because they also
implement ICollection and ICollection<T>. However, they use
explicit interface implementation, meaning that you can see an array’s
Count property only through a reference of one of these interface types.)

Example 5-19. Using a List<T>
var numbers = new List<int>();
numbers.Add(123);
numbers.Add(99);
numbers.Add(42);
Console.WriteLine(numbers.Count);
Console.WriteLine($"{numbers[0]}, {numbers[1]}, {numbers[2]}");

numbers[1] += 1;
Console.WriteLine(numbers[1]);

numbers.RemoveAt(1);
Console.WriteLine(numbers.Count);
Console.WriteLine($"{numbers[0]}, {numbers[1]}");

Because a List<T> can grow and shrink as required, you don’t need to
specify its size at construction. However, if you want to, you can specify its
capacity. A list’s capacity is the amount of space it currently has available
for storing elements, and this will often be different than the number of
elements it contains. To avoid allocating a new internal array every time
you add or remove an element, it keeps track of how many elements are in
use independently of the size of the array. When it needs more space, it will
overallocate, creating a new array that is larger than needed by an amount
proportional to the size. This means that, if your program repeatedly adds
items to a list, the larger it gets, the less frequently it needs to allocate a new
array, but the proportion of spare capacity after each reallocation will
remain about the same.

If you know up front that you will eventually store a specific number of
elements in a list, you can pass that number to the constructor, and it will
allocate exactly that much capacity, meaning that no further reallocation
will be required. If you get this wrong, it won’t cause an error—you’re just
requesting an initial capacity, and it’s OK to change your mind later.

If the idea of unused memory going to waste in a list offends you, but you
don’t know exactly how much space will be required before you start, you
could call the TrimExcess method once you know the list is complete.
This reallocates the internal storage to be exactly large enough to hold the
list’s current contents, eliminating waste. This will not always be a win. To
ensure that it is using exactly the right amount of space, TrimExcess has
to create a new array of the right size, leaving the old, oversized one to be
reclaimed by the garbage collector later on, and in some scenarios, the
overhead of forcing an extra allocation just to trim things down to size may
be higher than the overhead of having some unused capacity.

Lists have a third constructor. Besides the default constructor, and the one
that takes a capacity, you can also pass in a collection of data with which to
initialize the list. You can pass any IEnumerable<T>.

You can provide initial content for lists with syntax similar to an array
initializer. Example 5-20 loads the same three values into the new list as at
the start of Example 5-19.

Example 5-20. List initializer
var numbers = new List<int> { 123, 99, 42 };

If you’re not using var, you can omit the type name after the new
keyword, as Example 5-21 shows. But in contrast to arrays, you cannot
omit the new keyword entirely. Nor will the compiler infer the type
argument, so whereas with an array you can write just new[] followed by
an initializer, you cannot write new List<>.

Example 5-21. List initializer with target-typed new
List<int> numbers = new() { 123, 99, 42 };

Examples 5-20 and 5-21 are equivalent, and each compile into code that
calls Add once for each item in the list. You can use this syntax with any
type that has a suitable Add method and implements the IEnumerable
interface. This works even if Add is an extension method. (So if some type
implements IEnumerable, but does not supply an Add method, you are
free to use this initializer syntax if you provide your own Add.)

List<T> provides IndexOf, LastIndexOf, Find, FindLast,
FindAll, Sort, and Bin ary Sea rch methods for finding and sorting
list elements. These provide the same services as their array namesakes,
although List<T> chooses to provide these as instance methods rather
than statics.

We’ve now seen two ways to represent a list of values: arrays and lists.
Fortunately, interfaces make it possible to write code that can work with
either, so you won’t need to write two sets of functions if you want to
support both lists and arrays.

List and Sequence Interfaces
The runtime libraries define several interfaces representing collections.
Three of these are relevant to simple linear sequences of the kind you can
store in an array or a list: IList<T>, ICollection<T>, and
IEnumerable<T>, all in the Sys tem. Col lec tio ns. Gen eri cs
namespace. There are three interfaces, because different code makes
different demands. Some methods need random access to any numbered
element in a collection, but not everything does, and not all collections can
support that—some sequences produce elements gradually, and there may
be no way to leap straight to the nth element. Consider a sequence
representing keypresses, for example—each item will emerge only as the
user presses the next key. Your code can work with a wider range of sources
if you opt for less demanding interfaces.

IEnumerable<T> is the most general of collection interfaces, because it
demands the least from its implementers. I’ve mentioned it a few times

already because it’s an important interface that crops up a lot, but I’ve not
shown the definition until now. As Example 5-22 shows, it declares just a
single method.

Example 5-22. IEnumerable<T> and IEnumerable
public interface IEnumerable<out T> : IEnumerable
{
 IEnumerator<T> GetEnumerator();
}

public interface IEnumerable
{
 IEnumerator GetEnumerator();
}

Using inheritance, IEnumerable<T> requires its implementers also to
implement IEnumerable, which appears to be almost identical. It’s a
nongeneric version of IEnumerable<T>, and its GetEnumerator
method will typically do nothing more than invoke the generic
implementation. The reason we have both forms is that the nongeneric
IEnumerable has been around since .NET 1.0, which didn’t support
generics. The arrival of generics in .NET 2.0 made it possible to express the
intent behind IEnumerable more precisely, but the old interface had to
remain for compatibility. So these two interfaces effectively require the
same thing: a method that returns an enumerator. What’s an enumerator?
Example 5-23 shows both the generic and nongeneric interfaces.

Example 5-23. IEnumerator<T> and IEnumerator
public interface IEnumerator<out T> : IDisposable, IEnumerator
{
 T Current { get; }
}

public interface IEnumerator
{
 bool MoveNext();
 object Current { get; }
 void Reset();
}

The usage model for an IEnumerable<T> (and also IEnumerable) is
that you call GetEnumerator to obtain an enumerator, which can be
used to iterate through all the items in the collection. You call the
enumerator’s MoveNext(); if it returns false, it means the collection
was empty. Otherwise, the Current property will now provide the first
item from the collection. Then you call MoveNext() again to move to the
next item, and for as long as it keeps returning true, the next item will be
available in Current. (The Reset method is a historical artifact added to
help compatibility with COM, the Windows pre-.NET cross-language
object model. The documentation allows implementations to throw a
NotSupportedException from Reset, so you will not normally use
this method.)

NOTE
Notice that IEnumerator<T> implementations are required to implement
IDisposable. You must call Dispose on enumerators once you’re finished with
them, because many of them rely on this.

The foreach loop in C# does all of the work required to iterate through
an enumerable collection for you, including generating code that calls
Dispose even if the loop terminates early due to a break statement, an
error, or, perish the thought, a goto statement. Chapter 7 will describe the
uses of IDisposable in more detail.

IEnumerable<T> is at the heart of LINQ to Objects, which I’ll discuss
in Chapter 10. LINQ operators are available on any object that implements
this interface. The runtime libraries define a related interface,
IAsyncEnumerable<T>. Conceptually, this is identical to
IEnumerable<T>: it represents the ability to provide a sequence of
items. The difference is that it enables items to be enumerated
asynchronously. As Example 5-24 shows, this interface and its counterpart,
IAsyncEnumerator<T>, resemble IEnumerable<T> and
IEnumerator<T>. The main difference is the use of the asynchronous

1

programming features ValueTask<T> and CancellationToken,
which Chapter 16 will describe. There are also some minor differences:
there are no nongeneric versions of these interfaces, and also, there’s no
facility to reset an existing asynchronous enumerator (although as noted
earlier, many synchronous enumerators throw a
NotSupportedException if you call Reset).

Example 5-24. IAsyncEnumerable<T> and
IAsyncEnumerator<T>
public interface IAsyncEnumerable<out T>
{
 IAsyncEnumerator<T> GetAsyncEnumerator(
 CancellationToken cancellationToken = default);
}

public interface IAsyncEnumerator<out T> : IAsyncDisposable
{
 T Current { get; }

 ValueTask<bool> MoveNextAsync();
}

You can consume an IAsyncEnumerable<T> with a specialized form
of foreach loop, in which you prefix it with the await keyword. This
can only be used in a method marked with the async keyword. Chapter 17
describes the async and await keywords in detail, and also the use of
await foreach.

Although IEnumerable<T> is important and widely used, it’s pretty
restrictive. You can ask it only for one item after another, and it will hand
them out in whatever order it sees fit. It does not provide a way to modify
the collection, or even to find out how many items the collection contains
without having to iterate through the whole lot. For these jobs, we have
ICollection<T>, which is shown in Example 5-25.

Example 5-25. ICollection<T>
public interface ICollection<T> : IEnumerable<T>, IEnumerable
{
 void Add(T item);
 void Clear();

 bool Contains(T item);
 void CopyTo(T[] array, int arrayIndex);
 bool Remove(T item);

 int Count { get; }
 bool IsReadOnly { get; }
}

This requires implementers also to provide IEnumerable<T>, but notice
that this does not inherit the nongeneric ICollection. There is such an
interface, but it represents a different abstraction: it’s missing all of the
methods except CopyTo. When introducing generics, Microsoft reviewed
how the nongeneric collection types were used and concluded that the one
extra method that the old ICollection added didn’t make it noticeably
more useful than IEnumerable. Worse, it also included a property called
SyncRoot that was intended to help manage certain multithreaded
scenarios but that turned out to be a poor solution to that problem in
practice. So the abstraction represented by ICollection did not get a
generic equivalent and has not been greatly missed. During the review,
Microsoft also found that the absence of a general-purpose interface for
modifiable collections was a problem, and so it made ICollection<T>
fit that bill. It was not entirely helpful to attach this old name to a different
abstraction, but since almost nobody was using the old nongeneric
ICollection, it doesn’t seem to have caused much trouble.

The third interface for sequential collections is IList<T>, and all types
that implement this are required to implement ICollection<T>, and
therefore also IEnumerable<T>. As you’d expect, List<T>
implements IList<T>. Arrays implement it too, using their element type
as the argument for T. Example 5-26 shows how the interface looks.

Example 5-26. IList<T>
public interface IList<T> : ICollection<T>, IEnumerable<T>,
IEnumerable
{
 int IndexOf(T item);
 void Insert(int index, T item);
 void RemoveAt(int index);

 T this[int index] { get; set; }
}

Again, although there is a nongeneric IList, this interface has no direct
relationship to it, even though both interfaces represent similar concepts—
the nongeneric IList has equivalents to the IList<T> members, and it
also includes equivalents to most of ICollection<T>, including all the
members missing from ICollection. So it would have been possible to
require IList<T> implementations to implement IList, but that would
have forced implementations to provide two versions of most members, one
working in terms of the type parameter T and the other using object,
because that’s what the old nongeneric interfaces had to use. It would also
force collections to provide the nonuseful SyncRoot property. The
benefits would not outweigh these inconveniences, and so IList<T>
implementations are not obliged to implement IList. They can if they
want to, and List<T> does, but it’s up to the individual collection class to
choose.

One unfortunate upshot of the way these three generic interfaces are related
is that they do not provide an abstraction representing indexed collections
that are read-only, or even ones that are fixed-size. While
IEnumerable<T> is a read-only abstraction, it’s an in-order one with no
way to go directly to the nth value. IList<T> provides indexed access,
but it also defines methods for insertion and indexed removal, as well as
mandating an implementation of ICollection<T> with its addition and
value-based removal methods. So you might be wondering how arrays can
implement these interfaces, given that all arrays are fixed-size.

Arrays mitigate this problem by using explicit interface implementation to
hide the IList<T> methods that can change a list’s length, discouraging
you from trying to use them. (As you saw in Chapter 3, this technique
enables you to provide a full implementation of an interface but to be
selective about which members are directly visible.) However, you can
store a reference to an array in a variable of type IList<T>, making those
methods visible—Example 5-27 uses this to call an array’s
IList<T>.Add method. However, this results in a runtime error.

Example 5-27. Trying (and failing) to enlarge an array
IList<int> array = new[] { 1, 2, 3 };
array.Add(4); // Will throw an exception

The Add method throws a NotSupportedException, with an error
message stating that the collection has a fixed size. If you inspect the
documentation for IList<T> and ICollection<T>, you’ll see that all
the members that would modify the collection are allowed to throw this
error. You can discover at runtime whether this will happen for all
modifications with the ICollection<T> interface’s IsReadOnly
property. However, that won’t help you discover up front when a collection
allows only certain changes. (For example, an array’s size is fixed, but you
can still modify elements.)

This causes an irritating problem: if you’re writing code that does in fact
require a modifiable collection, there’s no way to advertise that fact. If a
method takes an IList<T>, it’s hard to know whether that method will
attempt to resize that list or not. Mismatches cause runtime exceptions, and
those exceptions may well appear in code that isn’t doing anything wrong,
and where the mistake—passing the wrong sort of collection—was made by
the caller. These problems are not showstoppers; in dynamically typed
languages, this degree of compile-time uncertainty is in fact the norm, and
it doesn’t stop you from writing good code.

There is a ReadOnlyCollection<T> class, but as we’ll see later, that
solves a different problem—it’s a wrapper class, not an interface, so there
are plenty of things that are fixed-size collections that do not present a
ReadOnlyCollection<T>. If you were to write a method with a
parameter of type ReadOnlyCollection<T>, it would not be able to
work directly with certain kinds of collections (including arrays). In any
case, it’s not even the same abstraction—read-only is a tighter restriction
than fixed-size.

.NET defines IReadOnlyList<T>, an interface that provides a better
solution for representing read-only indexed collections (although it still
doesn’t help with modifiable fixed-sized ones such as arrays). Like

IList<T>, it requires an implementation of IEnumerable<T>, but it
does not require ICollection<T>. It defines two members: Count,
which returns the size of the collection (just like
ICollection<T>.Count), and a read-only indexer. This solves most
of the problems associated with using IList<T> for read-only collections.
One minor problem is that because it’s newer than most of the other
interfaces I’ve described here it is not universally supported. (It was
introduced in .NET 4.5 in 2012, seven years after IList<T>.) So if you
come across an API that requires an IReadOnlyList<T>, you can be
sure it will not attempt to modify the collection, but if an API requires
IList<T>, it’s difficult to know whether that’s because it intends to
modify the collection or merely because it was written before
IReadOnlyList<T> was invented.

NOTE
Collections do not need to be read-only to implement IReadOnlyList<T>—a
modifiable list can easily present a read-only façade. So this interface is implemented by
all arrays and also List<T>.

The issues and interfaces I’ve just discussed raise a question: When writing
code or classes that work with collections, what type should you use? You
will typically get the most flexibility if your API demands the least specific
type it can work with. For example, if an IEnumerable<T> suits your
needs, don’t demand an IList<T>. Likewise, interfaces are usually better
than concrete types, so you should prefer IList<T> over either List<T>
or T[]. Just occasionally, there may be performance arguments for using a
more specific type; if you have a tight loop critical to the overall
performance of your application that works through the contents of a
collection, you may find such code runs faster if it works only with array
types, because the CLR may be able to perform better optimizations when it
knows exactly what to expect. But in many cases, the difference will be too
small to measure and will not justify the inconvenience of being tied to a

particular implementation, so you should never take such a step without
measuring the performance for the task at hand to see what the benefit
might be. (And if you’re considering such a performance-oriented change,
you should also look at the techniques described in Chapter 18.) If you find
that there is a possible performance win, but you’re writing a shared library
in which you want to provide both flexibility and the best possible
performance, there are a couple of options for having it both ways. You
could offer overloads, so callers can pass in either an interface or a specific
type. Alternatively, you could write a single public method that accepts the
interface but that tests for known types and chooses between different
internal code paths based on what the caller passes.

The interfaces we’ve just examined are not the only generic collection
interfaces, because simple linear lists are not the only kind of collection.
But before moving on to the others, I want to show enumerables and lists
from the flip side: How do we implement these interfaces?

Implementing Lists and Sequences
It is often useful to provide information in the form of either an
IEnumerable<T> or an IList<T>. The former is particularly
important because .NET provides a powerful toolkit for working with
sequences in the form of LINQ to Objects, which I’ll show in Chapter 10.
LINQ to Objects provides various operators that all work in terms of
IEnumerable<T>. IList<T> is a useful abstraction anywhere that
random access to any element by index is required. Some frameworks
expect an IList<T>. If you want to bind a collection of objects to some
kind of list control, for example, some UI frameworks will expect either an
IList or an IList<T>.

You could implement these interfaces by hand, as none of them is
particularly complicated. However, C# and the runtime libraries can help.
There is direct language-level support for implementing
IEnumerable<T>, and the runtime libraries provide support for the
generic and nongeneric list interfaces.

Implementing IEnumerable<T> with Iterators
C# supports a special form of method called an iterator. An iterator is a
method that produces enumerable sequences using the yield keyword.
Example 5-28 shows a simple iterator and some code that uses it. This will
display numbers counting down from 5 to 1.

Example 5-28. A simple iterator
public static IEnumerable<int> Countdown(int start, int end)
{
 for (int i = start; i >= end; --i)
 {
 yield return i;
 }
}

private static void Main(string[] args)
{
 foreach (int i in Countdown(5, 1))
 {
 Console.WriteLine(i);
 }
}

An iterator looks much like any normal method, but the way it returns
values is different. The iterator in Example 5-28 has a return type of
IEnumerable<int>, and yet it does not appear to return anything of
that type. Instead of a normal return statement, it uses a yield
return statement, and that returns a single int, not a collection. Iterators
produce values one at a time with yield return statements, and unlike
with a normal return, the method can continue to execute after returning
a value—it’s only when the method either runs to the end or decides to stop
early with a yield break statement or by throwing an exception that it
is complete. Example 5-29 shows this rather more starkly. Each yield
return causes a value to be emitted from the sequence, so this one will
produce the numbers 1–3.

Example 5-29. A very simple iterator
public static IEnumerable<int> ThreeNumbers()
{

 yield return 1;
 yield return 2;
 yield return 3;
}

Although this is fairly straightforward in concept, the way it works is
somewhat involved because code in iterators does not run in the same way
as other code. Remember, with IEnumerable<T>, the caller is in charge
of when the next value is retrieved; a foreach loop will get an
enumerator and then repeatedly call MoveNext() until that returns
false, and expect the Current property to provide the current value. So
how do Examples 5-28 and 5-29 fit into that model? You might think that
perhaps C# stores all the values an iterator yields in a List<T>, returning
that once the iterator is complete, but it’s easy to demonstrate that that’s not
true by writing an iterator that never finishes, such as the one in Example 5-
30.

Example 5-30. An infinite iterator
public static IEnumerable<BigInteger> Fibonacci()
{
 BigInteger v1 = 1;
 BigInteger v2 = 1;

 while (true)
 {
 yield return v1;
 var tmp = v2;
 v2 = v1 + v2;
 v1 = tmp;
 }
}

This iterator runs indefinitely; it has a while loop with a true condition,
and it contains no break statement, so this will never voluntarily stop. If
C# tried to run an iterator to completion before returning anything, it would
get stuck here. (The numbers grow, so if it ran for long enough, the method
would eventually terminate by throwing an OutOfMemoryException.)
But if you try this, you’ll find it starts returning values from the Fibonacci
series immediately and will continue to do so for as long as you continue to

iterate through its output. Clearly, C# is not simply running the whole
method before returning.

C# performs some serious surgery on your code to make this work. If you
examine the compiler’s output for an iterator using a tool such as ILDASM
(the disassembler for .NET code, provided with the .NET SDK), you’ll find
it generates a private nested class that acts as the implementation for both
the IEnumerable<T> that the method returns and also the
IEnumerator<T> that the IEnumerable<T>’s GetEnumerator
method returns. The code from your iterator method ends up inside this
class’s MoveNext method, but it is barely recognizable, because the
compiler splits it up in a way that enables each yield return to return
to the caller, but for execution to continue from where it left off the next
time MoveNext is called. Where necessary, it will store local variables
inside this generated class so that their values can be preserved across
multiple calls to MoveNext. Perhaps the easiest way to get a feel for what
C# has to do when compiling an iterator is to write the equivalent code by
hand. Example 5-31 provides the same Fibonacci sequence as Example 5-
30 without the aid of an iterator. It’s not precisely what the compiler does,
but it illustrates some of the challenges.

Example 5-31. Implementing IEnumerable<T> by hand
public class FibonacciEnumerable :
 IEnumerable<BigInteger>, IEnumerator<BigInteger>
{
 private BigInteger v1;
 private BigInteger v2;
 private bool first = true;

 public BigInteger Current => v1;

 public void Dispose() { }

 object IEnumerator.Current => Current;

 public bool MoveNext()
 {
 if (first)
 {
 v1 = 1;

 v2 = 1;
 first = false;
 }
 else
 {
 var tmp = v2;
 v2 = v1 + v2;
 v1 = tmp;
 }

 return true;
 }

 public void Reset()
 {
 first = true;
 }

 public IEnumerator<BigInteger> GetEnumerator() =>
 new FibonacciEnumerable();

 IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
}

This is not a particularly complex example, because its enumerator is
essentially in either of two states—either it is running for the first time and
therefore needs to run the code that comes before the loop or it is inside the
loop. Even so, this code is much harder to read than Example 5-30, because
the mechanics of supporting enumeration have obscured the essential logic.

The code would get even more convoluted if we needed to deal with
exceptions. You can write using blocks and finally blocks, which
enable your code to behave correctly in the face of errors, as I’ll show in
Chapters 7 and 8, and the compiler can end up doing a lot of work to
preserve the correct semantics for these when the method’s execution is
split up over multiple iterations. You wouldn’t need to write too many
enumerations by hand this way before being grateful that C# can do it for
you.

Iterator methods don’t have to return an IEnumerable<T>, by the way.
If you prefer, you can return an IEnumerator<T> instead. And, as you
saw earlier, objects that implement either of these interfaces also always

2

implement the nongeneric equivalents, so if you need a plain
IEnumerable or IEnumerator, you don’t need to do extra work—you
can pass an IEnumerable<T> to anything that was expecting a plain
IEnumerable, and likewise for enumerators. If for some reason you want
to provide one of these nongeneric interfaces and you don’t wish to provide
the generic version, you are allowed to write iterators that return the
nongeneric forms directly.

One thing to be careful of with iterators is that they run very little code until
the first time the caller calls MoveNext. So if you were to single-step
through code that calls the Fibonacci method in Example 5-30, the
method call would appear not to do anything at all. If you try to step into
the method at the point at which it’s invoked, none of the code in the
method runs. It’s only when iteration begins that you’d see your iterator’s
body execute. This has a couple of consequences.

The first thing to bear in mind is that if your iterator method takes
arguments, and you want to validate those arguments, you may need to do
some extra work. By default, the validation won’t happen until iteration
begins, so errors will occur later than you might expect. If you want to
validate arguments immediately, you will need to write a wrapper. Example
5-32 shows an example—it provides a normal method called Fibonacci
that doesn’t use yield return and will therefore not get the special
compiler behavior for iterators. This normal method validates its argument
before going on to call a nested iterator method. (This also illustrates that
local methods can use yield return.)

Example 5-32. Iterator argument validation
public static IEnumerable<BigInteger> Fibonacci(int count)
{
 if (count < 0)
 {
 throw new ArgumentOutOfRangeException(nameof(count));
 }
 return Core(count);

 static IEnumerable<BigInteger> Core(int count)
 {

 BigInteger v1 = 1;
 BigInteger v2 = 1;

 for (int i = 0; i < count; ++i)
 {
 yield return v1;
 var tmp = v2;
 v2 = v1 + v2;
 v1 = tmp;
 }
 }
}

The second thing to remember is that iterators may execute several times.
IEnumerable<T> provides a GetEnumerator that can be called many
times over, and your iterator body will run from the start each time. So even
though your iterator method may only have been called once, it could run
several times.

Collection<T>
If you look at types in the runtime libraries, you’ll find that when they offer
properties that expose an implementation of IList<T>, they often do so
indirectly. Instead of an interface, properties often provide some concrete
type, although it’s usually not List<T> either. List<T> is designed to be
used as an implementation detail of your code, and if you expose it directly,
you may be giving users of your class too much control. Do you want them
to be able to modify the list? And even if you do, mightn’t your code need
to know when that happens?

The runtime libraries provide a Collection<T> class that is designed to
be used as the base class for collections that a type will make publicly
available. It is similar to List<T>, but there are two significant
differences. First, it has a smaller API—it offers IndexOf, but all the other
searching and sorting methods available for List<T> are missing, and it
does not provide ways to discover or change its capacity independently of
its size. Second, it provides a way for derived classes to discover when
items have been added or removed. List<T> does not, on the grounds that

it’s your list so you presumably know when you add and remove items.
Notification mechanisms are not free, so List<T> avoids unnecessary
overhead by not offering them. But Collection<T> assumes that
external code will have access to your collection and that you will therefore
not be in control of every addition and removal, justifying the overhead
involved in providing a way for you to find out when the list is modified.
(This is only available to the code deriving from Collection<T>. If you
want code using your collection to be able to detect changes, the
ObservableCollection<T> type is designed for that exact scenario.
For example, if you use this type as the source for a list in desktop and
mobile UI frameworks such as WPF, UWP, MAUI, and Xamarin, they will
be able to display the list automatically when you modify the collection.)

You typically derive a class from Collection<T>, and you can override
the virtual methods it defines to discover when the collection changes.
(Chapter 6 will discuss inheritance and overriding.) Collection<T>
implements both IList and IList<T>, so you could present a
Collection<T>-based collection through an interface type property, but
it’s common to make a derived collection type public and to use that instead
of an interface as the property type.

ReadOnlyCollection<T>
If you want to provide a nonmodifiable collection, then instead of using
Collection<T>, you can use ReadOnlyCollection<T>. This goes
further than the restrictions imposed by arrays, by the way: not only can
you not add, remove, or insert items, but you cannot even replace elements.
This class implements IList<T>, which requires an indexer with both a
get and a set, but the set throws an exception. (Of course, it also
implements IReadOnlyCollection<T>.)

If your collection’s element type is a reference type, making the collection
read-only does not prevent the objects to which the elements refer from
being modified. I can retrieve, say, the 12th element from a read-only
collection, and it will hand me back a reference. Fetching a reference counts

as a read-only operation, but now that I have got that reference, the
collection object is out of the picture, and I am free to do whatever I like
with that reference. Since C# does not offer any concept of a read-only
reference (there’s nothing equivalent to C++ const references), the only
way to present a truly read-only collection is to use an immutable type in
conjunction with ReadOnlyCollection<T>.

There are two ways to use ReadOnlyCollection<T>. You can use it
directly as a wrapper for an existing list—its constructor takes an
IList<T>, and it will provide read-only access to that. (List<T>
provides a method called AsReadOnly that constructs a read-only
wrapper for you, by the way.) Alternatively, you could derive a class from
it. As with Collection<T>, some classes do this for collections they
wish to expose via properties, and it’s usually because they want to define
additional methods specific to the collection’s purpose. Even if you derive
from this class, you will still be using it to wrap an underlying list, because
the only constructor it provides is the one that takes a list.

WARNING
ReadOnlyCollection<T> is typically not a good fit with scenarios that
automatically map between object models and an external representation. For example,
it causes problems in types used as Data Transfer Objects (DTOs) that get converted to
and from JSON messages sent over network connections, and also in object-relational
mapping systems that present the contents of a database through an object model.
Frameworks for these scenarios need to be able to instantiate your types and populate
them with data, so although a read-only collection might be a good conceptual match for
what some part of your model represents, it might not fit in with the way these mapping
frameworks expect to initialize objects.

Addressing Elements with Index and Range
Syntax
Whether using arrays, List<T>, IList<T>, or the various related types
and interfaces just discussed, we’ve identified elements using simple

examples such as items[0], and more generally, expressions of the form
arrayOrListExpression[indexExpression]. So far, all the
examples have used an expression of type int for the index, but that is not
the only choice. Example 5-33 accesses the final element of an array using
an alternative syntax.

Example 5-33. Accessing the last element of an array with an end-relative
index
char[] letters = { 'a', 'b', 'c', 'd' };
char lastLetter = letters[^1];

This demonstrates one of two operators for use in indexers: the ^ operator
and the range operator. The latter, shown in Example 5-34, is a pair of
periods (..), and it is used to identify subranges of arrays, strings, or any
indexable type that implements a certain pattern.

Example 5-34. Getting a subrange of an array with the range operator
int[] numbers = { 1, 2, 3, 4, 5, 6, 7 };
// Gets 4th and 5th (but not the 3rd or 6th, for reasons explained
shortly)
int[] theFourthTheFifth = numbers[3..5];

Expressions using the ^ and .. operators are of type Index and Range,
respectively. These types are available in .NET Standard 2.1, meaning they
are built into .NET Core 3.1 and .NET 5.0 or later. However, these types are
not available on .NET Framework, meaning that you can only use these
language features on newer runtimes.

System.Index
You can put the ^ operator in front of any int expression. It produces a
System.Index, a value type that represents a position. When you create
an index with ^, it is end-relative, but you can also create start-relative
indexes. There’s no special operator for that, but since Index offers an
implicit conversion from int, you can just assign int values directly into
variables of type Index, as Example 5-35 shows. You can also explicitly
construct an index, as the line with var shows. The final bool argument is

optional—it defaults to false—but I’m showing it to illustrate how
Index knows which kind you want.

Example 5-35. Some start-relative and end-relative Index values
Index first = 0;
Index second = 1;
Index third = 2;
var fourth = new Index(3, fromEnd: false);

Index antePenultimate = ^3;
Index penultimate = ^2;
Index last = ^1;
Index directlyAfterTheLast = ^0;

As Example 5-35 shows, end-relative indexes exist independently of any
particular collection. (Internally, Index stores end-relative indexes as
negative numbers. This means that an Index is the same size as an int. It
also means that negative start- or end-relative values are illegal—you’ll get
an exception if you try to create one.) C# generates code that determines the
actual element position when you use an index. If small and big are
arrays with 3 and 30 elements, respectively, small[last] would return
the third, and big[last] would return the 30th. C# will turn these into
small[last.GetOffset(small.Length)] and
big[last.GetOffset(big.Length)], respectively.

It has often been said that three of the hardest problems in computing are
picking names for things and off-by-one errors. At first glance, Example 5-
35 makes it look like Index might be contributing to these problems. It
may be vexing that the index for the third item is two, not three, but that at
least is consistent with how arrays have always worked in C# and is normal
for any zero-based indexing system. But given that zero-based convention,
why on earth do the end-relative indexes appear to be one-based? We
denote the first element with 0 but the last element with ^1!

There are some good reasons for this. The fundamental insight is that in C#,
indexes have always specified distances. When programming language
designers choose a zero-based indexing system, this is not really a decision
to call the first element 0: it is a decision to interpret an index as a distance

from the start of an array. An upshot of this is that an index doesn’t really
refer to an item. Figure 5-1 shows a collection with four elements and
indicates where various index values would point in that collection. Notice
that the indexes all refer to the boundaries between the items. This may
seem like splitting hairs, but it’s the key to understanding all zero-based
index systems, and it is behind the apparent inconsistency in Example 5-35.

Figure 5-1. Where Index values point

When you access an element of a collection by index, you are asking for the
element that starts at the position indicated by the index. So array[0]
retrieves the single element that starts at the beginning of the array, the
element that fills the space between indexes 0 and 1. Likewise, array[1]
retrieves the element between indexes 1 and 2. What would array[^0]
mean? That would be an attempt to fetch the element that starts at the very
end of the array. Since elements all take up a certain amount of space, an
element that starts at the very end of the array would necessarily finish one
position after the end of the array. In this four-element array, array[^0]
is equivalent to array[4], so we’re asking for the element occupying the
space that starts four elements from the start and that ends five elements
from the start. And since this is a four-element array, that’s obviously not
going to work.

The apparent discrepancy—the fact that array[0] gets the first, but we
need to write array[^1] to get the last—occurs because elements sit
between two indexes, and array indexers always retrieve the element
between the index specified and the index after that. The fact that they do
this even when you’ve specified an end-relative index is the reason those
appear to be one-based. This language feature could have been designed

3

differently: you could imagine a rule in which end-relative indexes always
access the element that ends at the specified distance from the end and that
starts one position earlier than that. There would have been a pleasing
symmetry to this, because it would have made array[^0] refer to the
final element, but this would have caused more problems than it solved.

It would be confusing to have indexers interpret an index in two different
ways—it would mean that two different indexes might refer to the same
position and yet fetch different elements. In any case, C# developers are
already used to things working this way. As Example 5-36 shows, the way
to access the final element of an array prior to the ^ index operator was to
use an index calculated by subtracting one from the length. And if you
wanted the element before last, you subtracted two from the length, and so
on. As you can see, the new end-relative syntax is entirely consistent with
the long-established existing practice.

Example 5-36. End-relative indexing and pre-Index equivalents
int lastOld = numbers[numbers.Length - 1];
int lastNew = numbers[^1];

int penultimateOld = numbers[numbers.Length - 2];
int penultimateNew = numbers[^2];

One more way to think of this is to wonder what it might look like if we
accessed arrays by specifying ranges. The first element is in the range 0–1,
and the last is in the range ^1–^0. Expressed this way, there is clearly
symmetry between the start-relative and end-relative forms. And speaking
of ranges…

System.Range
As I said earlier, C# has two operators useful for working with arrays and
other indexable types. We’ve just looked at ^ and the corresponding Index
type. The other is called the range operator, and it has a corresponding
type, Range, also in the System namespace. A Range is a pair of Index
values, which it makes available through Start and End properties.
Range offers a constructor taking two Index values, but in C# the

idiomatic way to create one is with the range operator, as Example 5-37
shows.

Example 5-37. Various ranges
Range everything = 0..^0;
Range alsoEverything = 0..;
Range everythingAgain = ..^0;
Range everythingOneMoreTime = ..;
var yetAnotherWayToSayEverything = Range.All;

Range firstThreeItems = 0..3;
Range alsoFirstThreeItems = ..3;

Range allButTheFirstThree = 3..^0;
Range alsoAllButTheFirstThree = 3..;

Range allButTheLastThree = 0..^3;
Range alsoAllButTheLastThree = ..^3;

Range lastThreeItems = ^3..^0;
Range alsoLastThreeItems = ^3..;

As you can see, if you do not put a start index before the .., it defaults to
0, and if you omit the end, it defaults to ^0 (i.e., the very start and end,
respectively). The example also shows that the start can be either start-
relative or end-relative, as can the end.

WARNING
The default value for Range—the one you’ll get in a field or array element that you do
not explicitly initialize—is 0..0. This denotes an empty range. While this is a natural
upshot of the fact that value types are always initialized to zero-like values by default, it
might not be what you’d expect given that .. is equivalent to Range.All.

Since Range works in terms of Index, the start and end denote offsets,
not elements. For example, consider what the range 1..3 would mean for
the elements shown in Figure 5-1. In this case, both indexes are start-
relative. The start index, 1, is the boundary between the first and second
elements (a and b), and the end index, 3, is the boundary between the third

and fourth elements (c and d). So this is a range that starts at the beginning
of b and ends at the end of c, as Figure 5-2 shows. So this identifies a two-
element range (b and c).

Figure 5-2. A range

The interpretation of ranges sometimes surprises people when they first see
it: some expect 1..3 to represent the first, second, and third elements (or,
if they take into account C#’s zero-based indexing, perhaps the second,
third, and fourth elements). It can seem inconsistent at first that the start
index appears to be inclusive while the end index is exclusive. But once you
remember that an index refers not to an item but to an offset, and therefore
the boundary between two items, it all makes sense. If you draw the
positions represented by a range’s indexes, as Figure 5-2 does, it becomes
perfectly obvious that the range identified by 1..3 covers just two
elements.

So what can we do with a Range? As Example 5-34 showed, we can use
one to get a subrange of an array. That creates a new array of the relevant
size and copies the values from the range into it. This same syntax also
works for getting substrings, as Example 5-38 shows.

Example 5-38. Getting a substring with a range
string t1 = "dysfunctional";
string t2 = t1[3..6];
Console.WriteLine($"Putting the {t2} in {t1}");

You can also use Range with ArraySegment<T>, a value type that
refers to a range of elements within an array. Example 5-39 makes a slight
modification to Example 5-34. Instead of passing the range to the array’s
indexer, this first creates an Ar ray Seg men t<i nt> that represents the
entire array, and then uses a range to get a second ArraySegment<int>
representing the fourth and fifth elements. The advantage of this is that it
does not need to allocate a new array—both ArraySegment<int>
values refer to the same underlying array; they just point to different
sections of it, and since ArraySegment<int> is a value type, this can
avoid allocating new heap blocks. (ArraySegment<int> has no direct
support for range, by the way. The compiler turns this into a call to the
segment’s Slice method.)

Example 5-39. Getting a subrange of an ArraySegment<T> with the
range operator
int[] numbers = { 1, 2, 3, 4, 5, 6, 7 };
ArraySegment<int> wholeArrayAsSegment = numbers;
ArraySegment<int> theFourthTheFifth = wholeArrayAsSegment[3..5];

The ArraySegment<T> type has been around since .NET 2.0 (and has
been in .NET Standard since 1.0). It’s a useful way to avoid extra
allocations, but it’s limited: it only works with arrays. What about strings?
All current versions of .NET support types offering a more general form of
this concept, Span<T> and ReadOnlySpan<T>. (On .NET Framework,
these are available through to the System.Memory NuGet package. They
are built into other .NET versions.) Just like ArraySegment<T>,
Span<T> represents a subsequence of items inside something else, but it is
much more flexible about what that “something else” might be. It could be
an array, but it can also be a string, memory in a stack frame, or memory
allocated by some library or system call entirely outside of .NET. The
Span<T> and ReadOnlySpan<T> types are discussed in more detail in
Chapter 18, but for now, Example 5-40 illustrates their basic use.

Example 5-40. Getting a subrange of a span with the range operator
int[] numbers = { 1, 2, 3, 4, 5, 6, 7 };
Span<int> wholeArrayAsSpan = numbers;

Span<int> theFourthTheFifth = wholeArrayAsSpan[3..5];
ReadOnlySpan<char> textSpan = "dysfunctional".AsSpan();
ReadOnlySpan<char> such = textSpan[3..6];

These have much the same logical meaning as the preceding examples, but
they avoid making copies of the underlying data.

We’ve now seen that we can use ranges with several types: arrays, strings,
Arr ay Seg men t<T>, Span<T>, and ReadOnlySpan<T>. This raises a
question: Does C# have a list of types that get special handling, or can we
support indexers and ranges in our own types? The answers are,
respectively, yes and yes. C# has some baked-in handling for arrays and
strings: it knows to call specific runtime library methods to produce
subarrays and substrings. However, there is no special range handling for
array segments or spans: they work because they conform to a pattern.
There is also a pattern to enable use of Index. If you support these same
patterns, you can make Index and Range work with your own types.

Supporting Index and Range in Your Own Types
The array type does not define an indexer that accepts an argument of type
Index. Nor do any of the generic array-like types shown earlier in this
chapter—they all just have ordinary int-based indexers; however, you can
use Index with them nonetheless. And as I explained earlier, code of the
form col[index] will expand to
col[index.GetOffset(a.Length)]. So all you need is an int-
based indexer and a property of type int called either Length or Count.
Example 5-41 shows about the least amount of work you can possibly do to
enable code to pass an Index to your type’s indexer. It’s not a very useful
implementation, but it’s enough to keep C# happy.

Example 5-41. Minimally enabling Index
public class Indexable
{
 public char this[int index] => (char)('0' + index);

 public int Length => 10;
}

4

TIP
There’s an even simpler way: just define an indexer that takes an argument of type
Index. However, most indexable types supply an int-based indexer, so in practice
you’d be overloading your indexer, offering both forms. That is not simpler, but it would
enable your code to distinguish between start- and end-relative indexes. If we use either
1 or ^9 with Example 5-41, its indexer sees 1 in either case, because C# generates code
that converts the Index to a start-based int, but if you write an indexer with an
Index parameter, C# will pass the Index straight in. If you overload the indexer so
that both int and Index forms are available, it will never generate code that converts
an Index to an int in order to call the int indexer: the pattern only kicks in if no
Index-specific indexer is available.

IList<T> meets the pattern’s requirements (as do types that implement it,
such as List<T>), so you can pass an Index to the indexer of anything
that implements this. (It supplies a Count property instead of Length, but
the pattern accepts either.) This is a widely implemented interface, so in
practice, many types automatically get support for Index despite having
been written before Index was introduced. This is an example of how the
pattern-based support for Index means libraries that target older .NET
versions (such as .NET Standard 2.0) where Index is not available can
nonetheless define types that will work with Index when used with newer
versions of .NET.

The pattern for supporting Range is different: if your type supplies an
instance method called Slice that takes two integer arguments, C# will
allow code to supply a Range as an indexer argument. Example 5-42
shows the least a type can do to enable this, although it’s not a very useful
implementation. (As with Index, you can alternatively just define an
indexer overload that accepts a Range directly. But again, an advantage to
the pattern approach is that you can use it when targeting older versions—
such as .NET Standard 2.0 that does not offer the Range or Index types
—while still supporting ranges for code that targets newer versions.)

Example 5-42. Minimally enabling Range
public class Rangeable
{
 public int Length => 10;

 public Rangeable Slice(int offset, int length) => this;
}

You might have noticed that this type doesn’t define an indexer. That’s
because this pattern-based support for expressions of the form x[1..^1]
doesn’t need one. It may look like we’re using an indexer, but this just calls
the Slice method. (Likewise, the earlier range examples with string
and arrays compile into method calls.) You need the Length property (or
Count) because the compiler generates code that relies on this to resolve
the range’s indexes. Example 5-43 shows roughly how the compiler uses
types that support this pattern.

Example 5-43. How range indexing expands
Rangeable r1 = new();
Range r = 2..^2;

Rangeable r2;

r2 = r1[r];
// is equivalent to
int startIndex = r.Start.GetOffset(r1.Length);
int endIndex = r.End.GetOffset(r1.Length);
r2 = r1.Slice(startIndex, endIndex - startIndex);

So far, all of the collections we’ve looked at have been linear: I’ve shown
only simple sequences of objects or values, some of which offer indexed
access. However, .NET provides other kinds of collections.

Dictionaries
One of the most useful kinds of collections is a dictionary. .NET offers the
Dictionary<TKey, TValue> class, and there’s a corresponding
interface called, predictably, IDictionary<TKey, TValue>, and also
a read-only version, IReadOnlyDictionary<TKey, TValue>.

These represent collections of key/value pairs, and their most important
capability is to look up a value based on its key, making dictionaries useful
for representing associations.

Suppose you are writing a UI for an application that supports online
discussions. When displaying a message, you might want to show certain
things about the user who sent it, such as their name and picture, and you’d
probably want to avoid fetching these details from a persistent store every
time; if the user is in conversation with a few friends, the same people will
crop up repeatedly, so you’d want some sort of cache to avoid duplicate
lookups. You might use a dictionary as part of this cache. Example 5-44
shows an outline of this approach. (It omits application-specific details of
how the data is actually fetched and when old data is removed from
memory.)

Example 5-44. Using a dictionary as part of a cache
public class UserCache
{
 private readonly Dictionary<string, UserInfo> _cachedUserInfo =
new();

 public UserInfo GetInfo(string userHandle)
 {
 RemoveStaleCacheEntries();
 if (!_cachedUserInfo.TryGetValue(userHandle, out UserInfo?
info))
 {
 info = FetchUserInfo(userHandle);
 _cachedUserInfo.Add(userHandle, info);
 }
 return info;
 }

 private UserInfo FetchUserInfo(string userHandle)
 {
 // fetch info...
 }

 private void RemoveStaleCacheEntries()
 {
 // application-specific logic deciding when to remove old
entries...
 }

}

public class UserInfo
{
 // application-specific user information...
}

The first type argument, TKey, is used for lookups, and in this example,
I’m using a string that identifies the user in some way. The TValue
argument is the type of value associated with the key—information
previously fetched for the user and cached locally in a UserInfo instance,
in this case. The GetInfo method uses TryGetValue to look in the
dictionary for the data associated with a user handle. There is a simpler way
to retrieve a value. As Example 5-45 shows, dictionaries provide an indexer.
However, that throws a KeyNotFoundException if there is no entry
with the specified key. That would be fine if your code always expects to
find what it’s looking for, but in our case, the key will be missing for any
user whose data is not already in the cache. This will probably happen
rather a lot, which is why I’m using TryGetValue. As an alternative, we
could have used the ContainsKey method to see if the entry exists
before retrieving it, but that’s inefficient if the value is present—the
dictionary would end up looking up the entry twice, once in the call to
ContainsKey and then again when we use the indexer. TryGetValue
performs the test and the lookup as a single operation.

Example 5-45. Dictionary lookup with indexer
UserInfo info = _cachedUserInfo[userHandle];

As you might expect, we can also use the indexer to set the value associated
with a key. I’ve not done that in Example 5-44. Instead, I’ve used the Add
method, because it has subtly different semantics: by calling Add, you are
indicating that you do not think any entry with the specified key already
exists. Whereas the dictionary’s indexer will silently overwrite an existing
entry if there is one, Add will throw an exception if you attempt to use a
key for which an entry already exists. In situations where the presence of an
existing key would imply that something is wrong, it’s better to call Add so
that the problem doesn’t go undetected.

The IDictionary<TKey, TValue> interface requires its
implementations also to provide the
ICollection<KeyValuePair<TKey, TValue>> interface, and
therefore also IEnumerable<KeyValuePair<TKey, TValue>>.
The read-only counterpart requires the latter but not the former. These
interfaces depend on a generic struct, KeyValuePair<TKey,
TValue>, which is a simple container that wraps a key and a value in a
single instance. This means you can iterate through a dictionary using
foreach, and it will return each key/value pair in turn.

The presence of an IEnumerable<T> and an Add method also means
that we can use the collection initializer syntax. It’s not quite the same as
with a simple list, because a dictionary’s Add takes two arguments: the key
and value. However, the collection initializer syntax can cope with
multiargument Add methods. You wrap each set of arguments in nested
braces, as Example 5-46 shows.

Example 5-46. Collection initializer syntax with a dictionary
var textToNumber = new Dictionary<string, int>
{
 { "One", 1 },
 { "Two", 2 },
 { "Three", 3 },
};

As you saw in Chapter 3, there’s an alternative way to populate a
dictionary: instead of using a collection initializer, you can use the object
initializer syntax. As you may recall, this syntax lets you set properties on a
newly created object. It is the only way to initialize the properties of an
anonymous type, but you can use it on any type. Indexers are just a special
kind of property, so it makes sense to be able to set them with an object
initializer. Although Chapter 3 showed this already, it’s worth comparing
object initializers with collection initializers, so Example 5-47 shows the
alternative way to initialize a dictionary.

Example 5-47. Object initializer syntax with a dictionary
var textToNumber = new Dictionary<string, int>
{

 ["One"] = 1,
 ["Two"] = 2,
 ["Three"] = 3
};

Although the effect is the same here with Examples 5-46 and 5-47, the
compiler generates slightly different code for each. With Example 5-46, it
populates the collection by calling Add, whereas Example 5-47 uses the
indexer. For Dictionary<TKey, TValue>, the result is the same, so
there’s no objective reason to choose one over the other, but the difference
could matter for some classes. For example, if you are using a class that has
an indexer but no Add method, only the index-based code would work.
Also, with the object initializer syntax, it would be possible to set both
indexed values and properties on types that support this (although you can’t
do that with Dictionary<TKey, TValue> because it has no writable
properties other than its indexer).

The Dictionary<TKey, TValue> collection class relies on hashes to
offer fast lookup. Chapter 3 described the GetHashCode method, and you
should ensure that whatever type you are using as a key provides a good
hash implementation. The string class works well. For other types, the
default GetHashCode method is viable only if different instances of a
type are always considered to have different values, but types for which that
is true function well as keys. Alternatively, the dictionary class provides
constructors that accept an IEqualityComparer<TKey>, which allows
you to provide an implementation of GetHashCode and Equals to use
instead of the one supplied by the key type itself. Example 5-48 uses this to
make a case-insensitive version of Example 5-46.

Example 5-48. A case-insensitive dictionary
var textToNumber =
 new Dictionary<string, int>
(StringComparer.InvariantCultureIgnoreCase)
{
 { "One", 1 },
 { "Two", 2 },
 { "Three", 3 },
};

This uses the StringComparer class, which provides various
implementations of IComparer<string> and
IEqualityComparer<string>, offering different comparison rules.
Here, I’ve chosen an ordering that ignores case and also ignores the
configured locale, ensuring consistent behavior in different regions. If I
were using strings to be displayed, I’d probably use one of its culture-aware
comparisons.

Sorted Dictionaries
Because Dictionary<TKey, TValue> uses hash-based lookup, the
order in which it returns elements when you iterate over its contents is hard
to predict and not very useful. It will generally bear no relation to the order
in which the contents were added and no obvious relationship to the
contents themselves. (The order typically looks random, although it’s
actually related to the hash code.)

Sometimes, it’s useful to be able to retrieve the contents of a dictionary in
some meaningful order. You could always get the contents into an array and
then sort them, but the System.Collections.Generic namespace
contains two more implementations of the IDictionary<TKey,
TValue> interface, which keep their contents permanently in order.
There’s SortedDictionary<TKey, TValue> and the more
confusingly titled SortedList<TKey, TValue>, which—despite the
name—implements the IDictionary<TKey, TValue> interface and
does not directly implement IList<T>.

These classes do not use hash codes. They still provide reasonably fast
lookup, but they do it by keeping their contents sorted. They maintain the
order every time you add a new entry, which makes addition rather slower
for both these classes than with the hash-based dictionary, but it means that
when you iterate over the contents, they come out in order. As with array
and list sorting, you can specify custom comparison logic, but if you don’t
supply that, these dictionaries require the key type to implement
IComparable<T>.

The ordering maintained by a SortedDictionary<TKey, TValue>
is apparent only when you use its enumeration support (e.g., with
foreach). SortedList<TKey, TValue> also enumerates its
contents in order, but it additionally provides numerically indexed access to
the keys and values. This does not work through the object’s indexer—that
expects to be passed a key just like any dictionary. Instead, the sorted list
dictionary defines two properties, Keys and Values, which provide all
the keys and values as IList<TKey> and IList<TValue>,
respectively, sorted so that the keys will be in ascending order. (The
Values are in key order as well as the Keys.)

Inserting and removing objects is relatively expensive for the sorted list
because it has to shuffle the key and value list contents up or down. (This
means a single insertion has O(n) complexity.) The sorted dictionary, on the
other hand, uses a tree data structure to keep its contents sorted. The exact
details are not specified, but insertion and removal performance are
documented as having O(log n) complexity, which is much better than for
the sorted list. However, this more complex data structure gives a sorted
dictionary a significantly larger memory footprint. This means that neither
is definitively faster or better than the other—it all depends on the usage
pattern, which is why the runtime libraries supply both.

In most cases, the hash-based Dictionary<TKey, Value> will
provide better insertion, removal, and lookup performance than either of the
sorted dictionaries, and much lower memory consumption than a
SortedDictionary<TKey, TValue>, so you should use these
sorted dictionary collections only if you need to access the dictionary’s
contents in order.

Sets
The System.Collections.Generic namespace defines an
ISet<T> interface. This offers a simple model: a particular value is either
a member of the set or not. You can add or remove items, but a set does not

5

keep track of how many times you’ve added an item, nor does ISet<T>
require items to be stored in any particular order.

All set types implement ICollection<T>, which provides the methods
for adding and removing items. In fact, it also defines the method for
determining membership: although I’ve not drawn attention to it before
now, you can see in Example 5-25 that ICollection<T> defines a
Contains method. This takes a single value and returns true if that
value is in the collection.

Given that ICollection<T> already provides the defining operations
for a set, you might wonder why we need ISet<T>. But it does add a few
things. Although ICollection<T> defines an Add method, ISet<T>
defines its own subtly different version, which returns a bool, so you can
find out whether the item you just added was already in the set. Example 5-
49 uses this to detect duplicates in a method that displays each string in its
input once. (This illustrates the usage, but in practice it would be simpler to
use the Distinct LINQ operator described in Chapter 10.)

Example 5-49. Using a set to determine what’s new
public static void ShowEachDistinctString(IEnumerable<string>
strings)
{
 var shown = new HashSet<string>(); // Implements ISet<T>
 foreach (string s in strings)
 {
 if (shown.Add(s))
 {
 Console.WriteLine(s);
 }
 }
}

ISet<T> also defines some operations for combining sets. The
UnionWith method takes an IEnumerable<T> and adds to the set all
the values from that sequence that were not already in the set. The
ExceptWith method removes from the set items that are also in the
sequence you pass. The IntersectWith method removes from the set
items that are not also in the sequence you pass. And

SymmetricExceptWith also takes a sequence and removes from the set
elements that are in the sequence, but also adds to the set values in the
sequence that were not previously in the set.

There are also some methods for comparing sets. Again, these all take an
IEnumerable<T> argument representing the other set with which the
comparison is to be performed. IsSubsetOf and IsProperSubsetOf
both let you check whether the set on which you invoke the method
contains only elements that are also present in the sequence, with the latter
method additionally requiring the sequence to contain at least one item not
present in the set. IsSupersetOf and IsProperSupersetOf
perform the same tests in the opposite direction. The Overlaps method
tells you whether the two sets share at least one element in common.

Mathematical sets do not define an order for their contents, so it’s not
meaningful to refer to the 1st, 10th, or nth element of a set—you can ask
only whether an element is in the set or not. In keeping with this feature of
mathematical sets, .NET sets do not support indexed access, so ISet<T>
does not demand support for IList<T>. Sets are free to produce the
members in whatever order they like in their IEnumerable<T>
implementation.

The runtime libraries offer two classes that provide this interface, with
different implementation strategies: HashSet and SortedSet. As you
may have guessed from the names, one of the two built-in set
implementations does in fact choose to keep its elements in order;
SortedSet keeps its contents sorted at all times and presents items in this
order through its IEnumerable<T> implementation. The documentation
does not describe the exact strategy used to maintain the order, but it
appears to use a balanced binary tree to support efficient insertion and
removal, and to offer fast lookup when trying to determine whether a
particular value is already in the list.

The other implementation, HashSet, works more like
Dictionary<TKey, TValue>. It uses hash-based lookup, which can
often be faster than the ordered approach, but if you enumerate through the

collection with foreach, the results will not be in any useful order. (So
the relationship between HashSet and SortedSet is much like that
between the hash-based dictionary and the sorted dictionaries.)

Queues and Stacks
A queue is a list where you can only add items to the end of the list, and you
can only remove the first item (at which point the second item, if there was
one, becomes the new first item). This style of list is often called a first-in,
first-out (FIFO) list. This makes it less useful than a List<T>, because
you can read, write, insert, or remove items at any point in a List<T>.
However, the constraints make it possible to implement a queue with
considerably better performance characteristics for insertion and removal.
When you remove an item from a List<T>, it has to shuffle all the items
after the one removed to close up the gap, and insertions require a similar
shuffle. Insertion and removal at the end of a List<T> is efficient, but if
you need FIFO semantics, you can’t work entirely at the end—you’ll need
to do either insertions or removals at the start, making List<T> a bad
choice. Queue<T> can use a much more efficient strategy because it needs
only to support queue semantics. (It uses a circular buffer internally,
although that’s an undocumented implementation detail.)

To add a new item to the end of a queue, call the Enqueue method. To
remove the item at the head of the queue, call Dequeue, or use Peek if
you want to look at the item without removing it. Both operations will
throw an InvalidOperationException if the queue is empty. You
can find out how many items are in the queue with the Count property.

Although you cannot insert, remove, or change items in the middle of the
list, you can inspect the whole queue, because Queue<T> implements
IEnumerable<T> and also provides a ToArray method that returns an
array containing a copy of the current queue contents.

A stack is similar to a queue, except you retrieve items from the same end
as you insert them—so this is a last-in, first-out (LIFO) list. Stack<T>

looks very similar to Queue<T> except instead of Enqueue and
Dequeue, the methods for adding and removing items use the traditional
names for stack operations: Push and Pop. (Other methods—such as
Peek, ToArray, and so on—remain the same.)

The runtime libraries do not offer a double-ended queue. However, linked
lists can offer a superset of that functionality.

Linked Lists
The LinkedList<T> class provides an implementation of the classic
doubly linked list data structure, in which each item in the sequence is
wrapped in an object (of type LinkedListNode<T>) that provides a
reference to its predecessor and its successor. The advantage of a linked list
is that insertion and removal is inexpensive—it does not require elements to
be moved around in arrays and does not require binary trees to be
rebalanced. It just requires a few references to be swapped around. The
downsides are that linked lists have fairly high memory overheads,
requiring an extra object on the heap for every item in the collection, and
it’s also relatively expensive for the CPU to get to the nth item because you
have to go to the start and then traverse n nodes.

The first and last nodes in a LinkedList<T> are available through the
predictably named First and Last properties. You can insert items at the
start or end of the list with AddFirst and AddLast, respectively. To add
items in the middle of a list, call either AddBefore or AddAfter,
passing in the LinkedListNode<T> before or after which you’d like to
add the new item.

The list also provides RemoveFirst and RemoveLast methods and two
overloads of a Remove method that allow you to remove either the first
node that has a specified value or a particular LinkedListNode<T>.

The LinkedListNode<T> itself provides a Value property of type T
containing the actual item for this node’s point in the sequence. Its List

property refers back to the containing LinkedList<T>, and the
Previous and Next properties allow you to find the previous or next
node.

To iterate through the contents of a linked list, you could, of course, retrieve
the first node from the First property and then follow each node’s Next
property until you get a null. However, LinkedList<T> implements
IEnumerable<T>, so it’s easier just to use a foreach loop. If you want
to get the elements in reverse order, start with Last and follow each node’s
Previous. If the list is empty, First and Last will be null.

Concurrent Collections
The collection classes described so far are designed for single-threaded
usage. You are free to use different instances on different threads
simultaneously, but a particular instance of any of these types must be used
only from one thread at any one time. But some types are designed to be
used by many threads simultaneously, without needing to use the
synchronization mechanisms discussed in Chapter 16. These are in the
System.Collections.Concurrent namespace.

The concurrent collections do not offer equivalents for every nonconcurrent
collection type. Some classes are designed to solve specific concurrent
programming problems. Even with the ones that do have nonconcurrent
counterparts, the need for concurrent use without locking can mean that
they present a somewhat different API than any of the normal collection
classes.

The ConcurrentQueue<T> and ConcurrentStack<T> classes are
the ones that look most like the nonconcurrent collections we’ve already
seen, although they are not identical. The queue’s Dequeue and Peek
have been replaced with TryDequeue and TryPeek, because in a
concurrent world, there’s no reliable way to know in advance whether
attempting to get an item from the queue will succeed. (You could check the
queue’s Count, but even if that is nonzero, some other thread may get in

6

there and empty the queue between when you check the count and when
you attempt to retrieve an item.) So the operation to get an item has to be
atomic with the check for whether an item is available, hence the Try
forms that can fail without throwing an exception. Likewise, the concurrent
stack provides TryPop and TryPeek.

ConcurrentDictionary<TKey, TValue> looks fairly similar to its
nonconcurrent cousin, but it adds some extra methods to provide the
atomicity required in a concurrent world: the TryAdd method combines
the test for the presence of a key with the addition of a new entry;
GetOrAdd does the same thing but also returns the existing value if there
is one as part of the same atomic operation.

There is no concurrent list, because you tend to need more coarse-grained
synchronization to use ordered, indexed lists successfully in a concurrent
world. But if you just want a bunch of objects, there’s
ConcurrentBag<T>, which does not maintain any particular order.

There’s also BlockingCollection<T>, which acts like a queue but
allows threads that want to take items off the queue to choose to block until
an item is available. You can also set a limited capacity and make threads
that put items onto the queue block if the queue is currently full, waiting
until space becomes available.

Immutable Collections
Microsoft provides a set of collection classes that guarantee immutability
and yet provide a lightweight way to produce a modified version of the
collection without having to make an entire new copy. (These are built into
.NET Core and .NET, but in .NET Framework, you will need a reference to
the System.Collections.Immutable NuGet package to use these.)

Immutability can be a very useful characteristic in multithreaded
environments, because if you know that the data you are working with
cannot change, you don’t need to take special precautions to synchronize
your access to it. (This is a stronger guarantee than you get with

IReadOnlyList<T>, which merely prevents you from modifying the
collection; it could just be a façade over a collection that some other thread
is able to modify.) But what do you do if your data needs to be updated
occasionally? It seems a shame to give up on immutability and to take on
the overhead of traditional multithreaded synchronization in cases where
you expect conflicts to be rare.

A low-tech approach is to build a new copy of all of your data each time
something changes (e.g., when you want to add an item to a collection,
create a whole new collection with a copy of all the old elements and also
the new one, and use that new collection from then on). This works but can
be extremely inefficient. However, techniques exist that can effectively
reuse parts of existing collections. The basic principle is that if you want to
add an item to a collection, you build a new collection that just points to the
data that is already there, along with some extra information to say what has
changed. It is rather more complex in practice, but the key point is that
there are well-established ways in which to implement various kinds of
collections so that you can efficiently build what look like complete self-
contained copies of the original data with some small modification applied,
without either having to modify the original data or having to build a
complete new copy of the collection. The immutable collections do all this
for you, encapsulating the work behind some straightforward interfaces.

This enables a model where you’re free to update your application’s model
without affecting code that was in the middle of using the current version of
the data. Consequently, you don’t need to hold locks while reading data—
you might need some synchronization when getting the latest version of the
data, but thereafter, you can process the data without any concurrency
concerns. This can be especially useful when writing multithreaded code.
The .NET Compiler Platform (often known by its codename, Roslyn) that is
the basis of Microsoft’s C# compiler uses this technique to enable
compilation to exploit multiple CPU cores efficiently.

The System.Collections.Immutable namespace defines its own
interfaces— IImmutableList<T>,
IImmutableDictionary<TKey, TValue>,

IImmutableQueue<T>, IImutableStack<T>, and
IImutableSet<T>. This is necessary because all operations that modify
the collection in any way need to return a new collection. Example 5-50
shows what this means for adding entries to a dictionary.

Example 5-50. Creating immutable dictionaries
IImmutableDictionary<int, string> d =
ImmutableDictionary.Create<int, string>();
d = d.Add(1, "One");
d = d.Add(2, "Two");
d = d.Add(3, "Three");

The whole point of immutable types is that code using an existing object
can be certain that nothing will change, so additions, removals, or
modifications necessarily mean creating a new object that looks just like the
old one but with the modification applied. (The built-in string type
works in exactly the same way because it is also immutable—the methods
that sound like they will change the value, such as Trim, actually return a
new string.) So in Example 5-50, the variable d refers successively to four
different immutable dictionaries: an empty one, one with one value, one
with two values, and finally one with all three values.

If you are adding a range of values like this, and you won’t be making
intermediate results available to other code, it is more efficient to add
multiple values in a single operation, because it doesn’t have to produce a
separate IIm mut ab le Dic tio nar y<T Key , TValue> for each entry
you add. (You could think of immutable collections as working a bit like a
source control system, with each change corresponding to a commit—for
every commit you do, a version of the collection will exist that represents
its contents immediately after that change.) It’s more efficient to batch a
bunch of related changes into a single “version” so the collections all have
AddRange methods that let you add multiple items in one step.

When you’re building a new collection from scratch, the same principle
applies: it will be more efficient if you put all of the initial content into the
first version of the collection, instead of adding items one at a time. Each
immutable collection type offers a nested Builder class to make this

easier, enabling you to add items one at a time but to defer the creation of
the actual collection until you have finished. Example 5-51 shows how this
is done.

Example 5-51. Creating an immutable dictionary with a builder
ImmutableDictionary<int, string>.Builder b =
 ImmutableDictionary.CreateBuilder<int, string>();
b.Add(1, "One");
b.Add(2, "Two");
b.Add(3, "Three");
IImmutableDictionary<int, string> d = b.ToImmutable();

The builder object is not immutable. Much like StringBuilder, it is a
mutable object that provides an efficient way to build a description of an
immutable object.

In addition to the immutable list, dictionary, queue, stack, and set types,
there’s one more immutable collection class that is a bit different than the
rest: Imm uta ble Ar ray <T>. This is essentially a wrapper providing an
immutable façade around an array. It implements IImmutableList<T>,
meaning that it offers the same services as an immutable list, but it has quite
different performance characteristics.

When you call Add on an immutable list, it will attempt to reuse most of
the data that is already there, so if you have a million items in your list, the
“new” list returned by Add won’t contain a new copy of those items—it
will mostly reuse the data that was already there. However, to achieve this,
ImmutableList<T> uses a somewhat complex tree data structure
internally. The upshot is that looking up values by index in an
ImmutableList<T> is not nearly as efficient as using an array (or a
List<T>). The indexer for ImmutableList<T> has O(log n)
complexity.

An ImmutableArray<T> is much more efficient for reads—being a
wrapper around an array, it has O(1) complexity, i.e., the time taken to fetch
an entry is constant, regardless of how large the collection may be. The
trade-off is that all of the IImmutableList<T> methods for building a
modified version of the list (Add, Remove, Insert, SetItem, etc.)

build a complete new array, including a new copy of any data that needs to
be carried over. (In other words, unlike all the other immutable collection
types, ImmutableArray<T> employs the low-tech approach to
immutability that I described earlier.) This makes modifications very much
more expensive, but if you have some data you do not expect to modify
after the initial creation of the array, this is an excellent trade-off, because
you will only ever build one copy of the array. And if you need to make
very occasional modifications, the high cost of each change might still be
worth it overall.

Summary
In this chapter, we saw the intrinsic support for arrays offered by the
runtime and also the various collection classes that .NET provides when
you need more than a fixed-size list of items. Next, we’ll look at a more
advanced topic: inheritance.

1 Surprisingly, foreach doesn’t require any particular interface; it will use anything with a
GetEnumerator method that returns an object providing a MoveNext method and a
Current property. Before generics, this was the only way to enable iteration through
collections of value-typed elements without boxing every item. Chapter 7 describes boxing.
Even though generics have fixed that, non-interface-based enumeration continues to be useful
because it enables collection classes to provide an extra GetEnumerator that returns a
struct, avoiding an additional heap allocation when the foreach loop starts. List<T>
does this.

2 Some of this cleanup work happens in the call to Dispose. Remember, IEnumerator<T>
implementations all implement IDisposable. The foreach keyword calls Dispose after
iterating through a collection (even if iteration was terminated by an error). If you’re not using
foreach and are performing iteration by hand, it’s vitally important to remember to call
Dispose.

3 Since end-relative indexes are stored as negative numbers, you might be wondering whether
^0 is even legal, given that the int type does not distinguish between positive and negative
zero. It is allowed because, as you’ll soon see, ^0 is useful when using ranges, so Index is
able to make the distinction.

4 In cases where you use ^ directly against an int inside an array indexer (e.g., a[^i] where
i is an int), the compiler generates marginally simpler code. Instead of converting i to an

Index, then calling GetOffset, it will generate code equivalent to a[a.Length - i].

5 The usual complexity analysis caveats apply—for small collections, the simpler data structure
might well win, its theoretical advantage only coming into effect with larger collections.

6 There’s an exception to this rule: you can use a collection from multiple threads as long as
none of the threads attempts to modify it.

Chapter 6. Inheritance

C# classes support inheritance, a popular object-oriented code reuse
mechanism. When you write a class, you can optionally specify a base
class. Your class will derive from this, meaning that everything in the base
class will be present in your class, as well as any members you add.

Classes and class-based record types support only single inheritance (so you
can only specify one base class). Interfaces offer a form of multiple
inheritance. Value types, including record struct types, do not support
inheritance at all. One reason for this is that value types are not normally
used by reference, which removes one of the main benefits of inheritance:
runtime polymorphism. Inheritance is not necessarily incompatible with
value-like behavior—some languages manage it—but it often has problems.
For example, assigning a value of some derived type into a variable of its
base type ends up losing all of the fields that the derived type added, a
problem known as slicing. C# sidesteps this by restricting inheritance to
reference types. When you assign a variable of some derived type into a
variable of a base type, you’re copying a reference, not the object itself, so
the object remains intact. Slicing is an issue only if the base class offers a
method that clones the object and doesn’t provide a way for derived classes
to extend that (or it does, but some derived class fails to extend it).

Classes specify a base class using the syntax shown in Example 6-1—the
base type appears after a colon that follows the class name. This example
assumes that a class called SomeClass has been defined elsewhere in the
project, or one of the libraries it uses.

Example 6-1. Specifying a base class
public class Derived : SomeClass
{
}

public class AlsoDerived : SomeClass, IDisposable
{

 public void Dispose() { }
}

As you saw in Chapter 3, if the class implements any interfaces, these are
also listed after the colon. If you want to derive from a class, and you want
to implement interfaces as well, the base class must appear first, as the
second class in Example 6-1 illustrates.

You can derive from a class that in turn derives from another class. The
MoreDerived class in Example 6-2 derives from Derived, which in
turn derives from Base.

Example 6-2. Inheritance chain
public class Base
{
}

public class Derived : Base
{
}

public class MoreDerived : Derived
{
}

This means that MoreDerived technically has multiple base classes: it
derives from both Derived (directly) and Base (indirectly, via
Derived). This is not multiple inheritance because there is only a single
chain of inheritance—any single class derives directly from at most one
base class. (All classes derive either directly or indirectly from object,
which is the default base class if you do not specify one.)

Since a derived class inherits everything the base class has—all its fields,
methods, and other members, both public and private—an instance of the
derived class can do anything an instance of the base class could do. This is
the classic is a relationship that inheritance implies in many languages. Any
instance of MoreDerived is a Derived and also a Base. C#’s type
system recognizes this relationship.

Inheritance and Conversions
C# provides various built-in implicit conversions. In Chapter 2, we saw the
conversions for numeric types, but there are also ones for reference types. If
some type D derives from B (either directly or indirectly), then a reference
of type D can be converted implicitly to a reference of type B. This follows
from the is a relationship I described in the preceding section—any instance
of D is a B. This implicit conversion enables polymorphism: code written to
work in terms of B will be able to work with any type derived from B.

Implicit reference conversions are special. Unlike other conversions, they
do not change the value in any way. (The built-in implicit numeric
conversions all create a new value from their input, often involving a
change of representation. The binary representation of the integer 1 looks
different for the float and int types, for example.) In effect, they
convert the interpretation of the reference, rather than converting the
reference itself or the object it refers to. As you’ll see later in this chapter,
there are various places where the CLR will take the availability of an
implicit reference conversion into account but will not consider other forms
of conversion.

WARNING
A custom implicit conversion between two reference types doesn’t count as an implicit
reference conversion for these purposes, because a method needs to be invoked to effect
such a conversion. The cases in which implicit reference conversions are special rely on
the fact that the “conversion” requires no work at runtime.

There is no implicit conversion in the opposite direction—although a
variable of type B could refer to an object of type D, there’s no guarantee
that it will. There could be any number of types derived from B, and a B
variable could refer to an instance of any of them. Nevertheless, you will
sometimes want to attempt to convert a reference from a base type to a
derived type, an operation sometimes referred to as a downcast. Perhaps
you know for a fact that a particular variable holds a reference of a certain

type. Or perhaps you’re not sure and would like your code to provide
additional services for specific types. C# offers three ways to do this.

We can attempt a downcast using the cast syntax. This is the same syntax
we use for performing nonimplicit numeric conversions, as Example 6-3
shows.

Example 6-3. Feeling downcast
public static void UseAsDerived(Base baseArg)
{
 var d = (Derived) baseArg;

 // ...go on to do something with d
}

This conversion is not guaranteed to succeed—that’s why we can’t use an
implicit conversion. If you try this when the baseArg argument refers to
something that’s neither an instance of Derived nor something derived
from Derived, the conversion will fail, throwing an
InvalidCastException. (Exceptions are described in Chapter 8.)

A cast is therefore appropriate only if you’re confident that the object really
is of the type you expect, and you would consider it to be an error if it
turned out not to be. This is useful when an API accepts an object that it
will later give back to you. Many asynchronous APIs do this, because in
cases where you launch multiple operations concurrently, you need some
way of working out which particular one finished when you get a
completion notification (although, as we’ll see in later chapters, there are
various ways to tackle that problem). Since these APIs don’t know what
sort of data you’ll want to associate with an operation, they usually just take
a reference of type object, and you would typically use a cast to turn it
back into a reference of the required type when the reference is eventually
handed back to you.

Sometimes, you will not know for certain whether an object has a particular
type. In this case, you can use the as operator instead, as shown in
Example 6-4. This allows you to attempt a conversion without risking an
exception. If the conversion fails, this operator just returns null.

Example 6-4. The as operator
public static void MightUseAsDerived(Base b)
{
 var d = b as Derived;

 if (d != null)
 {
 // ...go on to do something with d
 }
}

Although this technique is quite common in existing code, the introduction
of patterns back in C# 7.0 provided a more succinct alternative. Example 6-
5 has the same effect as Example 6-4: the body of the if runs only if b
refers to an instance of Derived, in which case it can be accessed through
the variable d. The is keyword here indicates that we want to test b against
a pattern. In this case we’re using a declaration pattern, which performs the
same runtime type test as the as operator. An expression that applies a
pattern with is produces a bool indicating whether the pattern matches.
We can use this as the if statement’s condition expression, removing the
need to compare with null. And since declaration patterns incorporate
variable declaration and initialization, the work that needed two statements
in Example 6-4 can all be rolled into the if statement in Example 6-5.

Example 6-5. The is operator with a declaration pattern
public static void MightUseAsDerived(Base b)
{
 if (b is Derived d)
 {
 // ...go on to do something with d
 }
}

In addition to being more compact, the is operator also has the benefit of
working in one scenario where as does not: you can test whether a
reference of type object refers to an instance of a value type such as an
int. (This may seem like a contradiction—how could you have a reference
to something that is not a reference type? Chapter 7 will show how this is
possible.) The as operator wouldn’t work because it returns null when

the instance is not of the specified type, but of course it cannot do that for a
value type—there’s no such thing as a null of type int. Since the
declaration pattern eliminates the need to test for null—we just use the
bool result that the is operator produces—we are free to use value types.

TIP
Occasionally you may want to detect when a particular type is present without needing
to perform a conversion. Since is can be followed by any pattern, you can use a type
pattern, e.g., is Derived. This performs the same test as a declaration pattern,
without going on to introduce a new variable.

When converting with the techniques just described, you don’t necessarily
need to specify the exact type. These operations will succeed as long as an
implicit reference conversion exists from the object’s real type to the type
you’re looking for. For example, given the Base, Derived, and
MoreDerived types that Example 6-2 defines, suppose you have a
variable of type Base that currently contains a reference to an instance of
MoreDerived. Obviously, you could cast the reference to
MoreDerived (and both as and is would also succeed for that type), but
as you’d probably expect, converting to Derived would work too.

These four mechanisms also work for interfaces. When you try to convert a
reference to an interface type reference (or test for an interface type with a
type pattern), it will succeed if the object referred to implements the
relevant interface.

Interface Inheritance
Interfaces support inheritance, but it’s not quite the same as class
inheritance. The syntax is similar, but as Example 6-6 shows, an interface
can specify multiple base interfaces. While .NET offers only single
implementation inheritance, this limitation does not apply to interfaces
because most of the complications and potential ambiguities that can arise

with multiple inheritance do not apply to purely abstract types. The most
vexing problems are around handling of fields, which means that even
interfaces with default implementations support multiple inheritance,
because those don’t get to add either fields or public members to the
implementing type. (When a class uses a default implementation for a
member, that member is accessible only through references of the
interface’s type.)

Example 6-6. Interface inheritance
interface IBase1
{
 void Base1Method();
}

interface IBase2
{
 void Base2Method();
}

interface IBoth : IBase1, IBase2
{
 void Method3();
}

Although interface inheritance is the official name for this feature, it is a
misnomer—whereas derived classes inherit all members from their base,
derived interfaces do not. It may appear that they do—given a variable of
type IBoth, you can invoke the Base1Method and Base2Method
methods defined by its bases. However, the true meaning of interface
inheritance is that any type that implements an interface is obliged to
implement all inherited interfaces. So a class that implements IBoth must
also implement IBase1 and IBase2. It’s a subtle distinction, especially
since C# does not require you to list the base interfaces explicitly. The class
in Example 6-7 only declares that it implements IBoth. However, if you
were to use .NET’s reflection API, to inspect the type definition, you would
find that the compiler has added IBase1 and IBase2 to the list of
interfaces the class implements as well as the explicitly declared IBoth.

Example 6-7. Implementing a derived interface
public class Impl : IBoth
{
 public void Base1Method()
 {
 }

 public void Base2Method()
 {
 }

 public void Method3()
 {
 }
}

Since implementations of a derived interface must implement all base
interfaces, C# lets you access bases’ members directly through a reference
of a derived type, so a variable of type IBoth provides access to
Base1Method and Base2Method, as well as that interface’s own
Method3. Implicit reference conversions exist from derived interface
types to their bases. For example, a reference of type IBoth can be
assigned to variables of type IBase1 and IBase2.

Generics
If you derive from a generic class, you must supply the type arguments it
requires. If your derived type is also generic, it can use its own type
parameters as arguments if you wish, as long as they meet any constraints
the base class defines. Example 6-8 shows both techniques and also
illustrates that when deriving from a class with multiple type parameters,
you can use a mixture, specifying one type argument directly and punting
on the other.

Example 6-8. Deriving from a generic base class
public class GenericBase1<T>
{
 public T? Item { get; set; }
}

public class GenericBase2<TKey, TValue>
 where TValue : class
{
 public TKey? Key { get; set; }
 public TValue? Value { get; set; }
}

public class NonGenericDerived : GenericBase1<string>
{
}

public class GenericDerived<T> : GenericBase1<T>
{
}

public class MixedDerived<T> : GenericBase2<string, T>
 where T : class
{
}

Although you are free to use any of your type parameters as type arguments
for a base class, you cannot derive from a type parameter. This is a little
disappointing if you are used to languages that permit such things, but the
C# language specification simply forbids it. However, you are allowed to
use your own type as a type argument to your base class. And you can also
specify a constraint on a type argument, requiring it to derive from your
own type. Example 6-9 shows each of these.

Example 6-9. Self-referential type arguments
public class SelfAsTypeArgument : IComparable<SelfAsTypeArgument>
{
 // ...implementation removed for clarity
}

public class Curious<T>
 where T : Curious<T>
{
}

Covariance and Contravariance
In Chapter 4, I mentioned that generic types have special rules for type
compatibility, referred to as covariance and contravariance. These rules
determine whether references of certain generic types are implicitly
convertible to one another when implicit conversions exist between their
type arguments.

NOTE
Covariance and contravariance are applicable only to the generic type arguments of
interfaces and delegates. (Delegates are described in Chapter 9.) You cannot define a
covariant or contravariant class, struct, or record.

Consider the simple Base and Derived classes shown earlier in Example
6-2, and look at the method in Example 6-10, which accepts any Base. (It
does nothing with it, but that’s not relevant here—what matters is what its
signature says it can use.)

Example 6-10. A method accepting any Base
public static void UseBase(Base b)
{
}

We already know that as well as accepting a reference to any Base, this
can also accept a reference to an instance of any type derived from Base,
such as Derived. Bearing that in mind, consider the method in Example
6-11.

Example 6-11. A method accepting any IEnumerable<Base>
public static void AllYourBase(IEnumerable<Base> bases)
{
}

This requires an object that implements the IEnumerable<T> generic
interface described in Chapter 5, where T is Base. What would you expect
to happen if we attempted to pass an object that did not implement

IEnumerable<Base> but did implement IEnumerable<Derived>?
Example 6-12 does this, and it compiles just fine.

Example 6-12. Passing an IEnumerable<T> of a derived type
IEnumerable<Derived> derivedItems = new[] { new Derived(), new
Derived() };
AllYourBase(derivedItems);

Intuitively, this makes sense. The AllYourBase method is expecting an
object that can supply a sequence of objects that are all of type Base. An
IEnumerable<Derived> fits the bill because it supplies a sequence of
Derived objects, and any Derived object is also a Base. However,
what about the code in Example 6-13?

Example 6-13. A method accepting any ICollection<Base>
public static void AddBase(ICollection<Base> bases)
{
 bases.Add(new Base());
}

Recall from Chapter 5 that ICollection<T> derives from
IEnumerable<T>, and it adds the ability to modify the collection in
certain ways. This particular method exploits that by adding a new Base
object to the collection. That would mean trouble for the code in Example
6-14.

Example 6-14. Error: trying to pass an ICollection<T> with a derived
type
ICollection<Derived> derivedList = new List<Derived>();
AddBase(derivedList); // Will not compile

Code that uses the derivedList variable will expect every object in that
list to be of type Derived (or something derived from it, such as the
MoreDerived class from Example 6-2). But the AddBase method in
Example 6-13 attempts to add a plain Base instance. That cannot be
correct, and the compiler does not allow it. The call to AddBase will
produce a compiler error complaining that references of type

ICollection<Derived> cannot be converted implicitly to references
of type ICollection<Base>.

How does the compiler know that it’s not OK to do this, while the very
similar-looking conversion from IEnumerable<Derived> to
IEnumerable<Base> is allowed? It’s not because Example 6-13
contains code that would cause a problem, by the way. You’d get the same
compiler error even if the AddBase method were completely empty. The
reason we don’t get an error in Example 6-12 is that the
IEnumerable<T> interface declares its type argument T as covariant.
You saw the syntax for this in Chapter 5, but I didn’t draw attention to it, so
Example 6-15 shows the relevant part from that interface’s definition again.

Example 6-15. Covariant type parameter
public interface IEnumerable<out T> : IEnumerable

That out keyword does the job. (Again, C# keeps up the C-family tradition
of giving each keyword multiple jobs—we first saw this keyword in the
context of method parameters that can return information to the caller.)
Intuitively, describing the type argument T as “out” makes sense, in that the
IEnumerable<T> interface only ever provides a T—it does not define
any members that accept a T. (The interface uses this type parameter in just
one place: its read-only Current property.)

Compare that with ICollection<T>. This derives from
IEnumerable<T>, so clearly it’s possible to get a T out of it, but it’s also
possible to pass a T into its Add method. So ICollection<T> cannot
annotate its type argument with out. (If you were to try to write your own
similar interface, the compiler would produce an error if you declared the
type argument as being covariant. Rather than just taking your word for it, it
checks to make sure you really can’t pass a T in anywhere.)

The compiler rejects the code in Example 6-14 because T is not covariant in
ICollection<T>. The terms covariant and contravariant come from a
branch of mathematics called category theory. The parameters that behave
like IEnumerable<T>’s T are called covariant because implicit reference

conversions for the generic type work in the same direction as conversions
for the type argument: Derived is implicitly convertible to Base, and
since T is covariant in IEnumerable<T>, IEnumerable<Derived>
is implicitly convertible to IEnumerable<Base>.

Contravariance works the other way around, and as you might guess, we
denote it with the in keyword. It’s easiest to see this in action with code
that uses members of types, so Example 6-16 shows a marginally more
interesting pair of classes than the earlier examples.

Example 6-16. Class hierarchy with actual members
public class Shape
{
 public Rect BoundingBox { get; set; }
}

public class RoundedRectangle : Shape
{
 public double CornerRadius { get; set; }
}

Example 6-17 defines two classes that use these shape types. Both
implement IComparer<T>, which I introduced in Chapter 4. The
BoxAreaComparer compares two shapes based on the area of their
bounding box—the shape whose bounding box covers the greater area will
be deemed the larger by this comparison. The
CornerSharpnessComparer, on the other hand, compares rounded
rectangles by looking at how pointy their corners are.

Example 6-17. Comparing shapes
public class BoxAreaComparer : IComparer<Shape>
{
 public int Compare(Shape? x, Shape? y)
 {
 if (x is null)
 {
 return y is null ? 0 : -1;
 }
 if (y is null)
 {
 return 1;

 }

 double xArea = x.BoundingBox.Width * x.BoundingBox.Height;
 double yArea = y.BoundingBox.Width * y.BoundingBox.Height;

 return Math.Sign(xArea - yArea);
 }
}

public class CornerSharpnessComparer : IComparer<RoundedRectangle>
{
 public int Compare(RoundedRectangle? x, RoundedRectangle? y)
 {
 if (x is null)
 {
 return y is null ? 0 : -1;
 }
 if (y is null)
 {
 return 1;
 }

 // Smaller corners are sharper, so smaller radius is
"greater" for
 // the purpose of this comparison, hence the backward
subtraction.
 return Math.Sign(y.CornerRadius - x.CornerRadius);
 }
}

References of type RoundedRectangle are implicitly convertible to
Shape, so what about IComparer<T>? Our BoxAreaComparer can
compare any shapes and declares this by implementing
IComparer<Shape>. The comparer’s type argument T is only ever used
in the Compare method, and that is happy to be passed any Shape. It will
not be fazed if we pass it a pair of RoundedRectangle references, so
our class is a perfectly adequate IComparer<RoundedRectangle>.
An implicit conversion from IComparer<Shape> to
IComparer<RoundedRectangle> therefore makes sense, and is in
fact allowed. However, the CornerSharpnessComparer is fussier. It
uses the CornerRadius property, which is available only on rounded

rectangles, not on any old Shape. Therefore, no implicit conversion exists
from IComparer<RoundedRectangle> to IComparer<Shape>.

This is the reverse of what we saw with IEnumerable<T>. Implicit
conversion is available between IEnumerable<T1> and
IEnumerable<T2> when an implicit reference conversion from T1 to
T2 exists. But implicit conversion between IComparer<T1> and
IComparer<T2> is available when an implicit reference conversion
exists in the other direction: from T2 to T1. That reversed relationship is
called contravariance. Example 6-18 is an excerpt of the definition for
IComparer<T> showing this contravariant type parameter.

Example 6-18. Contravariant type parameter
public interface IComparer<in T>

Most generic type parameters are neither covariant nor contravariant. (They
are invariant.) ICollection<T> cannot be variant, because it contains
some members that accept a T and some that return one. An
ICollection<Shape> might contain shapes that are not
RoundedRectangles, so you cannot pass it to a method expecting an
ICollection<RoundedRectangle>, because such a method would
expect every object it retrieves from the collection to be a rounded
rectangle. Conversely, an ICollection<RoundedRectangle>
cannot be expected to allow shapes other than rounded rectangles to be
added, and so you cannot pass an ICo lle cti on< Rou nde d
Rec tan gle> to a method that expects an ICollection<Shape>
because that method may try to add other kinds of shapes.

Arrays are covariant, just like IEnumerable<T>. This is rather odd,
because we can write methods like the one in Example 6-19.

Example 6-19. Changing an element in an array
public static void UseBaseArray(Base[] bases)
{
 bases[0] = new Base();
}

If I were to call this with the code in Example 6-20, I would be making the
same mistake as I did in Example 6-14, where I attempted to pass an
ICollection<Derived> to a method that wanted to put something
that was not Derived into the collection. But while Example 6-14 does
not compile, Example 6-20 does, due to the surprising covariance of arrays.

Example 6-20. Passing an array with derived element type
Derived[] derivedBases = { new Derived(), new Derived() };
UseBaseArray(derivedBases);

This makes it look as though we could sneakily make this array accept a
reference to an object that is not an instance of the array’s element type—in
this case, putting a reference to a non-Derived object, Base, in
Derived[]. But that would be a violation of the type system. Does this
mean the sky is falling?

In fact, C# correctly forbids such a violation, but it relies on the CLR to
enforce this at runtime. Although a reference to an array of type
Derived[] can be implicitly converted to a reference of type Base[],
any attempt to set an array element in a way that is inconsistent with the
type system will throw an ArrayTypeMismatchException. So
Example 6-19 would throw that exception when it tried to assign a
reference to a Base into the Derived[] array.

The runtime check ensures that type safety is maintained, and this enables a
convenient feature. If we write a method that takes an array and only reads
from it, we can pass arrays of some derived element type. The downside is
that the CLR has to do extra work at runtime when you modify array
elements to ensure that there is no type mismatch. It may be able to
optimize the code to avoid having to check every single assignment, but
there is still some overhead, meaning that arrays are not quite as efficient as
they might be.

This somewhat peculiar arrangement dates back to the time before .NET
had formalized concepts of covariance and contravariance—these came in
with generics, which were introduced in .NET 2.0. Perhaps if generics had
been around from the start, arrays would be less odd, although having said

that, even after .NET 2.0 their peculiar form of covariance was for many
years the only mechanism built into the framework that provided a way to
pass a collection covariantly to a method that wanted to read from it using
indexing. Until .NET 4.5 introduced IReadOnlyList<T> (for which T
is covariant), there was no read-only indexed collection interface in the
framework, and therefore no standard indexed collection interface with a
covariant type parameter. (IList<T> is read/write, so just like
ICollection<T>, it cannot offer variance.)

While we’re on the subject of type compatibility and the implicit reference
conversions that inheritance makes available, there’s one more type we
should look at: object.

System.Object
The System.Object type, or object, as we usually call it in C#, is
useful because it can act as a sort of universal container: a variable of this
type can hold a reference to almost anything. I’ve mentioned this before,
but I haven’t yet explained why it’s true. The reason this works is that
almost everything derives from object.

If you do not specify a base class when writing a class or record, the C#
compiler automatically uses object as the base. As we’ll see shortly, it
chooses different bases for certain kinds of types such as structs, but even
those derive from object indirectly. (As ever, pointer types are an
exception—these do not derive from object.)

The relationship between interfaces and objects is slightly more subtle.
Interfaces do not derive from object, because an interface can specify
only other interfaces as its bases. However, a reference of any interface type
is implicitly convertible to a reference of type object. This conversion
will always be valid, because all types that are capable of implementing
interfaces ultimately derive from object. Moreover, C# chooses to make
the object class’s members available through interface references even
though they are not, strictly speaking, members of the interface. This means

that references of any kind always offer the following methods defined by
object: ToString, Equals, GetHashCode, and GetType.

The Ubiquitous Methods of System.Object
I’ve used ToString in a few examples already. The default
implementation returns the object’s type name, but many types provide their
own implementation of ToString, returning a more useful textual
representation of the object’s current value. The numeric types return a
decimal representation of their value, for example, while bool returns
either "True" or "False".

I discussed Equals and GetHashCode in Chapter 3, but I’ll provide a
quick recap here. Equals allows an object to be compared with any other
object. The default implementation just performs an identity comparison—
that is, it returns true only when an object is compared with itself. Many
types provide an Equals method that performs value-like comparison—
for example, two distinct string objects may contain identical text, in
which case they will report being equal to each other. (Should you need to
perform an identity-based comparison of objects that provide value-based
comparison, you can use the object class’s static ReferenceEquals
method.) Incidentally, object also defines a static version of Equals
that takes two arguments. This checks whether the arguments are null,
returning true if both are null and false if only one is null;
otherwise, it defers to the first argument’s Equals method. And, as
discussed in Chapter 3, GetHashCode returns an integer that is a reduced
representation of the object’s value, which is used by hash-based
mechanisms such as the Dictionary<TKey, TValue> collection
class. Any pair of objects for which Equals returns true must return the
same hash codes.

The GetType method provides a way to discover things about the object’s
type. It returns a reference of type Type. That’s part of the reflection API,
which is the subject of Chapter 13.

Besides these public members, available through any reference, object
defines two more members that are not universally accessible. An object
has access to these members only on itself. They are Finalize and
MemberwiseClone. The CLR calls the Finalize method to notify you
that your object is no longer in use and the memory it occupies is about to
be reclaimed. In C# we do not normally work directly with the Finalize
method, because C# presents this mechanism through destructors, as I’ll
show in Chapter 7. MemberwiseClone creates a new instance of the
same type as your object, initialized with copies of all of your object’s
fields. If you need a way to create a clone of an object, this may be easier
than writing code that copies all the contents across by hand, although it is
not very fast.

The reason these last two methods are available only from inside the object
is that you might not want other people cloning your object, and it would be
unhelpful if external code could call the Finalize method, fooling your
object into thinking that it was about to be freed if in fact it wasn’t. The
object class limits the accessibility of these members. But they’re not
private—that would mean that only the object class itself could access
them, because private members are not visible even to derived classes.
Instead, object makes theses members protected, an accessibility
specifier designed for inheritance scenarios.

Accessibility and Inheritance
By now, you will already be familiar with most of the accessibility levels
available for types and their members. Elements marked as public are
available to all, private members are accessible only from within the
type that declared them, and internal members are available to code
defined in the same component. But with inheritance, we get three other
accessibility options.

A member marked as protected is available inside the type that defined
it and also inside any derived types. But for code using an instance of your

1

type, protected members are not accessible, just like private
members.

The next protection level for type members is protected internal.
(You can write internal protected if you prefer; the order makes no
difference.) This makes the member more accessible than either
protected or internal on its own: the member will be accessible to
all derived types and to all code that shares an assembly.

The third protection level that inheritance adds is protected private.
Members marked with this (or the equivalent private protected) are
available only to types that are both derived from and defined in the same
component as the defining type.

You can use protected, protected internal, or protected
private for any member of a type, and not just methods. You can even
define nested types with these accessibility specifiers.

While protected and protected internal (although not
protected private) members are not available through an ordinary
variable of the defining type, they are still part of the type’s public API, in
the sense that anyone who has access to your classes will be able to use
these members. As with most languages that support a similar mechanism,
protected members in C# are typically used to provide services that
derived classes might find useful. If you write a public class that supports
inheritance, then anyone can derive from it and gain access to its
protected members. Removing or changing protected members
would therefore risk breaking code that depends on your class just as surely
as removing or changing public members would.

When you derive from a class, you cannot make your class more visible
than its base. If you derive from an internal class, for example, you
cannot declare your class to be public. Your base class forms part of your
class’s API, so anyone wishing to use your class will also in effect be using
its base class; this means that if the base is inaccessible, your class will also
be inaccessible, which is why C# does not permit a class to be more visible

than its base. If you derive from a protected nested class, your derived
class could be protected, private, or protected private but
not public, internal, or protected internal.

NOTE
This restriction does not apply to the interfaces you implement. A public class is free
to implement internal or private interfaces. However, it does apply to an
interface’s bases: a public interface cannot derive from an internal interface.

When defining methods, there’s another keyword you can add for the
benefit of derived types: virtual.

Virtual Methods
A virtual method is one that a derived type can replace. Several of the
methods defined by object are virtual: the ToString, Equals,
GetHashCode, and Finalize methods are all designed to be replaced.
The code required to produce a useful textual representation of an object’s
value will differ considerably from one type to another, as will the logic
required to determine equality and produce a hash code. Types typically
define a finalizer only if they need to do some specialized cleanup work
when they go out of use.

Not all methods are virtual. In fact, C# makes methods nonvirtual by
default. The object class’s GetType method is not virtual, so you can
always trust the information it returns to you because you know that you’re
calling the GetType method supplied by .NET, and not some type-specific
substitute designed to fool you. To declare that a method should be virtual,
use the virtual keyword, as Example 6-21 shows.

Example 6-21. A class with a virtual method
public class BaseWithVirtual
{
 public virtual void ShowMessage()

 {
 Console.WriteLine("Hello from BaseWithVirtual");
 }
}

NOTE
You can also apply the virtual keyword to properties. Properties are just methods
under the covers, so this has the effect of making the accessor methods virtual. The
same is true for events, which are discussed in Chapter 9.

There’s nothing unusual about the syntax for invoking a virtual method. As
Example 6-22 shows, it looks just like calling any other method.

Example 6-22. Using a virtual method
public static void CallVirtualMethod(BaseWithVirtual o)
{
 o.ShowMessage();
}

The difference between virtual and nonvirtual method invocations is that a
virtual method call decides at runtime which method to invoke. The code in
Example 6-22 will, in effect, inspect the object passed in, and if the object’s
type supplies its own implementation of ShowMessage, it will call that
instead of the one defined in BaseWithVirtual. The method is chosen
based on the actual type the target object turns out to have at runtime, and
not the static type (determined at compile time) of the expression that refers
to the target object.

NOTE
Since virtual method invocation selects the method based on the type of the object on
which you invoke the method, static methods cannot be virtual.

Derived types are not obliged to replace virtual methods. Example 6-23
shows two classes that derive from the one in Example 6-21. The first

leaves the base class’s implementation of ShowMessage in place. The
second overrides it. Note the override keyword—C# requires us to state
explicitly that we are intending to override a virtual method.

Example 6-23. Overriding virtual methods
public class DeriveWithoutOverride : BaseWithVirtual
{
}

public class DeriveAndOverride : BaseWithVirtual
{
 public override void ShowMessage()
 {
 Console.WriteLine("This is an override");
 }
}

We can use these types with the method in Example 6-22. Example 6-24
calls it three times, passing in a different type of object each time.

Example 6-24. Exploiting virtual methods
CallVirtualMethod(new BaseWithVirtual());
CallVirtualMethod(new DeriveWithoutOverride());
CallVirtualMethod(new DeriveAndOverride());

This produces the following output:

Hello from BaseWithVirtual
Hello from BaseWithVirtual
This is an override

Obviously, when we pass an instance of the base class, we get the output
from the base class’s ShowMessage method. We also get that with the
derived class that has not supplied an override. It is only the final class,
which overrides the method, that produces different output. This shows that
virtual methods provide a way to write polymorphic code: Example 6-22
can use a variety of types.

When overriding a method, the method name and its parameter types must
be an exact match. In most cases, the return type will also be identical, but
it doesn’t always need to be. If the virtual method’s return type is not

void, and is not a ref return, the overriding method may have a different
type as long as an implicit reference conversion from that type to the
virtual method’s return type exists. To put that more informally, an
override is allowed to be more specific about its return type. This means
that examples such as Example 6-25 are legal.

Example 6-25. An override that narrows the return type
public class Product { }
public class Book : Product { }

public class ProductSourceBase
{
 public virtual Product Get() { return new Product(); }
}

public class BookSource : ProductSourceBase
{
 public override Book Get() { return new Book(); }
}

Note that the return type of the override of Get is Book, even though the
virtual method it overrides returns a Product. This is fine because
anything that invokes this method through a reference of type
ProductSourceBase will expect to get back a reference of type
Product, and thanks to inheritance, a Book is a Product. So users of
the ProductSourceBase type will be unaware of and unaffected by the
change. This feature can sometimes be useful in cases where code working
directly with a derived type needs to know the specific type that will be
returned.

You might be wondering why we need virtual methods, given that
interfaces also enable polymorphic code. Prior to C# 8.0 one major
advantage of virtual methods over interfaces was that the base class could
provide an implementation that derived classes would acquire by default,
supplying their own implementation only if they really needed something
different. The addition of default interface implementations to the language
means that interfaces can now do the same thing, although a default
interface member implementation cannot define or access nonstatic fields,
so it is somewhat limited compared to a class that defines a virtual function.

(And since default interface implementations require runtime support, they
are unavailable to code that needs to be able to run on .NET Framework,
which includes any library targeting .NET Standard 2.0 or older.) However,
there is a more subtle advantage available to virtual methods, but before we
can look at it, we need to explore a feature of virtual methods that at first
glance even more closely resembles the way interfaces work.

Abstract Methods
You can define a virtual method without providing a default
implementation. C# calls this an abstract method. If a class contains one or
more abstract methods, the class is incomplete, because it doesn’t provide
all of the methods it defines. Classes of this kind are also described as being
abstract, and it is not possible to construct instances of an abstract class;
attempting to use the new operator with an abstract class will cause a
compiler error. Sometimes when discussing classes, it’s useful to make
clear that some particular class is not abstract, for which we normally use
the term concrete class.

If you derive from an abstract class, then unless you provide
implementations for all the abstract methods, your derived class will also be
abstract. You must state your intention to write an abstract class with the
abstract keyword; if this is absent from a class that has unimplemented
abstract methods (either ones it has defined itself or ones it has inherited
from its base class), the C# compiler will report an error. Example 6-26
shows an abstract class that defines a single abstract method. Abstract
methods are virtual by definition; there wouldn’t be much use in defining a
method that has no body if there were no way for derived classes to supply
a body.

Example 6-26. An abstract class
public abstract class AbstractBase
{
 public abstract void ShowMessage();
}

Abstract method declarations just define the signature and do not contain a
body. Unlike with interfaces, each abstract member has its own accessibility
—you can declare abstract methods as public, internal, protected
internal, protected private, or protected. (It makes no sense
to make an abstract or virtual method private, because the method will
be inaccessible to derived types and therefore impossible to override.)

NOTE
Although classes that contain abstract methods are required to be abstract, the converse
is not true. It is legal, albeit unusual, to define a class as abstract even if it would be a
viable concrete class. This prevents the class from being constructed. A class that
derives from this will be concrete without needing to override any abstract methods.

Abstract classes have the option to declare that they implement an interface
without needing to provide a full implementation. You can’t just omit the
unimplemented members, though. You must explicitly declare all of its
members, marking any that you want to leave unimplemented as being
abstract, as Example 6-27 shows. This forces concrete derived types to
supply the implementation.

Example 6-27. Abstract interface implementation
public abstract class MustBeComparable : IComparable<string>
{
 public abstract int CompareTo(string? other);
}

There’s clearly some overlap between abstract classes and interfaces. Both
provide a way to define an abstract type that code can use without needing
to know the exact type that will be supplied at runtime. Each option has its
pros and cons. Interfaces have the advantage that a single type can
implement multiple interfaces, whereas a class gets to specify only a single
base class. But abstract classes can define fields and can use these in any
default member implementations they supply, and they also provide a way
to supply default implementations that will work on .NET Framework.

However, there’s a more subtle advantage available to virtual methods that
comes into play when you release multiple versions of a library over time.

Inheritance and Library Versioning
Imagine what would happen if you had written and released a library that
defined some public interfaces and abstract classes, and in the second
release of the library, you decided that you wanted to add some new
members to one of the interfaces. It’s conceivable that this might not cause
a problem for customers using your code. Certainly, any place where they
use a reference of that interface type will be unaffected by the addition of
new features. However, what if some of your customers have written types
that implement your interface? Suppose, for example, that in a future
version of .NET, Microsoft decided to add a new member to the
IEnumerable<T> interface.

If the interface were not to supply a default implementation for the new
member, it would be a disaster. This interface is widely used but also widely
implemented. Classes that already implement IEnumerable<T> would
become invalid because they would not provide this new member, so old
code would fail to compile, and code already compiled would throw
MissingMethodException errors at runtime. C#’s support for default
member implementations in interfaces mitigates this: in the unlikely event
that Microsoft did add a new member to IEnumerable<T>, it could
supply a default implementation preventing these errors. This doesn’t help
anyone using .NET Framework, which does not support this feature, but for
newer runtimes, it makes modification of existing interface definitions seem
viable. However, there’s a more subtle problem. Some classes might by
chance already have had a member with the same name and signature as the
newly added method. If that code is recompiled against the new interface
definition, the compiler would treat that existing member as part of the
implementation of the interface, even though the developer who wrote the
method did not write it with that intention. So unless the existing code
coincidentally happens to do exactly what the new member requires, we’d

have a problem, and we wouldn’t get compiler errors or warnings to alert
us.

Consequently, the widely accepted rule is that you do not alter interfaces
once they have been published. If you have complete control over all of the
code that uses and implements an interface, you can get away with
modifying the interface, because you can make any necessary modifications
to the affected code. But once the interface has become available for use in
codebases you do not control—that is, once it has been published—it’s no
longer possible to change it without risking breaking someone else’s code.
Default interface implementations mitigate this risk, but they cannot
eliminate the problem of existing methods accidentally being misinterpreted
when they get recompiled against the updated interface.

Abstract base classes do not have to suffer from this problem. Obviously,
introducing new abstract members would cause exactly the same
MissingMethodException failures, but introducing new virtual
methods does not. (And since virtual methods have been in C# since v1,
this enables you to target .NET Framework, where default interface
implementation support is unavailable.)

But what if, after releasing version 1.0 of a component, you add a new
virtual method in version 1.1 that turns out to have the same name and
signature as a method that one of your customers happens to have added in
a derived class? Perhaps in version 1.0, your component defines the rather
uninteresting base class shown in Example 6-28.

Example 6-28. Base type version 1.0
public class LibraryBase
{
}

If you release this library, perhaps on the NuGet package management
website, or maybe as part of some Software Development Kit (SDK) for
your application, a customer might write a derived type such as the one in
Example 6-29. The Start method they have written is clearly not meant to
override anything in the base class.

https://nuget.org/

Example 6-29. Class derived from version 1.0 base
public class CustomerDerived : LibraryBase
{
 public void Start()
 {
 Console.WriteLine("Derived type's Start method");
 }
}

Since you won’t necessarily get to see every line of code that your
customers write, you might be unaware of this Start method. So in
version 1.1 of your component, you might decide to add a new virtual
method, also called Start, as Example 6-30 shows.

Example 6-30. Base type version 1.1
public class LibraryBase
{
 public virtual void Start() { }
}

Imagine that your system calls this method as part of an initialization
procedure introduced in v1.1. You’ve defined a default empty
implementation so that types derived from LibraryBase that don’t need
to take part in that procedure don’t have to do anything. Types that wish to
participate will override this method. But what happens with the class in
Example 6-29? Clearly the developer who wrote that did not intend to
participate in your new initialization mechanism, because that didn’t exist
when the code was written. It could be bad if your code calls the
CustomerDerived class’s Start method, because the developer
presumably expects it to be called only when their code decides to call it.
Fortunately, the compiler will detect this problem. If the customer attempts
to compile Example 6-29 against version 1.1 of your library (Example 6-
30), the compiler will warn them that something is not right:

warning CS0114: 'CustomerDerived.Start()' hides inherited member
'LibraryBase.Start()'. To make the current member override that
implementation,
add the override keyword. Otherwise add the new keyword.

This is why the C# compiler requires the override keyword when we
replace virtual methods. It wants to know whether we were intending to
override an existing method, so that if we weren’t, it can warn us about
naming collisions. (The absence of any equivalent keyword signifying the
intention to implement an interface member is why the compiler cannot
detect the same problem with default interface implementation. And the
reason for this absence is that default interface implementation didn’t exist
prior to C# 8.0.)

We get a warning rather than an error, because the compiler provides a
behavior that is likely to be safe when this situation has arisen due to the
release of a new version of a library. The compiler guesses—correctly, in
this case—that the developer who wrote the CustomerDerived type
didn’t mean to override the LibraryBase class’s Start method. So
rather than having the CustomerDerived type’s Start method
override the base class’s virtual method, it hides it. A derived type is said to
hide a member of a base class when it introduces a new member with the
same name.

Hiding methods is quite different than overriding them. When hiding
occurs, the base method is not replaced. Example 6-31 shows how the
hidden Start method remains available. It creates a
CustomerDerived object and places a reference to that object in two
variables of different types: one of type CustomerDerived and one of
type LibraryBase. It then calls Start through each of these.

Example 6-31. Hidden versus virtual method
var d = new CustomerDerived();
LibraryBase b = d;

d.Start();
b.Start();

When we use the d variable, the call to Start ends up calling the derived
type’s Start method, the one that has hidden the base member. But the b
variable’s type is LibraryBase, so that invokes the base Start method.
If CustomerDerived had overridden the base class’s Start method

instead of hiding it, both of those method calls would have invoked the
override.

When name collisions occur because of a new library version, this hiding
behavior is usually the right thing to do. If the customer’s code has a
variable of type CustomerDerived, then that code will want to invoke
the Start method specific to that derived type. However, the compiler
produces a warning, because it doesn’t know for certain that this is the
reason for the problem. It might be that you did mean to override the
method, and you just forgot to write the override keyword.

Like many developers, I don’t like to see compiler warnings, and I try to
avoid committing code that produces them. But what should you do if a
new library version puts you in this situation? The best long-term solution is
probably to change the name of the method in your derived class so that it
doesn’t clash with the method in the new version of the library. However, if
you’re up against a deadline, you may want a more expedient solution. So
C# lets you declare that you know that there’s a name clash and that you
definitely want to hide the base member, not override it. As Example 6-32
shows, you can use the new keyword to state that you’re aware of the issue
and definitely want to hide the base class member. The code will still
behave in the same way, but you’ll no longer get the warning, because
you’ve assured the compiler that you know what’s going on. But this is an
issue you should fix at some point, because sooner or later the existence of
two methods with the same name on the same type that mean different
things is likely to cause confusion.

Example 6-32. Avoiding warnings when hiding members
public class CustomerDerived : LibraryBase
{
 public new void Start()
 {
 Console.WriteLine("Derived type's Start method");
 }
}

NOTE
C# does not let you use the new keyword to deal with the equivalent problem that arises
with default interface implementations. There is no way to retain the default
implementation supplied by an interface and also declare a public method with the same
signature. This is slightly frustrating because it’s possible at the binary level: it’s the
behavior you get if you do not recompile the code that implements an interface after
adding a new member with a default implementation. You can still have separate
implementations of, say, ILibrary.Start and CustomerDerived.Start, but
you have to use explicit interface implementation.

Just occasionally, you may see the new keyword used in this way for
reasons other than handling library versioning issues. For example, the
ISet<T> interface that I showed in Chapter 5 uses it to introduce a new
Add method. ISet<T> derives from ICollection<T>, an interface
that already provides an Add method, which takes an instance of T and has
a void return type. ISet<T> makes a subtle change to this, shown in
Example 6-33.

Example 6-33. Hiding to change the signature
public interface ISet<T> : ICollection<T>
{
 new bool Add(T item);
 // ...other members omitted for clarity
}

The ISet<T> interface’s Add method tells you whether the item you just
added was already in the set, something the base ICollection<T>
interface’s Add method doesn’t support. ISet<T> needs its Add to have a
different return type—bool instead of void—so it defines Add with the
new keyword to indicate that it should hide the ICollection<T> one.
Both methods are still available—if you have two variables, one of type
ICollection<T> and the other of type ISet<T>, both referring to the
same object, you’ll be able to access the void Add through the former
and the bool Add through the latter.

Microsoft didn’t have to do this. It could have called the new Add method
something else—AddIfNotPresent, for example. But it’s arguably less
confusing just to have the one method name for adding things to a
collection, particularly since you’re free to ignore the return value, at which
point the new Add looks indistinguishable from the old one. And most
ISet<T> implementations will implement the ICo lle cti on< T>. Add
method by calling straight through to the ISet<T>.Add method, so it
makes sense that they have the same name.

Aside from the preceding example, so far I’ve discussed method hiding
only in the context of compiling old code against a new version of a library.
What happens if you have old code already compiled against an old library
but that ends up running against a new version? That’s a scenario you are
highly likely to run into when the library in question is the .NET runtime
libraries. Suppose you are using third-party components that you have only
in binary form (e.g., ones you’ve licensed from a company that does not
supply source code). The supplier will have built these to use some
particular version of .NET. If you upgrade your application to run with a
new version of .NET, you might not be able to get hold of newer versions of
the third-party components—maybe the vendor hasn’t released them yet, or
perhaps it has gone out of business.

If the components you’re using were compiled for, say, .NET Standard 1.2,
and you use them in a project built for .NET 6.0, all of those older
components will end up using the .NET 6.0 versions of the runtime
libraries. .NET has a versioning policy that arranges for all the components
that a particular program uses to get the same version of the runtime
libraries, regardless of which version any individual component may have
been built for. So it’s entirely possible that some component,
OldControls.dll, contains classes that derive from classes in .NET Standard
1.2, and that define members that collide with the names of members newly
added in .NET 6.0.

This is more or less the same scenario as I described earlier, except that the
code that was written for an older version of a library is not going to be
recompiled. We’re not going to get a compiler warning about hiding a

method, because that would involve running the compiler, and we have only
the binary for the relevant component. What happens now?

Fortunately, we don’t need the old component to be recompiled. The C#
compiler sets various flags in the compiled output for each method it
compiles, indicating things like whether the method is virtual or not and
whether the method was intended to override some method in the base
class. When you put the new keyword on a method, the compiler sets a flag
indicating that the method is not meant to override anything. The CLR calls
this the newslot flag. When C# compiles a method such as the one in
Example 6-29, which does not specify either override or new, it also
sets this same newslot flag for that method, because at the time the method
was compiled, there was no method of the same name on the base class. As
far as both the developer and the compiler were concerned, the
CustomerDerived class’s Start was written as a brand-new method
that was not connected to anything on the base class.

So when this old component gets loaded in conjunction with a new version
of the library defining the base class, the CLR can see what was intended—
it can see that, as far as the author of the CustomerDerived class was
concerned, Start is not meant to override anything. It therefore treats
CustomerDerived.Start as a distinct method from
LibraryBase.Start—it hides the base method just like it did when we
were able to recompile.

By the way, everything I’ve said about virtual methods can also apply to
properties, because a property’s accessors are just methods. So you can
define virtual properties, and derived classes can override or hide these in
exactly the same way as with methods. I won’t be getting to events until
Chapter 9, but those are also methods in disguise, so they can also be
virtual.

Just occasionally, you may want to write a class that overrides a virtual
method and then prevents derived classes from overriding it again. For this,
C# defines the sealed keyword, and in fact, it’s not just methods that can
be sealed.

Sealed Methods and Classes
Virtual methods are deliberately open to modification through inheritance.
A sealed method is the opposite—it is one that cannot be overridden.
Methods are sealed by default in C#: methods cannot be overridden unless
declared virtual. But when you override a virtual method, you can seal it,
closing it off for further modification. Example 6-34 uses this technique to
provide a custom ToString implementation that cannot be further
overridden by derived classes.

Example 6-34. A sealed method
public class FixedToString
{
 public sealed override string ToString() => "Arf arf!";
}

You can also seal an entire class, preventing anyone from deriving from it.
Example 6-35 shows a class that not only does nothing but also prevents
anyone from extending it to do something useful. (You’d normally seal only
a class that does something. This example is just to illustrate where the
keyword goes.)

Example 6-35. A sealed class
public sealed class EndOfTheLine
{
}

Some types are inherently sealed. Value types, for example, do not support
inheritance, so structs, record structs, and enums are effectively sealed. The
built-in string class is also sealed.

There are two normal reasons for sealing either classes or methods. One is
that you want to guarantee some particular invariant, and if you leave your
type open to modification, you will not be able to guarantee that invariant.
For example, instances of the string type are immutable. The string
type itself does not provide a way to modify an instance’s value, and
because nobody can derive from string, you can guarantee that if you
have a reference of type string, you have a reference to an immutable

object. This makes it safe for you to use in scenarios where you do not want
the value to change—for example, when you use an object as a key to a
dictionary (or anything else that relies on a hash code), you need the value
not to change, because if the hash code changes while the item is in use as a
key, the container will malfunction.

The other usual reason for leaving things sealed is that designing types that
can successfully be modified through inheritance is hard, particularly if
your type will be used outside of your own organization. Simply opening
things up for modification is not sufficient—if you decide to make all your
methods virtual, it might make it easy for people using your type to modify
its behavior, but you will have made a rod for your back when it comes to
maintaining the base class. Unless you control all of the code that derives
from your class, it will be almost impossible to change anything in the base,
because you will never know which methods may have been overridden in
derived classes, making it hard to ensure that your class’s internal state is
consistent at all times. Developers writing derived types will doubtless do
their best not to break things, but they will inevitably rely on aspects of
your class’s behavior that are undocumented. So in opening up every aspect
of your class for modification through inheritance, you rob yourself of the
freedom to change your class.

You should be very selective about which methods, if any, you make
virtual. And you should also document whether callers are allowed to
replace the method completely or whether they are required to call the base
implementation as part of their override. Speaking of which, how do you do
that?

Accessing Base Members
Everything that is in scope in a base class and is not private will also be in
scope and accessible in a derived type. If you want to access some member
of the base class, you typically just access it as if it were a normal member
of your class. You can either access members through the this reference
or just refer to them by name without qualification.

However, there are some situations in which you need to state explicitly that
you mean to refer to a base class member. In particular, if you have
overridden a method, calling that method by name will invoke your
override recursively. If you want to call back to the original method that
you overrode, there’s a special keyword for that, shown in Example 6-36.

Example 6-36. Calling the base method after overriding
public class CustomerDerived : LibraryBase
{
 public override void Start()
 {
 Console.WriteLine("Derived type's Start method");
 base.Start();
 }
}

By using the base keyword, we are opting out of the normal virtual
method dispatch mechanism. If we had written just Start(), that would
have been a recursive call, which would be undesirable here. By writing
base.Start(), we get the method that would have been available on an
instance of the base class, the method we overrode.

What if the inheritance chain is deeper? Suppose CustomerDerived
derives from IntermediateBase and that IntermediateBase
derives from LibraryBase and also overrides the Start method. In that
case, writing base.Start() in our Cus tom er Der iv ed type will call
the override defined by IntermediateBase. There’s no way to bypass
that and call the original LibraryBase.Start directly.

In this example, I have called the base class’s implementation after
completing my work. C# does not care when you call the base—you could
call it as the first thing the method does, as the last, or halfway through the
method. You could even call it several times, or not at all. It is up to the
author of the base class to document whether and when the base class
implementation of the method should be called by an override.

You can use the base keyword for other members too, such as properties
and events. However, access to base constructors works a bit differently.

Inheritance and Construction
Although a derived class inherits all the members of its base class, this does
not mean the same thing for constructors as it does for everything else. With
other members, if they are public in the base class, they will be public
members of the derived class too, accessible to anyone who uses your
derived class. But constructors are special, because someone using your
class cannot construct it by using one of the constructors defined by the
base class.

There is a straightforward reason for this: if you want an instance of some
type D, then you’ll want it to be a full-fledged D with everything in it
properly initialized. Suppose that D derives from B. If you were able to use
one of B’s constructors directly, it wouldn’t do anything to the parts specific
to D. A base class’s constructor won’t know about any of the fields defined
by a derived class, so it cannot initialize them. If you want a D, you’ll need
a constructor that knows how to initialize a D. So with a derived class, you
can use only the constructors offered by that derived class, regardless of
what constructors the base class might provide.

In the examples I’ve shown so far in this chapter, I’ve been able to ignore
this because of the default constructor that C# provides. As you saw in
Chapter 3, if you don’t write a constructor, C# writes one for you that takes
no arguments. It does this for derived classes too, and the generated
constructor will invoke the no-arguments constructor of the base class. But
this changes if I start writing my own constructors. Example 6-37 defines a
pair of classes, where the base defines an explicit no-arguments constructor,
and the derived class defines one that requires an argument.

Example 6-37. No default constructor in derived class
public class BaseWithZeroArgCtor
{
 public BaseWithZeroArgCtor()
 {
 Console.WriteLine("Base constructor");
 }
}

public class DerivedNoDefaultCtor : BaseWithZeroArgCtor
{
 public DerivedNoDefaultCtor(int i)
 {
 Console.WriteLine("Derived constructor");
 }
}

Because the base class has a zero-argument constructor, I can construct it
with new BaseWithZeroArgCtor(). But I cannot do this with the
derived type: I can construct that only by passing an argument—for
example, new DerivedNoDefaultCtor(123). So as far as the
publicly visible API of DerivedNoDefaultCtor is concerned, the
derived class appears not to have inherited its base class’s constructor.

However, it has in fact inherited it, as you can see by looking at the output
you get if you construct an instance of the derived type:

Base constructor
Derived constructor

When constructing an instance of DerivedNoDefaultCtor, the base
class’s constructor runs immediately before the derived class’s constructor.
Since the base constructor ran, clearly it was present. All of the base class’s
constructors are available to a derived type, but they can be invoked only by
constructors in the derived class. Example 6-37 invoked the base
constructor implicitly: all constructors are required to invoke a constructor
on their base class, and if you don’t specify which to invoke, the compiler
invokes the base’s zero-argument constructor for you.

What if the base doesn’t define a parameterless constructor? In that case,
you’ll get a compiler error if you derive a class that does not specify which
constructor to call. Example 6-38 shows a base class without a zero-
argument constructor. (The presence of explicit constructors disables the
compiler’s normal generation of a default constructor, and since this base
class supplies only a constructor that takes arguments, this means there is
no zero-argument constructor.) It also shows a derived class with two

constructors, both of which call into the base constructor explicitly, using
the base keyword.

Example 6-38. Invoking a base constructor explicitly
public class BaseNoDefaultCtor
{
 public BaseNoDefaultCtor(int i)
 {
 Console.WriteLine("Base constructor: " + i);
 }
}

public class DerivedCallingBaseCtor : BaseNoDefaultCtor
{
 public DerivedCallingBaseCtor()
 : base(123)
 {
 Console.WriteLine("Derived constructor (default)");
 }

 public DerivedCallingBaseCtor(int i)
 : base(i)
 {
 Console.WriteLine("Derived constructor: " + i);
 }
}

The derived class here decides to supply a parameterless constructor even
though the base class doesn’t have one—it supplies a constant value for the
argument the base requires. The second just passes its argument through to
the base.

NOTE
Here’s a frequently asked question: How do I provide all the same constructors as my
base class, just passing the arguments straight through? The answer is: write all the
constructors by hand. There is no way to get the C# compiler to generate a set of
constructors in a derived class that look identical to the ones that the base class offers.
You need to do it the long-winded way.

At least Visual Studio, VS Code, or JetBrains Rider can generate the code for you—if
you click on a class declaration, and then click the Quick Actions icon that appears, it
will offer to generate constructors with the same arguments as any nonprivate
constructor in the base class, automatically passing all the arguments through for you.

As Chapter 3 showed, a class’s field initializers run before its constructor.
The picture is more complicated once inheritance is involved, because there
are multiple classes and multiple constructors. The easiest way to predict
what will happen is to understand that although instance field initializers
and constructors have separate syntax, C# ends up compiling all the
initialization code for a particular class into the constructor. This code
performs the following steps: first, it runs field initializers specific to this
class (so this step does not include base field initializers—the base class
will take care of itself); next, it calls the base class constructor; and finally,
it runs the body of the constructor. The upshot of this is that in a derived
class, your instance field initializers will run before base class construction
has occurred—not just before the base constructor body but even before the
base’s instance fields have been initialized. Example 6-39 illustrates this.

Example 6-39. Exploring construction order
public class BaseInit
{
 protected static int Init(string message)
 {
 Console.WriteLine(message);
 return 1;
 }

 private int b1 = Init("Base field b1");

 public BaseInit()
 {

 Init("Base constructor");
 }

 private int b2 = Init("Base field b2");
}

public class DerivedInit : BaseInit
{
 private int d1 = Init("Derived field d1");

 public DerivedInit()
 {
 Init("Derived constructor");
 }

 private int d2 = Init("Derived field d2");
}

I’ve put the field initializers on either side of the constructor just to show
that their position relative to nonfield members is irrelevant. The order of
the fields matters, but only with respect to one another. Constructing an
instance of the DerivedInit class produces this output:

Derived field d1
Derived field d2
Base field b1
Base field b2
Base constructor
Derived constructor

This verifies that the derived type’s field initializers run first, and then the
base field initializers, followed by the base constructor, and then finally the
derived constructor. In other words, although constructor bodies start with
the base class, instance field initialization happens in reverse.

That’s why you don’t get to invoke instance methods in field initializers.
Static methods are available, but instance methods are not, because the class
is a long way from being ready. It could be problematic if one of the
derived type’s field initializers were able to invoke a method on the base
class, because the base class has performed no initialization at all at that
point—not only has its constructor body not run, but its field initializers

haven’t run either. If instance methods were available during this phase,
we’d have to write all of our code to be very defensive, because we could
not assume that our fields contain anything useful.

As you can see, the constructor bodies run relatively late in the process,
which is why we are allowed to invoke methods from them. But there’s still
potential danger here. What if the base class defines a virtual method and
invokes that method on itself in its constructor? If the derived type
overrides that, we’ll be invoking the method before the derived type’s
constructor body has run. (Its field initializers will have run at that point,
though. In fact, this is the main reason field initializers run in what seems to
be reverse order—it means that derived classes have a way of performing
some initialization before the base class’s constructor has a chance to
invoke a virtual method.) If you’re familiar with C++, you might hazard a
guess that when the base constructor invokes a virtual method, it’ll run the
base implementation. But C# does it differently: a base class’s constructor
will invoke the derived class’s override in that case. This is not necessarily a
problem, and it can occasionally be useful, but it means you need to think
carefully and document your assumptions clearly if you want your object to
invoke virtual methods on itself during construction.

Record Types
When you define a record type (or you use the more explicit but
functionally identical record class syntax), the resulting record type
is, from the runtime’s perspective, still a class. Record types can do most of
the things that normal classes can—although they’re typically all about the
properties, you can add other members such as methods and constructors.
And it turns out that class-based records also support inheritance.
(Naturally, since record struct types are value types, those do not
support inheritance.)

There are some constraints on inheritance with record types. An ordinary
class is not allowed to inherit from a record type—only record types can
derive from record types. Similarly, a record type can inherit only from

either another record type or the usual object base type. But within these
constraints, inheritance with records works much as it does for classes.
Example 6-40 shows a base record and a couple of derived types.

Example 6-40. Record inheritance
public abstract record OptionallyLabeled
{
 public string? Label { get; init; }
}

public record OptionallyLabeledItem : OptionallyLabeled;

public record Product(string Name) : OptionallyLabeled;

As this shows, we can define a record type as abstract. When a record is
not using the positional syntax, the way we inherit from a base type
(abstract or not) looks the same as for a class: as
OptionallyLabeledItem shows, we put a colon after the type name,
followed by the base type name. If our derived type wants to use the
positional syntax, the colon and base type come after the parameter list, as
the Product type shows. Example 6-41 shows how to instantiate the two
derived types defined in Example 6-40.

Example 6-41. Instantiating derived record types
var unlabeled = new OptionallyLabeledItem();
var labeled = new OptionallyLabeledItem
{
 Label = "New, improved!"
};

var unlabeledProduct = new Product("Book");
var labeledProduct = new Product("Shirt")
{
 Label = "Half price"
};

Since the base class’s Label property does not need to be set, we’re free to
construct either of the derived types without setting it. But if we do want to
set it, we use exactly the same object initializer syntax as we would have
done if that Label property were defined directly by
OptionallyLabeledItem or Product. But what if the base type

uses the positional syntax to define properties that are not optional? As
Example 6-42 shows, the record inheritance syntax allows us to supply an
argument list to the base class.

Example 6-42. Deriving from a positional record
public abstract record Colorful(string Color);

public record LightBulb(string Color, int Lumens) :
Colorful(Color);

LightBulb uses the positional syntax itself and uses one of its two
constructor arguments as the value for the Color property that the base
class requires. But in some cases, you might not want to pass a value
through like this: sometimes a derived type will know what value to pass to
the base record type, as Example 6-43 shows.

Example 6-43. Passing a constant to a positional base record
public record FordModelT() : Colorful("Black");

So in this case, although the base Colorful record uses the positional
syntax, requiring the Color property to be supplied, this derived type does
not pass that requirement on. The popular story is that Ford’s early car, the
Model T, was only available in one color, so this particular derived type can
just set the Color itself. Users of the FordModelT record do not need to
supply the Color, even though it’s a mandatory argument for the base
Colorful type. Pedants will by now be itching to point out that this paint
constraint applied only for 12 of the 19 years for which the Model T was
produced. I would draw their attention to Example 6-44, which shows that
although the FordModelT type does not require the Color property to be
passed during construction, it can still be set with an object initializer. So
this record type enables the color to be specified just as it could with early
and late Model Ts, but the default is aligned with the fact that the
overwhelming majority of these cars were indeed black.

Example 6-44. Using a derived record that has made a mandatory base
property optional
var commonModelT = new FordModelT();
var lateModelT = new FordModelT { Color = "Green" };

To be able to use the syntax shown in Examples 6-42 and 6-43, where we
put a positional argument list directly after the base class’s name, a record
must itself use the positional syntax. If you look closely at Example 6-43,
you’ll see that after the FordModelT type name, there’s an empty
argument list. Although this may seem redundant, in this case it needs to be
here, because without it, we wouldn’t be allowed to write
Colorful("Black") after the colon.

There are other ways to pass arguments to a positional base record. As
Chapter 3 described, when we use the positional syntax, we are just
defining a constructor, so an alternative would be to use the normal syntax
for invoking the base constructor, as Example 6-45 shows.

Example 6-45. Passing positional base record arguments with an ordinary
constructor
public record RedDelicious : Colorful
{
 public RedDelicious() : base("Red")
 { }
}

The last few examples have dealt with cases where a base class uses the
positional syntax but where its derived type does not. But what about the
converse, where the base type is not positional but a derived type wants to
be? If the derived type just wants to add one or more of its own properties,
this is straightforward. In fact, we’ve already seen it—the product type in
Example 6-40 does exactly this. However, what if the base type defines an
optional property (such as OptionallyLabeled.Label) but the
derived type wants to make that mandatory? You can do it, but you can’t
use the positional syntax. You have to write the constructor in full, as
Example 6-46 shows.

Example 6-46. Making an optional base property class positional
public record LabeledDemographic : OptionallyLabeled
{
 public LabeledDemographic(string label)
 {
 Label = label;
 }

 public void Deconstruct(out string? label) => label = Label;
}

Although this doesn’t use the positional syntax, it has a similar effect,
because the positional syntax works by defining a constructor. The presence
of the constructor in Example 6-46 will prevent the compiler from
generating a default zero-argument constructor, meaning that code using
LabeledDemographic will be obliged to provide the Label property
during construction, just as if the positional syntax were in use. You
automatically get a deconstructor when using the positional syntax, but I’ve
had to write my own here. The compiler doesn’t generate one because
deconstruction ends up being a little odd when attempting to impose
positional behavior in a type deriving from a nonpositional record. The base
class defines Label as optional, and even though we’ve defined a
constructor that requires a non-null argument, it would be possible to follow
the constructor with an object initializer that sets it back to null. (That
would be weird but not illegal.) So our deconstructor ends up not quite
matching our constructor.

Records, Inheritance, and the with Keyword
Chapter 3 showed how you can create modified copies of record types
using a with expression. This builds a new instance that has all the same
properties as the original except for any new property values you specify in
the braces following the with keyword. This mechanism has been
designed with inheritance in mind: the instance produced by the with
keyword will always have the same type as its input, even in cases where
the code is written in terms of the base type, like Example 6-47.

Example 6-47. Using with on a base record type
OptionallyLabeled Discount(OptionallyLabeled item)
{
 return item with
 {
 Label = "60% off!"
 };
}

This uses the abstract OptionallyLabeled record type from Example
6-40. We can call this passing in any concrete type derived from that
abstract base. Example 6-48 calls it twice with two different types.

Example 6-48. Testing how with interacts with inheritance
Console.WriteLine(Discount(new OptionallyLabeledItem()));
Console.WriteLine(Discount(new Product("Sweater")));

Running that code produces this output:

OptionallyLabeledItem { Label = 60% off! }
Product { Label = 60% off!, Name = Sweater }

Console.WriteLine calls ToString on its input, and record types
implement this by reporting their name and then their property values. So
you can see from this that when the Discount method produced modified
copies of its inputs, it successfully preserved the type. So even though
Discount knows nothing about the Product record type or its Name
property, when it created a copy with the new Label value, that Name
property was correctly carried over.

This works because of code that the compiler generates for record types. I
already described the copy constructor in Chapter 3, but that alone would
not make this possible—the Discount method doesn’t know about the
OptionallyLabeledItem or Product types, so it wouldn’t know to
invoke their copy constructors. So records also get a hidden virtual
method with an unspeakable name, <Clone>$. The with expression in
Example 6-47 invokes this (before going on to set the Label property).
The compiler-generated <Clone>$ method invokes its own copy
constructor. Since derived record types override <Clone>$, a with
expression will always get a full copy of the input record no matter what its
type is, even when the code is written in terms of a base type.

Special Base Types
The .NET runtime libraries define a few base types that have special
significance in C#. The most obvious is System.Object, which I’ve
already described in some detail.

There’s also System.ValueType. This is the abstract base type of all
value types, so any struct or record struct you define—and also
all of the built-in value types, such as int and bool—derive from
ValueType. Ironically, ValueType itself is a reference type; only types
that derive from ValueType are value types. Like most types,
ValueType derives from System.Object. There is an obvious
conceptual difficulty here: in general, derived classes are everything their
base class is, plus whatever functionality they add. So, given that object
and ValueType are both reference types, it may seem odd that types
derived from ValueType are not. And for that matter, it’s not obvious
how an object variable can hold a reference to an instance of something
that’s not a reference type. I will resolve all of these issues in Chapter 7.

C# does not permit you to write a type that derives explicitly from
ValueType. If you want to write a type that derives from ValueType,
that’s what the struct keyword is for. You can declare a variable of type
ValueType, but since the type doesn’t define any public members, a
ValueType reference doesn’t enable anything you can’t do with an
object reference. The only observable difference is that with a variable of
that type, you can assign instances of any value type into it but not instances
of a reference type. Aside from that, it’s identical to object.
Consequently, it’s fairly rare to see ValueType mentioned explicitly in C#
code.

Enumeration types also all derive from a common abstract base type:
System.Enum. Since enums are value types, you won’t be surprised to
find out that Enum derives from ValueType. As with ValueType, you
would never derive from Enum explicitly—you use the enum keyword for
that. Unlike ValueType, Enum does add some useful members. For

example, its static GetValues method returns an array of all the
enumeration’s values, while GetNames returns an array with all those
values converted to strings. It also offers Parse, which converts from the
string representation back to the enumeration value.

As Chapter 5 described, arrays all derive from a common base class,
System.Array, and you’ve already seen the features that offers.

The System.Exception base class is special: when you throw an
exception, C# requires that the object you throw be of this type or a type
that derives from it. (Exceptions are the topic of Chapter 8.)

Delegate types all derive from a common base type,
System.MulticastDelegate, which in turn derives from
System.Delegate. I’ll discuss these in Chapter 9.

Those are all the base types that the CTS treats as being special. There’s one
more base type to which the C# compiler assigns particular significance,
and that’s Sys tem. Att rib ute. In Chapter 1, I applied certain
annotations to methods and classes to tell the unit test framework to treat
them specially. These attributes all correspond to types, so when I applied
the [TestClass] attribute to a class, I was using a type called
TestClassAttribute. Types designed to be used as attributes are all
required to derive from System.Attribute. Some of them are
recognized by the compiler—for example, there are some that control the
version numbers that the compiler puts into the file headers of the EXE and
DLL files it produces. I’ll show all of this in Chapter 14.

Summary
C# supports single implementation inheritance, and only with classes or
reference type records—you cannot derive from a struct at all. However,
interfaces can declare multiple bases, and a class can implement multiple
interfaces. Implicit reference conversions exist from derived types to base
types, and generic interfaces and delegates can choose to offer additional
implicit reference conversions using either covariance or contravariance.

All types derive from System.Object, guaranteeing that certain
standard members are available on all variables. We saw how virtual
methods allow derived classes to modify selected members of their bases,
and how sealing can disable that. We also looked at the relationship
between a derived type and its base when it comes to accessing members,
and constructors in particular.

Our exploration of inheritance is complete, but it has raised some new
issues, such as the relationship between value types and references and the
role of finalizers. So, in the next chapter, I’ll talk about the connection
between references and an object’s life cycle, along with the way the CLR
bridges the gap between references and value types.

1 More precisely, the same assembly, and also friend assemblies. Chapter 12 describes
assemblies.

Chapter 7. Object Lifetime

One benefit of .NET’s managed execution model is that the runtime can
automate most of your application’s memory management. I have shown
numerous examples that create objects with the new keyword, and none has
explicitly freed the memory consumed by these objects.

In most cases, you do not need to take any action to reclaim memory. The
runtime provides a garbage collector (GC), a mechanism that
automatically discovers when objects are no longer in use and recovers the
memory they had been occupying so that it can be used for new objects.
However, there are certain usage patterns that can cause performance issues
or even defeat the GC entirely, so it’s useful to understand how it works.
This is particularly important with long-running processes that could run for
days (short-lived processes may be able to tolerate a few memory leaks).

The GC is designed to manage memory efficiently, but memory is not the
only limited resource you may need to deal with. Some things have a small
memory footprint in the CLR but represent something relatively expensive,
such as a database connection or a handle from an OS API. The GC doesn’t
always deal with these effectively, so I’ll explain IDisposable, the
interface designed for dealing with things that need to be freed more
urgently than memory.

Value types often have completely different rules governing their lifetime—
some local variable values live only for as long as their containing method
runs, for example. Nonetheless, value types sometimes end up acting like
reference types and being managed by the GC. I will discuss why that can
be useful, and I will explain the boxing mechanism that makes it possible.

1

Garbage Collection
The CLR maintains a heap, a service that provides memory for the objects
and values whose lifetime is managed by the GC. Each time you construct
an instance of a class with new, or you create a new array object, the CLR
allocates a new heap block. The GC decides when to deallocate that block.

NOTE
If you are writing a .NET application that runs on an Android device using .NET’s
Xamarin tools, there will be two garbage collected heaps: one for .NET and one for
Java. Normal C# activity in Xamarin applications uses the .NET heap, so Java’s heap
only enters the picture if you write C# code that uses Xamarin’s services for
manipulating Java objects. This is a .NET book, so I will be focusing on the .NET GC.

A heap block contains all the nonstatic fields for an object, or all the
elements if it’s an array. The CLR also adds a header, which is not directly
visible to your program. This includes a pointer to a structure describing the
object’s type. This supports operations that depend on the real type of an
object. For example, if you call GetType on a reference, the runtime uses
this pointer to find out the type. (The type is often not completely
determined by the static type of the reference, which could be an interface
type or a base class of the actual type.) It’s also used to work out which
method to use when you invoke a virtual method or an interface member.
The CLR also uses this to know how large the heap block is—the header
does not include the block size, because the runtime can work that out from
the object’s type. (Most types are fixed size. There are only two exceptions,
strings and arrays, which the CLR handles as special cases.) The header
contains one other field, which is used for a variety of diverse purposes,
including multithreaded synchronization and default hash code generation.
Heap block headers are just an implementation detail, and different
runtimes could choose different strategies. However, it’s useful to know
what the overhead is. On a 32-bit system, the header is 8 bytes long, and if
you’re running in a 64-bit process, it takes 16 bytes. So an object that

2

contained just one field of type double (an 8-byte type) would consume
16 bytes in a 32-bit process, and 24 bytes in a 64-bit process.

Although objects (i.e., instances of a class) always live on the heap,
instances of value types are different: some live on the heap, and some
don’t. The CLR stores some value-typed local variables on the stack, for
example, but if the value is in an instance field of a class, the class instance
will live on the heap, and that value will therefore live inside that object on
the heap. And in some cases, a value will have an entire heap block to itself.

If you’re using something through a reference type variable, then you are
accessing something on the heap. It’s important to clarify exactly what I
mean by a reference type variable, because unfortunately, the terminology is
a little confusing here: C# uses the term reference to describe two quite
different things. For the purposes of this discussion, a reference is
something you can store in a variable of a type that derives from object
(but not from ValueType) or that is an interface type. This does not
include every in-, out-, or ref-style method argument, nor ref variables
or returns. Although those are references of a kind, a ref int argument is
a reference to a value type, and that’s not the same thing as a reference type.
(The CLR actually uses a different term than C# for the mechanism that
supports ref, in, and out: it calls these managed pointers, making it
clear that they are rather different from object references.)

The managed execution model used by C# (and all .NET languages) means
the CLR knows about every heap block your code creates, and also about
every field, variable, and array element in which your program stores
references. This information enables the runtime to determine at any time
which objects are reachable—that is, those that the program could
conceivably get access to in order to use its fields and other members. If an
object is not reachable, then by definition the program will never be able to
use it again. To illustrate how the CLR determines reachability, I’ve written
a simple method that fetches web pages from my employer’s website,
shown in Example 7-1.

3

Example 7-1. Using and discarding objects
public static string FetchUrl(string relativeUri)
{
 var baseUri = new Uri("https://endjin.com/");
 var fullUri = new Uri(baseUri, relativeUri);
 var w = new HttpClient();
 HttpResponseMessage response = w.Send(
 new HttpRequestMessage(HttpMethod.Get, fullUri));
 return new
StreamReader(response.Content.ReadAsStream()).ReadToEnd();
}

The CLR analyzes the way in which we use local variables and method
arguments. For example, although the relativeUri argument is in scope
for the whole method, we use it just once as an argument when constructing
the second Uri and then never use it again. A variable is described as live
from the first point at which it receives a value up until the last point at
which it is used. Method arguments are live from the start of the method
until their final usage, unless they are unused, in which case they are never
live. Local variables become live later; baseUri becomes live once it has
been assigned its initial value and then ceases to be live with its final usage,
which in this example, happens at the same point as relativeUri.
Liveness is an important property in determining whether a particular object
is still in use.

To see the role that liveness plays, suppose that when Example 7-1 reaches
the line that constructs the HttpClient, the CLR doesn’t have enough
free memory to hold the new object. It could request more memory from
the OS at this point, but it also has the option to try to free up memory from
objects that are no longer in use, meaning that our program wouldn’t need
to consume more memory than it’s already using. The next section
describes the process that the CLR uses when it takes that second option.

Determining Reachability
.NET’s basic approach is to determine which of the objects on the heap are
reachable. If there’s no way for a program to get hold of some object, it can
safely be discarded. The CLR starts by determining all of the root

4

references in your program. A root is a storage location, such as a local
variable, that could contain a reference and is known to have been
initialized, and that your program could use at some point in the future
without needing to go via some other object reference. Not all storage
locations are considered to be roots. If an object contains an instance field
of some reference type, that field is not a root, because before you can use
it, you’d need to get hold of a reference to the containing object, and it’s
possible that the object itself is not reachable. However, a reference type
static field is a root reference, because the program can read the value in
that field at any time—the only situation in which that field will become
inaccessible in the future is when the component that defines the type is
unloaded, which in most cases will be when the program exits.

Local variables and method arguments are more interesting. Sometimes
they are roots but sometimes not. It depends on exactly which part of the
method is currently executing. A local variable or argument can be a root
only if the flow of execution is currently inside the region in which that
variable or argument is live. So, in Example 7-1, baseUri is a root
reference only after it has had its initial value assigned and before the call to
construct the second Uri, which is a rather narrow window. The fullUri
variable is a root reference for slightly longer, because it becomes live after
receiving its initial value and continues to be live during the construction of
the HttpClient on the following line; its liveness ends only once
HttpRequestMessage constructor has been called.

NOTE
When a variable’s last use is as an argument in a method or constructor invocation, it
ceases to be live when the method call begins. At that point, the method being called
takes over—its own arguments are live at the start (except for arguments it does not
use). However, they will typically cease to be live before the method returns. This
means that in Example 7-1, the object referred to by fullUri may cease to be
accessible through root references before the HttpRequestMessage constructor
returns.

Since the set of live variables changes as the program executes, the set of
root references also evolves. To guarantee correct behavior in the face of
this moving target, the CLR can suspend all threads that are running
managed code when necessary during garbage collection.

Live variables and static fields are not the only kinds of roots. Temporary
objects created as a result of evaluating expressions need to stay alive for as
long as necessary to complete the evaluation, so there can be some root
references that don’t correspond directly to any named entities in your code.
And there are other types of root. For example, the GCHandle class lets
you create new roots explicitly, which can be useful in interop scenarios to
enable some unmanaged code to get access to a particular object. There are
also situations in which roots are created implicitly. Certain kinds of
applications can interoperate with non-.NET object-based systems (e.g.,
COM in Windows applications, or Java on Android), which can establish
root references without explicit use of GCHandle—if the CLR needs to
generate a wrapper making one of your .NET objects available to some
other runtime, that wrapper will effectively be a root reference. Calls into
unmanaged code may also involve passing pointers to memory on the heap,
which will mean that the relevant heap block needs to be treated as
reachable for the duration of the call. The broad principle is that roots will
exist where necessary to ensure that objects that are still in use remain
reachable.

Having built up a complete list of current root references for all threads, the
GC works out which objects can be reached from these references. It looks
at each reference in turn, and if non-null, the GC knows that the object it
refers to is reachable. There may be duplicates—multiple roots may refer to
the same object, so the GC keeps track of which objects it has already seen.
For each newly discovered object, the GC adds all of the instance fields of
reference type in that object to the list of references it needs to look at,
again discarding duplicates. (This includes hidden fields generated by the
compiler, such as those for automatic properties, which I described in
Chapter 3.) It does the same for each element of any reference-typed arrays
it discovers. This means that if an object is reachable, so are all the objects

to which it holds references. The GC repeats this process until it runs out of
new references to examine. Any objects that it has not discovered to be
reachable must be unreachable, because the GC is simply doing what the
program does: a program can use only objects that are accessible either
directly or indirectly through its variables, temporary local storage, static
fields, and other roots.

Going back to Example 7-1, what would all this mean if the CLR decides to
run the GC when we construct the HttpClient? The fullUri variable
is still live, so the Uri it refers to is reachable, but the baseUri is no
longer live. We did pass a copy of baseUri into the constructor for the
second Uri, and if that had stored a copy of the reference in a field, then it
wouldn’t matter that baseUri is not live; as long as there’s some way to
get to an object by starting from a root reference, then the object is
reachable. But as it happens, the second Uri won’t do that, so the first Uri
the example allocates would be deemed to be unreachable, and the CLR
would be free to recover the memory it had been using.

One important upshot of how reachability is determined is that the GC is
unfazed by circular references. This is one reason .NET uses GC instead of
reference counting (another popular approach for automating memory
management). If you have two objects that refer to each other, a reference
counting scheme will consider both objects to be in use, because each is
referred to at least once. But the objects may be unreachable—if there are
no other references to the objects, the application will not have any way to
use them. Reference counting fails to detect this, so it could cause memory
leaks, but with the scheme used by the CLR’s GC, the fact that they refer to
each other is irrelevant—the GC will never get to either of them, so it will
correctly determine that they are no longer in use.

Accidentally Defeating the Garbage Collector
Although the GC can discover ways that your program could reach an
object, it has no way to prove that it necessarily will. Take the impressively
idiotic piece of code in Example 7-2. Although you’d never write code this

bad, it makes a common mistake. It’s a problem that usually crops up in
more subtle ways, but I want to show it in a more obvious example first.
Once I’ve shown how it prevents the GC from freeing objects that we’re not
going to be using, I’ll describe a less straightforward but more realistic
scenario in which this same problem often occurs.

Example 7-2. An appallingly inefficient piece of code
static void Main()
{
 var numbers = new List<string>();
 long total = 0;
 for (int i = 1; i < 100_000; ++i)
 {
 numbers.Add(i.ToString());
 total += i;
 }
 Console.WriteLine("Total: {total}, average: {total /
numbers.Count}");
}

This adds together the numbers from 1 to 100,000 and then displays their
average. The first mistake here is that we don’t even need to do the addition
in a loop, because there’s a simple and very well-known closed-form
solution for this sort of sum: n*(n+1)/2, with n being 100,000 in this
case. That mathematical gaffe notwithstanding, this code does something
even more stupid: it builds up a list containing every number it adds, but all
it does with that list is retrieve its Count property to calculate an average
at the end. Just to make things worse, the code converts each number into a
string before putting it in the list. It never actually uses those strings. (I’ve
shown the Main method declaration here to make it clear that numbers
isn’t used later on.)

Obviously, this is a contrived example, although I wish I could say I’d
never encountered anything this bafflingly pointless in real programs.
Sadly, I’ve come across genuine examples at least this bad, although they
were all better obfuscated—when you encounter this sort of thing in the
wild, it normally takes half an hour or so to work out that it really is doing
something as staggeringly pointless as this. However, my point here is not

to lament standards of software development. The purpose of this example
is to show how you can run into a limitation of the GC.

Suppose the loop in Example 7-2 has been running for a while—perhaps
it’s on its 90,000th iteration and is trying to add an entry to the numbers
list. Suppose that the List<string> has used up its spare capacity, and
the Add method will therefore need to allocate a new, larger internal array.
The CLR may decide at this point to run the GC to see if it can free up
some space. What will happen?

Example 7-2 creates three kinds of objects: it constructs a List<string>
at the start, it creates a new string each time around the loop by calling
ToString() on an int, and more subtly, the List<string> will
allocate a string[] to hold references to those strings. Because we keep
adding new items, it will have to allocate larger and larger arrays. (That
array is an implementation detail of List<string>, so we can’t see it
directly.) So the question is: Which of these objects can the GC discard to
make space for a larger array in the call to Add?

Our numbers variable remains live until the program’s final statement,
and we’re looking at an earlier point in the code, so the List<string>
object it refers to is reachable. The string[] array object it is currently
using must also be reachable: it’s allocating a newer, larger one, but it will
need to copy the contents of the old one across to the new one, so the list
must still have a reference to that current array stored in one of its fields.
Since that array is still reachable, every string the array refers to will also be
reachable. Our program has created 90,000 strings so far, and the GC will
find all of them by starting at our numbers variable, looking at the fields
of the List<string> object that refers to, and then looking at every
element in the array that one of the list’s private fields refers to.

The only allocated items that the GC might be able to collect are old
string[] arrays that the List<string> created back when the list
was smaller and that it no longer has a reference to. By the time we’ve
added 90,000 items, the list will probably have resized itself quite a few
times. So depending on when the GC last ran, it will probably be able to

find a few of these now-unused arrays. But more interesting here is what it
cannot free.

The program will never use any of the 90,000 strings it has created, so
ideally, we’d like the GC to free up the memory they occupy—they will be
taking up a few megabytes. We can see very easily that these strings are not
used, because this is such a short program. But the GC will not know that; it
bases its decisions on reachability, and it correctly determines that all
90,000 strings are reachable by starting at the numbers variable. And as
far as the GC is concerned, it’s entirely possible that the list’s Count
property, which we use after the loop finishes, will look at the contents of
the list. You and I happen to know that it won’t, because it doesn’t need to,
but that’s because we know what the Count property means. For the GC to
infer that our program will never use any of the list’s elements directly or
indirectly, it would need to know what List<string> does inside its
Add and Count methods. This would mean analysis with a level of detail
far beyond the mechanisms I’ve described, which could make GCs
considerably more expensive. Moreover, even with the serious step up in
complexity required to detect which reachable objects this example will
never use, in more realistic scenarios the GC is unlikely to be able to make
predictions that were significantly better than relying on reachability alone.

For example, a much more plausible way to run into this problem is in a
cache. If you write a class that caches data that is expensive to fetch or
calculate, imagine what would happen if your code only ever added items to
the cache and never removed them. All of the cached data would be
reachable for as long as the cache object itself is reachable. The problem is
that your cache will consume more and more space, and unless your
computer has sufficient memory to hold every piece of data that your
program could conceivably need to use, it will eventually run out of
memory.

A naive developer might complain that this is supposed to be the GC’s
problem. The whole point of GC is meant to be that I don’t need to think
about memory management, so why am I running out of memory all of a
sudden? But, of course, the problem is that the GC has no way of knowing

which objects are safe to remove. Not being clairvoyant, it cannot
accurately predict which cached items your program may need in the future
—if the code is running in a server, future cache usage could depend on
what requests the server receives, something the GC cannot predict. So
although it’s possible to imagine memory management smart enough to
analyze something as simple as Example 7-2, in general, this is not a
problem the GC can solve. Thus, if you add objects to collections and keep
those collections reachable, the GC will treat everything in those collections
as being reachable. It’s your job to decide when to remove items.

Collections are not the only situation in which you can fool the GC. As I’ll
show in Chapter 9, there’s a common scenario in which careless use of
events can cause memory leaks. More generally, if your program makes it
possible for an object to be reached, the GC has no way of working out
whether you’re going to use that object again, so it has to be conservative.

That said, there is a technique for mitigating this with a little help from the
GC.

Weak References
Although the GC will follow ordinary references in a reachable object’s
fields, it is possible to hold a weak reference. The GC does not follow weak
references, so if the only way to reach an object is through weak references,
the GC behaves as though the object is not reachable and will remove it. A
weak reference provides a way of telling the CLR, “Do not keep this object
around on my account, but for as long as something else needs it, I would
like to be able to get access to it.” Example 7-3 shows a cache that uses
WeakReference<T>.

Example 7-3. Using weak references in a cache
public class WeakCache<TKey, TValue>
 where TKey : notnull
 where TValue : class
{
 private readonly Dictionary<TKey, WeakReference<TValue>> _cache
= new ();

 public void Add(TKey key, TValue value)
 {
 _cache.Add(key, new WeakReference<TValue>(value));
 }

 public bool TryGetValue(
 TKey key, [NotNullWhen(true)] out TValue? cachedItem)
 {
 if (_cache.TryGetValue(key, out WeakReference<TValue>?
entry))
 {
 bool isAlive = entry.TryGetTarget(out cachedItem);
 if (!isAlive)
 {
 _cache.Remove(key);
 }
 return isAlive;
 }
 else
 {
 cachedItem = null;
 return false;
 }
 }
}

This cache stores all values via a WeakReference<T>. Its Add method
passes the object to which we’d like a weak reference as the constructor
argument for a new WeakReference<T>. The TryGetValue method
attempts to retrieve a value previously stored with Add. It first checks to
see if the dictionary contains a relevant entry. If it does, that entry’s value
will be the WeakReference<T> we created earlier. My code calls that
weak reference’s TryGetTarget method, which will return true if the
object is still available and false if it has been collected.

NOTE
Availability doesn’t necessarily imply reachability. The object may have become
unreachable since the most recent GC. Or there may not even have been a GC since the
object was allocated. TryGet Tar get can tell you only whether the GC has detected
that it is eligible for collection.

If the object is available, TryGetTarget provides it through an out
parameter, and this will be a strong reference. So, if this method returns
true, we don’t need to worry about any race condition in which the object
becomes unreachable moments later—the fact that we’ve now stored that
reference in the variable the caller supplied via the cachedItem argument
will keep the target alive. If TryGetTarget returns false, my code
removes the relevant entry from the dictionary, because it represents an
object that no longer exists. That’s important because although a weak
reference won’t keep its target alive, the WeakReference<T> is an
object in its own right, and the GC can’t free it until I’ve removed it from
this dictionary. Example 7-4 tries this code out, forcing a couple of garbage
collections so we can see it in action. (This splits each stage into separate
methods with inlining disabled because otherwise, .NET’s JIT compiler will
inline these methods, and it ends up creating hidden temporary variables
that can cause the array to remain reachable longer than it should, distorting
the results of this test.)

Example 7-4. Exercising the weak cache
internal class Program
{
 private static WeakCache<string, byte[]> cache = new ();
 private static byte[]? data = new byte[100];

 private static void Main(string[] args)
 {
 AddData();
 CheckStillAvailable();

 GC.Collect();
 CheckStillAvailable();

 SetOnlyRootToNull();
 GC.Collect();
 CheckNoLongerAvailable();
 }

 [MethodImpl(MethodImplOptions.NoInlining)]
 private static void AddData()
 {
 cache.Add("d", data!);
 }

 [MethodImpl(MethodImplOptions.NoInlining)]
 private static void CheckStillAvailable()
 {
 Console.WriteLine("Retrieval: " +
 cache.TryGetValue("d", out byte[]? fromCache));
 Console.WriteLine("Same ref? " +
 object.ReferenceEquals(data, fromCache));
 }

 [MethodImpl(MethodImplOptions.NoInlining)]
 private static void SetOnlyRootToNull()
 {
 data = null;
 }

 [MethodImpl(MethodImplOptions.NoInlining)]
 private static void CheckNoLongerAvailable()
 {
 byte[]? fromCache;
 Console.WriteLine("Retrieval: " + cache.TryGetValue("d",
out fromCache));
 Console.WriteLine("Null? " + (fromCache == null));
 }
}

This begins by creating an instance of my cache class and then adding a
reference to a 100-byte array to the cache. It also stores a reference to the
same array in a static field called data, keeping it reachable until the code
calls SetOnlyRootToNull, which sets its value to null. The example
tries to retrieve the value from the cache immediately after adding it and
also uses object.ReferenceEquals just to check that the value we
get back really refers to the same object that we put in. Then I force a
garbage collection and try again. (This sort of artificial test code is one of
the few situations in which you’d want to do this—see the section “Forcing
Garbage Collections” for details.) Since the data field still holds a
reference to the array, the array is still reachable, so we would expect the
value still to be available from the cache. Next I set data to null, so my
code is no longer keeping that array reachable. The only remaining
reference is a weak one, so when I force another GC, we expect the array to
be collected and the final lookup in the cache to fail. To verify this, I check

both the return value, expecting false, and the value returned through the
out parameter, which should be null. And that is exactly what happens
when I run the program, as you can see:

Retrieval: True
Same ref? True
Retrieval: True
Same ref? True
Retrieval: False
Null? True

NOTE
Writing code to illustrate GC behavior means entering treacherous territory. The
principles of operation remain the same, but the exact behavior of small examples
changes over time, often due to optimizations performed during JIT compilation. It’s
entirely possible that if you try these examples, you might see different behavior due to
changes in the runtime since going to press.

Later, I will describe finalization, which complicates matters by introducing
a twilight zone in which the object has been determined to be unreachable
but has not yet gone. Objects that are in this state are typically of little use,
so by default, a weak reference will treat objects waiting for finalization as
though they have already gone. This is called a short weak reference. If, for
some reason, you need to know whether an object has really gone (rather
than merely being on its way out), the WeakReference<T> class’s
constructor has overloads, some of which can create a long weak reference,
which provides access to the object even in this zone between
unreachability and final removal.

Reclaiming Memory
So far, I’ve described how the CLR determines which objects are no longer
in use but not what happens next. Having identified the garbage, the
runtime must then collect it. The CLR uses different strategies for small and
large objects. (By default, the .NET CLR defines a large object as one

bigger than 85,000 bytes. Mono sets the bar lower at 8,000 bytes.) Most
allocations involve small objects, so I’ll write about those first.

The CLR tries to keep the heap’s free space contiguous. That’s easy when
the application first starts up, because there’s nothing but free space, and it
can keep things contiguous by allocating memory for each new object
directly after the last one. But after the first GC occurs, the heap is unlikely
to look so neat. Most objects have short lifetimes, and it’s common for the
majority of objects allocated after any one GC to be unreachable by the
time the next GC runs. However, some will still be in use. From time to
time, applications create objects that hang around for longer, and whatever
work was in progress when the GC ran will probably be using some objects,
so the most recently allocated heap blocks are likely still to be in use. This
means that the end of the heap might look something like Figure 7-1, where
the gray rectangles are the reachable blocks, and the white ones show
blocks that are no longer in use.

Figure 7-1. Section of heap with some reachable objects

One possible allocation strategy would be to start using these empty blocks
as new memory is required, but there are a couple of problems with that
approach. First, it tends to be wasteful, because the blocks the application
requires will probably not fit precisely into the holes available. Second,
finding a suitable empty block can be somewhat expensive, particularly if
there are lots of gaps and you’re trying to pick one that will minimize
waste. It’s not impossibly expensive, of course—lots of heaps work this
way—but it’s a lot costlier than the initial situation where each new block
could be allocated directly after the last one because all the spare space was
contiguous. The expense of heap fragmentation is nontrivial, so the CLR
typically tries to get the heap back into a state where the free space is
contiguous. As Figure 7-2 shows, it moves all the reachable objects toward
the start of the heap so that all the free space is at the end, which puts it

back in the favorable situation of being able to allocate new heap blocks
one after another in the contiguous lump of free space.

Figure 7-2. Section of heap after compaction

The runtime has to ensure that references to these relocated blocks continue
to work after the blocks have moved. The CLR happens to implement
references as pointers (although nothing requires this—a reference is just a
value that identifies some particular instance on the heap). It already knows
where all the references to any particular block are because it had to find
them to discover which blocks were reachable. It adjusts all these pointers
when it moves the block.

Besides making heap block allocation a relatively cheap operation,
compaction offers another performance benefit. Because blocks are
allocated into a contiguous area of free space, objects that were created in
quick succession will typically end up right next to each other in the heap.
This is significant, because the caches in modern CPUs tend to favor
locality (i.e., they perform best when related pieces of data are stored close
together).

The low cost of allocation and the high likelihood of good locality can
sometimes mean that garbage-collected heaps offer better performance than
traditional heaps that require the program to free memory explicitly. This
may seem surprising, given that the GC appears to do a lot of extra work
that is unnecessary in a noncollecting heap. Some of that “extra” work is
nothing of the sort, however—something has to keep track of which objects
are in use, and traditional heaps just push that housekeeping overhead into
our code. However, relocating existing memory blocks comes at a price, so
the CLR uses some tricks to minimize the amount of copying it needs to do.

The older an object is, the more expensive it will be for the CLR to compact
the heap once it finally becomes unreachable. If the most recently allocated
object is unreachable when the GC runs, compaction is free for that object:

there are no more objects after it, so nothing needs to be moved. Compare
that with the first object your program allocates—if that becomes
unreachable, compaction would mean moving every reachable object on the
heap. More generally, the older an object is, the more objects will be put
after it, so the more data will need to be moved to compact the heap.
Copying 20 MB of data to save 20 bytes does not sound like a great trade-
off. So the CLR will often defer compaction for older parts of the heap.

To decide what counts as “old,” the .NET runtime divides the heap into
generations. The boundaries between generations move around at each
GC, because generations are defined in terms of how many GCs an object
has survived. Any object allocated after the most recent GC is in generation
0, because it has not yet survived any collections. When the GC next runs,
generation 0 objects that are still reachable will be moved as necessary to
compact the heap and will then be deemed to be in generation 1.

Objects in generation 1 are not yet considered to be old. A GC will typically
occur while the code is right in the middle of doing things—after all, it runs
when space on the heap is being used up, and that won’t happen if the
program is idle. So there’s a high chance that some of the recently allocated
objects represent work in progress, and although they are currently
reachable, they will become unreachable shortly. Generation 1 acts as a sort
of holding zone while we wait to see which objects are short-lived and
which are longer-lived.

As the program continues to execute, the GC will run from time to time,
promoting new, surviving objects into generation 1. Some of the objects in
generation 1 will become unreachable. However, the GC does not
necessarily compact this part of the heap immediately—it may allow a few
generation 0 collections and compactions in between each generation 1
compaction, but it will happen eventually. Objects that survive this stage are
moved into generation 2, which is the oldest generation.

The CLR attempts to recover memory from generation 2 much less
frequently than from other generations. Research shows that in most
applications, objects that survive into generation 2 are likely to remain

5

reachable for a long time, so when one of those objects does eventually
become unreachable, it’s likely to be very old, as will be the objects around
it. This means that compacting this part of the heap to recover the memory
is costly for two reasons: not only will this old object probably be followed
by a large number of other objects (requiring a large volume of data to be
copied), but also the memory it occupied might not have been used for a
long time, meaning it’s probably no longer in the CPU’s cache, slowing
down the copy even further. And the caching costs will continue after
collection, because if the CPU has had to shift megabytes of data around in
old areas of the heap, this will probably have the side effect of flushing
other data out the CPU’s cache. Cache sizes can be as small as 512 KB at
the low-power, low-cost end of the spectrum, and can be over 90 MB in
high-end, server-oriented chips, but in the midrange, anything from 2 MB to
16 MB of cache is typical, and many .NET applications’ heaps will be
larger than that. Most of the data the application had been using would have
been in the cache right up until the generation 2 GC but would be gone once
the GC has finished. So when the GC completes and normal execution
resumes, the code will run in slow motion for a while until the data the
application needs is loaded back into the cache.

Generations 0 and 1 are sometimes referred to as the ephemeral
generations, because they mostly contain objects that exist only for a short
while. (The part of Mono’s heap that serves a similar purpose is called the
nursery, because it’s for young objects.) The contents of these parts of the
heap will often be in the CPU’s cache because they will have been accessed
recently, so compaction is not particularly expensive for these sections.
Moreover, because most objects have a short lifetime, the majority of
memory that the GC is able to collect will be from objects in these first two
generations, so these are likely to offer the greatest reward (in terms of
memory recovered) in exchange for the CPU time expended. So it’s
common to see several ephemeral collections per second in a busy program,
but it’s also common for several minutes to elapse between successive
generation 2 collections.

The CLR has another trick up its sleeve for generation 2 objects. They often
don’t change much, so there’s a high likelihood that during the first phase of
a GC—in which the runtime detects which objects are reachable—it would
be repeating some work it did earlier, because it will follow exactly the
same references and produce the same results for significant subsections of
the heap. So the CLR will sometimes use the OS memory protection
services to detect when older heap blocks are modified. This enables it to
rely on summarized results from earlier GC operations instead of having to
redo all of the work every time.

How does the GC decide whether to collect just from generation 0 or also
from 1 or even 2? Collections for all three generations are triggered by
using up a certain amount of memory. So, for generation 0 allocations, once
you have allocated some particular number of bytes since the last GC, a
new GC will occur. The objects that survive this will move into generation
1, and the CLR keeps track of the number of bytes added to generation 1
since the last generation 1 collection; if that number exceeds a threshold,
generation 1 will be collected too. Generation 2 works in the same way. The
thresholds are not documented, and in fact they’re not even constant; the
CLR monitors your allocation patterns and modifies these thresholds to try
to find a good balance for making efficient use of memory, minimizing the
CPU time spent in the GC and avoiding the excessive latency that could
arise if the CLR waited a very long time between collections, leaving huge
amounts of work to do when the collection finally occurs.

NOTE
This explains why, as mentioned earlier, the CLR doesn’t necessarily wait until it has
actually run out of memory before triggering a GC. It may be more efficient to run one
sooner.

You may be wondering how much of the preceding information is of
practical significance. After all, the bottom line would appear to be that the
CLR ensures that heap blocks are kept around for as long as they are

reachable, and that sometime after they become unreachable, it will
eventually reclaim their memory, and it employs a strategy designed to do
this efficiently. Are the details of this generational optimization scheme
relevant to a developer? They are insofar as they tell us that some coding
practices are likely to be more efficient than others.

The most obvious upshot of the process is that the more objects you
allocate, the harder the GC will have to work. But you’d probably guess
that without knowing anything about the implementation. More subtly,
larger objects cause the GC to work harder—collections for each generation
are triggered by the amount of memory your application uses. So bigger
objects don’t just increase memory pressure, they also end up consuming
more CPU cycles as a result of triggering more frequent GCs.

Perhaps the most important fact to emerge from an understanding of the
generational nature of the collector is that the length of an object’s lifetime
has an impact on how hard the GC must work. Objects that live for a very
short time are handled efficiently, because the memory they use will be
recovered quickly in a generation 0 or 1 collection, and the amount of data
that needs to be moved to compact the heap will be small. Objects that live
for an extremely long time are also OK, because they will end up in
generation 2. They will not be moved about often, because collections are
infrequent for that part of the heap. Furthermore, the CLR may be able to
use the OS memory manager’s write detection feature to manage
reachability discovery for old objects more efficiently. However, although
very short-lived and very long-lived objects are handled efficiently, objects
that live long enough to get into generation 2 but not much longer are a
problem. Microsoft occasionally describes this occurrence as a midlife
crisis.

If your application regularly creates lots of objects making it into generation
2 that go on to become unreachable, the CLR will need to perform
collections on generation 2 more often than it otherwise might. (In fact,
generation 2 is collected only during a full collection, which also collects
free space previously used by large objects.) These are usually significantly
more expensive than other collections. Compaction requires more work

with older objects, but also, more housekeeping is required when disrupting
the generation 2 heap. The picture the CLR has built up about reachability
within this section of the heap may need to be rebuilt, and the GC will need
to disable the write detection used to enable that while it compacts the heap,
which incurs a cost. There’s a good chance that most of this part of the heap
will not be in the CPU’s cache either, so working with it can be slow.

Full GCs consume significantly more CPU time than collections in the
ephemeral generations. In UI applications, this can cause delays long
enough to be irritating for the user, particularly if parts of the heap had been
paged out by the OS. In server applications, full collections may cause
significant blips in the typical time taken to service a request. Such
problems are not the end of the world, and as I’ll describe later, the CLR
offers some mechanisms to mitigate these kinds of issues. Even so,
minimizing the number of objects that survive to generation 2 is good for
performance. You would need to consider this when designing code that
caches interesting data in memory—a cache aging policy that failed to take
the GC’s behavior into account could easily behave inefficiently, and if you
didn’t know about the perils of middle-aged objects, it would be hard to
work out why. Also, as I’ll show later in this chapter, the midlife crisis issue
is one reason you might want to avoid C# destructors where possible.

I have left out some heap operational details, by the way. For example, I’ve
not talked about how the GC typically dedicates sections of the address
space to the heap in fixed-size chunks, nor the details of how it commits
and releases memory. Interesting though these mechanisms are, they have
much less relevance to how you design your code than an awareness of the
assumptions that a generational GC makes about typical object lifetimes.
They also tend to change—.NET 6.0 has made significant modifications in
this area to improve performance.

There’s one last thing to talk about on the topic of collecting memory from
unreachable objects. As mentioned earlier, large objects work differently.
There’s a separate heap called, appropriately enough, the large object heap
(LOH), and the .NET runtime uses this for any object larger than 85,000
bytes; Mono’s runtime uses an 8,000-byte threshold, because it is often6

used in more memory-constrained environments. That’s just the object
itself, not the sum total of all the memory an object allocates during
construction. An instance of the GreedyObject class in Example 7-5
would be tiny—it needs only enough space for a single reference, plus the
heap block overhead. In a 32-bit process, that would be 4 bytes for the
reference and 8 bytes of overhead, and in a 64-bit process, it would be twice
as large. However, the array to which it refers is 400,000 bytes long, so that
would go on the LOH, while the GreedyObject itself would go on the
ordinary heap.

Example 7-5. A small object with a large array
public class GreedyObject
{
 public int[] MyData = new int[100_000];
}

It’s technically possible to create a class whose instances are large enough
to require the LOH, but it’s unlikely to happen outside of generated code or
highly contrived examples. In practice, most LOH heap blocks will contain
arrays and possibly strings.

The biggest difference between the LOH and the ordinary heap is that the
GC does not usually compact the LOH, because copying large objects is
expensive. (Applications can request that the LOH be compacted at the next
full GC. But applications that do not explicitly request this will never have
their LOH compacted in current CLR implementations.) It works more like
a traditional C heap: the CLR maintains a list of free blocks and decides
which block to use based on the size requested. However, the list of free
blocks is populated by the same unreachability mechanism as is used by the
rest of the heap.

Garbage Collector Modes
Although the .NET runtime will tune some aspects of the GC’s behavior at
runtime (e.g., by dynamically adjusting the thresholds that trigger
collections for each generation), it also offers a configurable choice
between various modes designed to suit different kinds of applications.

These fall into two broad categories—workstation and server, and then in
each of these you can either use background or nonconcurrent collections.
Background collection is on by default, but the default top-level mode
depends on the project type: for console applications and applications using
a GUI framework such as WPF, the GC runs in workstation mode, but
ASP.NET Core web applications change this to server mode. You can
control the GC mode explicitly by defining a property in your .csproj file,
as Example 7-6 shows. This can go anywhere inside the root Project
element.

Example 7-6. Enabling server GC in a .NET Core application project file
<PropertyGroup>
 <ServerGarbageCollection>true</ServerGarbageCollection>
</PropertyGroup>

NOTE
This ServerGarbageCollection property makes the build system add a setting to
the YourApplication.runtimeconfig.json file that it generates for your application. This
contains a configProperties section, which can contain one or more CLR host
configuration knobs. Enabling server GC in the project file sets the Sys tem.
GC. Ser ver knob to true in this configuration file. All GC settings are also
controlled through configuration knobs, as are some other CLR behaviors, such as the
JIT compiler mode.

The workstation modes are designed for the workloads that client-side code
typically has to deal with, in which the process is usually working on either
a single task or a small number of tasks at any one time. Workstation mode
offers two variations: nonconcurrent and background.

In background mode (the default), the GC minimizes the amount of time for
which it suspends threads during a GC. There are certain phases of the GC
in which the CLR has to suspend execution to ensure consistency. For
collections from the ephemeral generations, threads will be suspended for
the majority of the operation. This is usually fine because these collections
normally run very quickly—they take a similar amount of time as a page

fault that didn’t cause any disk activity. (These nonblocking page faults
happen fairly often and are fast enough that a lot of developers seem to be
unaware that they even occur.) Full collections are the problem, and it’s
these that the background mode handles differently. Not all of the work
done in a collection really needs to bring everything to a halt, and
background mode exploits this, enabling full (generation 2) collections to
proceed on a background thread without forcing other threads to block until
that collection completes. This can enable machines with multiple processor
cores (most machines, these days) to perform full GC collections on one
core while other cores continue with productive work. It is especially useful
in applications with a UI, because it reduces the likelihood of an application
becoming unresponsive due to GCs.

The nonconcurrent mode is designed to optimize throughput on a single
processor with a single core. It can be more efficient, because background
GC uses slightly more memory and more CPU cycles for any particular
workload than nonconcurrent GC in exchange for the lower latency. For
some workloads, you may find your code runs faster if you set the
ConcurrentGarbageCollection property to false in your project
file. For most client-side code, the greatest concern is to avoid delays that
are long enough to be visible to users. Users are more sensitive to
unresponsiveness than they are to suboptimal average CPU utilization, so
for interactive applications, using a bit more memory and CPU cycles in
exchange for improved perceived performance is usually a good trade-off.

Server mode is significantly different than workstation mode. It is available
only when you have multiple hardware threads; e.g., a multicore CPU or
multiple physical CPUs. (If you have enabled server GC but your code ends
up running on a single-core machine, it falls back to using the workstation
GC.) Its availability has nothing to do with which OS you’re running, by
the way—for example, server mode is available on nonserver and server
editions of Windows alike if you have suitable hardware, and workstation
mode is always available. In server mode, each processor core gets its own
section of the heap, so when a thread is working on its own problem
independently of the rest of the process, it can allocate heap blocks with

7

minimal contention. In server mode, the CLR creates several threads
dedicated to GC, one for each logical CPU in the machine. These run with
higher priority than normal threads, so when GCs do occur, all available
CPU cores go to work on their own heaps, which can provide better
throughput with large heaps than workstation mode.

NOTE
Objects created by one thread can still be accessed by others—logically, the heap is still
a unified service. Server mode is just an implementation strategy optimized for
workloads where each thread works on its own jobs mostly in isolation. Be aware that it
works best if the jobs all have similar heap allocation patterns.

Some problems can arise with server mode. It works best when only one
process on the machine uses this mode, because it is set up to try to use all
CPU cores simultaneously during collections. It also tends to use
considerably more memory than workstation mode. If a single server hosts
multiple .NET processes that all do this, contention for resources could
reduce efficiency. Another issue with server GC is that it favors throughput
over response time. In particular, collections happen less frequently,
because this tends to increase the throughput benefits that multi-CPU
collections can offer, but it also means that each individual collection takes
longer.

As with workstation GC, the server GC uses background collection by
default. In some cases, you may find you can improve throughput by
disabling it, but be wary of the problems this can cause. The duration of a
full collection in nonconcurrent server mode can cause serious delays in
responsiveness on a website, for example, especially if the heap is large.
You can mitigate this in a couple of ways. You can request notifications
shortly before the collection occurs (using the System.GC class’s
Reg ist er For Ful lGC Not ifi cat ion,
WaitForFullGCApproach, and WaitForFullGC Com plete
methods), and if you have a server farm, a server that’s running a full GC
may be able to ask the load balancer to avoid passing it requests until the

GC completes. The simpler alternative is to leave background collection
enabled. Since background collections allow application threads to continue
to run and even to perform generation 0 and 1 collections while the full
collection proceeds in the background, it significantly improves the
application’s response time during collections while still delivering the
throughput benefits of server mode.

Temporarily Suspending Garbage Collections
It is possible to ask .NET to disallow GC while a particular section of code
runs. This is useful if you are performing time-sensitive work. Windows,
macOS, and Linux are not real-time operating systems, so there are never
any guarantees, but temporarily ruling out GCs at critical moments can
nonetheless be useful for reducing the chances of things going slowly at the
worst possible moment. Be aware that this mechanism works by bringing
forward any GC work that might otherwise have happened in the relevant
section of code, so this can cause GC-related delays to happen earlier than
they otherwise would have. It only guarantees that once your designated
region of code starts to run, there will be no further GCs if you meet certain
requirements—in effect, it gets necessary delays out of the way before the
time-sensitive work begins.

The GC class offers a TryStartNoGCRegion method, which you call to
indicate that you want to begin some work that needs to be free from GC-
related interruption. You must pass in a value indicating how much memory
you will need during this work, and it will attempt to ensure that at least
that much memory is available before proceeding (performing a GC to free
up that space if necessary). If the method indicates success, then as long as
you do not consume more memory than requested, your code will not be
interrupted by the GC. You should call EndNoGCRegion once you have
finished the time-critical work, enabling the GC to return to its normal
operation. If, before it calls EndNoGCRegion, your code uses more
memory than you requested, the CLR may have to perform a GC, but it will
only do so if it absolutely cannot avoid it until you call EndNoGCRegion.

Although the single-argument form of TryStartNoGCRegion will
perform a full GC if necessary to meet your request, some overloads take a
bool, enabling you to tell it that if a full blocking GC will be required to
free up the necessary space, you’d prefer to abort. There are also overloads
in which you can specify your memory requirements on the ordinary heap
and the large object heap separately.

Accidentally Defeating Compaction
Heap compaction is an important feature of the CLR’s GC, because it has a
strong positive impact on performance. Certain operations can prevent
compaction, and that’s something you’ll want to minimize, because
fragmentation can increase memory use and reduce performance
significantly.

To be able to compact the heap, the CLR needs to be able to move heap
blocks around. Normally, it can do this because it knows all of the places in
which your application refers to heap blocks, and it can adjust all the
references when it relocates a block. But what if you’re calling an OS API
that works directly with the memory you provide? For example, if you read
data from a file or a network socket, how will that interact with GC?

If you use system calls that read or write data using devices such as the hard
drive or network interface, these normally work directly with your
application’s memory. If you read data from the disk, the OS may instruct
the disk controller to put the bytes directly into the memory your
application passed to the API. The OS will perform the necessary
calculations to translate the virtual address into a physical address. (With
virtual memory, the value your application puts in a pointer is only
indirectly related to the actual address in your computer’s RAM.) The OS
will lock the pages into place for the duration of the I/O request to ensure
that the physical address remains valid. It will then supply the disk system
with that address. This enables the disk controller to copy data from the disk
directly into memory, without needing further involvement from the CPU.
This is very efficient but runs into problems when it encounters a

compacting heap. What if the block of memory is a byte[] array on the
heap? Suppose a GC occurs between us asking to read the data and the disk
being able to supply the data. (The chances are fairly high; a mechanical
disk with spinning platters can take 10 ms or more to start supplying data,
which is an age in CPU terms.) If the GC decided to relocate our byte[]
array to compact the heap, the physical memory address that the OS gave
the disk controller would be out of date, so when the controller started
putting data into memory, it would be writing to the wrong place.

There are three ways the CLR could deal with this. One would be to make
the GC wait—heap relocations could be suspended while I/O operations are
in progress. But that’s a nonstarter; a busy server can run for days without
ever entering a state in which no I/O operations are in progress. In fact, the
server doesn’t even need to be busy. It might allocate several byte[]
arrays to hold the next few incoming network requests and would typically
try to avoid getting into a state where it didn’t have at least one such buffer
available. The OS would have pointers to all of these and may well have
supplied the network card with the corresponding physical address so that it
can get to work the moment data starts to arrive. So even an idle server has
certain buffers that cannot be relocated.

An alternative would be for the CLR to provide a separate nonmoving heap
for these sorts of operations. Perhaps we could allocate a fixed block of
memory for an I/O operation, and then copy the results into the byte[]
array on the GC heap once the I/O has finished. But that’s also not a
brilliant solution. Copying data is expensive—the more copies you make of
incoming or outgoing data, the slower your server will run, so you really
want network and disk hardware to copy the data directly to or from its
natural location. And if this hypothetical fixed heap were more than an
implementation detail of the CLR—if it were available for application code
to use directly to minimize copying—that might open the door to all the
memory management bugs that GC is supposed to banish.

So the CLR uses a third approach: it selectively prevents heap block
relocations. The GC is free to run while I/O operations are in progress, but
certain heap blocks can be pinned. Pinning a block sets a flag that tells the

GC that the block cannot currently be moved. So, if the GC encounters such
a block, it will simply leave it where it is but will attempt to relocate
everything around it.

There are five ways C# code normally causes heap blocks to be pinned. You
can do so explicitly using the fixed keyword. This allows you to obtain a
raw pointer to a storage location, such as a field or an array element, and the
compiler will generate code that ensures that for as long as a fixed pointer is
in scope, the heap block to which it refers will be pinned. A more common
way to pin a block is through interop (i.e., calls into unmanaged code, such
as an OS API). If you make an interop call to an API that requires a pointer
to something, the CLR will detect when that points to a heap block, and it
will automatically pin the block. By default, the CLR will unpin it
automatically when the method returns. If you’re calling an asynchronous
API that will continue to use the memory after returning, you can use the
GCHandle class mentioned earlier to pin a heap block until you explicitly
unpin it; that’s the third pinning technique.

The fourth and most common way to pin heap blocks is also the least direct:
many runtime library APIs call unmanaged code on your behalf and will pin
the arrays you pass in as a result. For example, the runtime libraries define a
Stream class that represents a stream of bytes. There are several
implementations of this abstract class. Some streams work entirely in
memory, but some wrap I/O mechanisms, providing access to files or to the
data being sent or received through a network socket. The abstract Stream
base class defines methods for reading and writing data via byte[] arrays,
and the I/O-based stream implementations will often pin the heap blocks
containing those arrays for as long as necessary.

The fifth way is to use the GC class’s AllocateArray<T> method.
Instead of writing, say, new byte[4096], you can write
GC.AllocateArray<byte>(4096, pinned: true). By passing
true as that second argument, you are telling the CLR that you want this
array to be pinned permanently. The CLR maintains an additional heap
especially for this purpose called the pinned object heap (POH). As with the

LOH, arrays in the POH will not be moved around, avoiding the overhead
that pinning can otherwise cause.

NOTE
The POH is not available on .NET Framework or Mono. It was introduced in .NET 5.0,
so it’s also unavailable on .NET Core 3.1 (which will be fully supported until December
2022). For this reason, AllocateArray<T> is not available on these older versions
of .NET.

If you are writing an application that does a lot of pinning (e.g., a lot of
network I/O), you may need to think carefully about how you allocate the
arrays that get pinned. Pinning does the most harm for recently allocated
objects, because these live in the area of the heap where most compaction
activity occurs. Pinning recently allocated blocks tends to cause the
ephemeral section of the heap to fragment. Memory that would normally
have been recovered almost instantly must now wait for blocks to become
unpinned, so by the time the collector can get to those blocks, a lot more
other blocks will have been allocated after them, meaning that a lot more
work is required to recover the memory.

If pinning is causing your application problems, there will be a few
common symptoms. The percentage of CPU time spent in the GC will be
relatively high—anything over 10% is considered to be bad. But that alone
does not necessarily implicate pinning—it could be the result of middle-
aged objects causing too many full collections. So you can monitor the
number of pinned blocks on the heap to see if these are the specific culprit.
If it looks like excessive pinning is causing you pain, then if you’re able to
use .NET 5.0 or later, you can use GC.AllocateArray<T> to allocate
the relevant blocks on the POH.

If you need to support versions of .NET that don’t have a POH, there are
still two ways to avoid pinning overhead. One is to design your application
so that you only ever pin blocks that live on the LOH. Remember, by
default the LOH is not compacted, so pinning does not impose any cost—

8

the GC wasn’t going to move the block in any case. The challenging part of
this is that it forces you to do all of your I/O with arrays that are at least
85,000 bytes long. That’s not necessarily a problem, because most I/O APIs
can be told to work with a subsection of the array. So, if you actually
wanted to work with, say, 4,096 byte blocks, you could create one array
large enough to hold at least 21 of those blocks. You’d need to write some
code to keep track of which slots in the array were in use, but if it fixes a
performance problem, it may be worth the effort.

WARNING
If you choose to mitigate pinning by attempting to use the LOH, you need to remember
that it is an implementation detail. Future versions of .NET could conceivably remove
the LOH entirely. So you’d need to revisit this aspect of your design for each new
release of .NET.

The Span<T> and Memory<T> types discussed in Chapter 18 can make it
easier to work with arrays in this way. (They also make it much easier than
it used to be to work with memory that does not live on the GC heap. So
you could sidestep pinning entirely, although you’d be taking on the
responsibility for managing the relevant memory.) In fact, the best strategy
for dealing with pinning is often just to use MemoryPool<T>. On
runtimes without a POH, it takes steps to mitigate pinning overheads for
you, and on .NET 5.0 or later, it will allocate memory in the POH by
default.

The other way to minimize the impact of pinning is to try to ensure that
pinning mostly happens only to objects in generation 2. If you allocate a
pool of buffers and reuse them for the duration of the application, this will
mean that you’re pinning blocks that the GC is fairly unlikely to want to
move, keeping the ephemeral generations free to be compacted at any time.
The earlier you allocate the buffers, the better, because the older an object
is, the less likely the GC is to want to move it, so if you’re going to use this
approach, you should do it during your application startup if possible.

Forcing Garbage Collections
The System.GC class provides a Collect method that allows you to
force a GC to occur. You can pass a number indicating the generation you
would like to collect, and the overload that takes no arguments performs a
full collection. You will rarely have good reason to call GC.Collect. I’m
mentioning it here because it comes up a lot on the web, which could easily
make it seem more useful than it is.

Forcing a GC can cause problems. The GC monitors its own performance
and tunes its behavior in response to your application’s allocation patterns.
But to do this, it needs to allow enough time between collections to get an
accurate picture of how well its current settings are working. If you force
collections to occur too often, it will not be able to tune itself, and the
outcome will be twofold: the GC will run more often than necessary, and
when it does run, its behavior will be suboptimal. Both problems are likely
to increase the amount of CPU time spent in the GC.

So when would you force a collection? If you happen to know that your
application has just finished some work and is about to go idle, it might be
worth considering forcing a collection. GCs are usually triggered by
activity, so if you know that your application is about to go to sleep—
perhaps it’s a service that has just finished running a batch job and will not
do any more work for another few hours—you know that it won’t be
allocating new objects and will therefore not trigger the GC automatically.
So forcing a GC would provide an opportunity to return memory to the OS
before the application goes to sleep. That said, if this is your scenario, it
might be worth looking at mechanisms that would enable your process to
exit entirely—there are various ways in which jobs or services that are only
required from time to time can be unloaded completely when they are
inactive. But if that technique is inapplicable for some reason—perhaps
your process has high startup costs or needs to stay running to receive
incoming network requests—a forced full collection might be the next best
option.

It’s worth being aware that there is one way that a GC can be triggered
without your application needing to do anything. When the system is
running low on memory, Windows broadcasts a message to all running
processes. The CLR handles this message and forces a GC when it occurs.
So even if your application does not proactively attempt to return memory,
memory might be reclaimed eventually if something else in the system
needs it.

Destructors and Finalization
The CLR works hard on our behalf to find out when our objects are no
longer in use. It’s possible to get it to notify you of this—instead of simply
removing unreachable objects, the CLR can first tell an object that it is
about to be removed. The CLR calls this finalization, but C# presents it
through a special syntax: to exploit finalization, you must write a destructor.

WARNING
If your background is in C++, do not be fooled by the name, or the similar syntax. As
you will see, a C# destructor is different from a C++ destructor in some important ways.

Example 7-7 shows a destructor. This code compiles into an override of a
method called Finalize, which as Chapter 6 mentioned, is a special
method defined by the object base class. Finalizers are always required
to call the base implementation of Finalize that they override. C#
generates that call for us to prevent us from violating the rule, which is why
it doesn’t let us simply write a Finalize method directly. You cannot
write code that invokes a finalizer—they are called by the CLR, so we do
not specify an accessibility level for the destructor.

Example 7-7. Class with destructor
public class LetMeKnowMineEnd
{
 ~LetMeKnowMineEnd()
 {

 Console.WriteLine("Goodbye, cruel world");
 }
}

The CLR does not guarantee to run finalizers on any particular schedule.
First of all, it needs to detect that the object has become unreachable, which
won’t happen until the GC runs. If your program is idle, that might not
happen for a long time; the GC normally runs only when your program is
doing something, or when system-wide memory pressure causes the GC to
spring into life. It’s entirely possible that minutes, hours, or even days could
pass between your object becoming unreachable and the CLR noticing that
it has become unreachable.

Even when the CLR does detect unreachability, it still doesn’t guarantee to
call the finalizer straightaway. Finalizers run on a dedicated thread. Because
current versions of the CLR have only one finalization thread (regardless of
which GC mode you choose), a slow finalizer will cause other finalizers to
wait.

In most cases, the CLR doesn’t even guarantee to run finalizers at all. When
a process exits, if the finalization thread hasn’t already managed to run all
extant finalizers, it will exit without waiting for them all to finish.

In summary, finalizers can be delayed indefinitely if your program is either
idle or busy, and are not guaranteed to run. But it gets worse—you can’t
actually do much that is useful in a finalizer.

You might think that a finalizer would be a good place to ensure that certain
work is properly completed. For example, if your object writes data to a file
but buffers that data so as to be able to write a small number of large chunks
rather than writing in tiny dribs and drabs (because large writes are often
more efficient), you might think that finalization is the obvious place to
ensure that data in your buffers has been safely flushed out to disk. But
think again.

During finalization, an object cannot trust the other objects it has references
to. If your object’s destructor runs, your object must have become
unreachable. This means it’s highly likely that any other objects yours refers

to have also become unreachable. The CLR is likely to discover the
unreachability of groups of related objects simultaneously—if your object
created three or four objects to help it do its job, the whole lot will become
unreachable at the same time. The CLR makes no guarantees about the
order in which it runs finalizers. This means it’s entirely possible that by the
time your destructor runs, all the objects you were using have already been
finalized. So, if they also perform any last-minute cleanup, it’s too late to
use them. For example, the FileStream class, which derives from
Stream and provides access to a file, closes its file handle in its destructor.
Thus, if you were hoping to flush your data out to the FileStream, it’s
too late—the file stream may well already be closed.

NOTE
To be fair, things are marginally less bad than I’ve made them sound so far. Although
the CLR does not guarantee to run most finalizers, it will usually run them in practice.
The absence of guarantees matters only in relatively extreme situations. Even so, this
doesn’t mitigate the fact that you cannot, in general, rely on other objects in your
destructor.

Since destructors seem to be of remarkably little use—that is, you can have
no idea if or when they will run, and you can’t use other objects inside a
destructor—then what use are they?

The main reason finalization exists at all is to make it possible to write
.NET types that are wrappers for the sorts of entities that are traditionally
represented by handles—things like files and sockets. These are created and
managed outside of the CLR—files and sockets require the operating
system to allocate resources; libraries may also provide handle-based APIs,
and they will typically allocate memory on their own private heaps to store
information about whatever the handle represents. The CLR cannot see
these activities—all it sees is a .NET object with a field containing an
integer, and it has no idea that the integer is a handle for some resource
outside of the CLR. So it doesn’t know that it’s important that the handle be
closed when the object falls out of use. This is where finalizers come in:

they are a place to put code that tells something external to the CLR that the
entity represented by the handle is no longer in use. The inability to use
other objects is not a problem in this scenario.

NOTE
If you are writing code that wraps a handle, you should normally use one of the built-in
classes that derive from SafeHandle or, if absolutely necessary, derive your own.
This base class extends the basic finalization mechanism with some handle-oriented
helpers. Furthermore, it gets special handling from the interop layer to avoid premature
freeing of resources.

There are some other uses for finalization, although the unpredictability and
unreliability already discussed mean there are limits to what it can do for
you. Some classes contain a finalizer that does nothing other than check that
the object was not abandoned in a state where it had unfinished work. For
example, if you had written a class that buffers data before writing it to a
file, as described previously, you would need to define some method that
callers should use when they are done with your object (perhaps called
Flush or Close), and you could write a finalizer that checks to see if the
object was put into a safe state before being abandoned, raising an error if
not. This would provide a way to discover when programs have forgotten to
clean things up correctly.

If you write a finalizer, you should disable it when your object is in a state
where it no longer requires finalization, because finalization has its costs. If
you offer a Close or Flush method, finalization is unnecessary once
these have been called, so you should call the System.GC class’s
SuppressFinalize method to let the GC know that your object no
longer needs to be finalized. If your object’s state subsequently changes,
you can call the ReRegisterForFinalize method to reenable it.

The greatest cost of finalization is that it guarantees that your object will
survive at least into the first generation and possibly beyond. Remember, all
objects that survive from generation 0 make it into generation 1. If your

object has a finalizer, and you have not disabled it by calling
SuppressFinalize, the CLR cannot get rid of your object until it has
run its finalizer. And since finalizers run asynchronously on a separate
thread, the object has to remain alive even though it has been found to be
unreachable. So the object is not yet collectable, even though it is
unreachable. It therefore lives on into generation 1. It will usually be
finalized shortly afterward, meaning that the object will then become a
waste of space until a generation 1 collection occurs. Those happen rather
less frequently than generation 0 collections. If your object had already
made it into generation 1 before becoming unreachable, a finalizer increases
the chances of getting into generation 2 just before it is about to fall out of
use. A finalized object therefore makes inefficient use of memory, which is
a reason to avoid finalization, and a reason to disable it whenever possible
in objects that do sometimes require it.

WARNING
Even though SuppressFinalize can save you from the most egregious costs of
finalization, an object that uses this technique still has higher overheads than an object
with no finalizer at all. The CLR does some extra work when constructing finalizable
objects to keep track of those that have not yet been finalized. (Calling
SuppressFinalize just takes your object back out of this tracking list.) So,
although suppressing finalization is much better than letting it occur, it’s better still if
you don’t ask for it in the first place.

A slightly weird upshot of finalization is that an object that the GC
discovered was unreachable can make itself reachable again. It’s possible to
write a destructor that stores the this reference in a root reference, or
perhaps in a collection that is reachable via a root reference. Nothing stops
you from doing this, and the object will continue to work (although its
finalizer will not run a second time if the object becomes unreachable
again), but it’s an odd thing to do. This is referred to as resurrection, and
just because you can do it doesn’t mean you should. It is best avoided.

I hope that by now, I have convinced you that destructors do not provide a
general-purpose mechanism for shutting down objects cleanly. They are
mostly useful only for dealing with handles for things that live outside of
the CLR’s control, and it’s best to avoid relying on them. If you need
timely, reliable cleanup of resources, there’s a better mechanism.

IDisposable
The runtime libraries define an interface called IDisposable. The CLR
does not treat this interface as being in any way special, but C# has some
built-in support for it. IDisposable is a simple abstraction; as Example
7-8 shows, it defines just one member, the Dispose method.

Example 7-8. The IDisposable interface
public interface IDisposable
{
 void Dispose();
}

The idea behind IDisposable is straightforward. If your code creates an
object that implements this interface, you should call Dispose once
you’ve finished using that object (with the occasional exception—see
“Optional Disposal”). This then provides the object with an opportunity to
free up resources it may have allocated. If the object being disposed of was
using resources represented by handles, it will typically close those handles
immediately rather than waiting for finalization to kick in (and it should
suppress finalization at the same time). If the object was using services on
some remote machine in a stateful way—perhaps holding a connection
open to a server to be able to make requests—it would immediately let the
remote system know that it no longer requires the services, in whatever way
is necessary (for example, by closing the connection).

NOTE
There is a persistent myth that calling Dispose causes the GC to do something. You
may read on the web that Dispose finalizes the object, or even that it causes the object
to be garbage collected. This is nonsense. The CLR does not handle IDisposable or
Dispose differently than any other interface or method.

IDisposable is important because it’s possible for an object to consume
very little memory and yet tie up some expensive resources. For example,
consider an object that represents a connection to a database. Such an object
might not need many fields—it could even have just a single field
containing a handle representing the connection. From the CLR’s point of
view, this is a pretty cheap object, and we could allocate hundreds of them
without triggering a GC. But in the database server, things would look
different—it might need to allocate a considerable amount of memory for
each incoming connection. Connections might even be strictly limited by
licensing terms. (This illustrates that “resource” is a fairly broad concept—
it means pretty much anything that you might run out of.)

Relying on GC to notice when database connection objects are no longer in
use is likely to be a bad strategy. The CLR will know that we’ve allocated,
say, 50 of the things, but if that consumes only a few hundred bytes in total,
it will see no reason to run the GC. And yet our application may be about to
grind to a halt—if we have only 50 connection licenses for the database, the
next attempt to create a connection will fail. And even if there’s no
licensing limitation, we could still be making highly inefficient use of
database resources by opening far more connections than we need.

It’s imperative that we close connection objects as soon as we can, without
waiting for the GC to tell us which ones are out of use. This is where
IDisposable comes in. It’s not just for database connections, of course.
It’s critically important for any object that is a front for something that lives
outside the CLR, such as a file or a network connection. Even for resources
that aren’t especially constrained, IDisposable provides a way to tell
objects when we’re finished with them so that they can shut down cleanly,

solving the problem described earlier for objects that perform internal
buffering.

NOTE
If a resource is expensive to create, you may want to reuse it. This is often the case with
database connections, so the usual practice is to maintain a pool of connections. Instead
of closing a connection when you’re finished with it, you return it to the pool, making it
available for reuse. (Many of .NET’s data access providers can do this for you.) The
IDisposable model is still useful here. When you ask a resource pool for a resource,
it usually provides a wrapper around the real resource, and when you dispose that
wrapper, it returns the resource to the pool instead of freeing it. So calling Dispose is
really just a way of saying, “I’m done with this object,” and it’s up to the
IDisposable implementation to decide what to do next with the resource it
represents.

Implementations of IDisposable are required to tolerate multiple calls
to Dispose. Although this means consumers can call Dispose multiple
times without harm, they should not attempt to use an object after it has
been disposed. In fact, the runtime libraries define a special exception that
objects can throw if you misuse them in this way:
ObjectDisposedException. (I will discuss exceptions in Chapter 8.)

You’re free to call Dispose directly, of course, but C# also supports
IDisposable in three ways: foreach loops, using statements, and
using declarations. A using statement is a way to ensure that you
reliably dispose an object that implements IDisposable once you’re
done with it. Example 7-9 shows how to use it.

Example 7-9. A using statement
using (StreamReader reader = File.OpenText(@"C:\temp\File.txt"))
{
 Console.WriteLine(reader.ReadToEnd());
}

This is equivalent to the code in Example 7-10. The try and finally
keywords are part of C#’s exception handling system, which I’ll discuss in

detail in Chapter 8. In this case, they’re being used to ensure that the call to
Dispose inside the finally block executes even if something goes
wrong in the code inside the try block. This also ensures that Dispose
gets called if you execute a return statement in the middle of the block.
(It even works if you use a goto statement to jump out of it.)

Example 7-10. How using statements expand
{
 StreamReader reader = File.OpenText(@"C:\temp\File.txt");
 try
 {
 Console.WriteLine(reader.ReadToEnd());
 }
 finally
 {
 if (reader != null)
 {
 ((IDisposable) reader).Dispose();
 }
 }
}

If the variable type of the declaration in the using statement is a value
type, C# will not generate the code that checks for null and will just
invoke Dispose directly.

C# supports a simpler alternative, a using declaration, shown in Example
7-11. The difference is that we don’t need to provide a block. A using
declaration disposes its variable when the variable goes out of scope. It still
generates try and finally blocks, so in cases where a using
statement’s block happens to finish at the end of some other block (e.g., it
finishes at the end of a method), you can change to a using declaration
with no change of behavior. This reduces the number of nested blocks,
which can make your code easier to read. (On the other hand, with an
ordinary using block, it may be easier to see exactly when the object is no
longer used. So each style has its pros and cons.)

Example 7-11. A using declaration
using StreamReader reader = File.OpenText(@"C:\temp\File.txt");
Console.WriteLine(reader.ReadToEnd());

If you need to use multiple disposable resources within the same scope, and
you want to use a using statement, not a declaration (e.g., because you
want to dispose the resources at the earliest opportunity instead of waiting
for the relevant variables to go out of scope), you can nest them, but it
might be easier to read if you stack multiple using statements in front of a
single block. Example 7-12 uses this to copy the contents of one file to
another.

Example 7-12. Stacking using statements
using (Stream source = File.OpenRead(@"C:\temp\File.txt"))
using (Stream copy = File.Create(@"C:\temp\Copy.txt"))
{
 source.CopyTo(copy);
}

Stacking using statements is not a special syntax; it’s just an upshot of the
fact that a using statement is always followed by a single embedded
statement, which will be executed before Dispose gets called. Normally,
that statement is a block, but in Example 7-12, the first using statement’s
embedded statement is the second using statement. If you use using
declarations instead, stacking is unnecessary because these don’t have an
associated embedded statement.

A foreach loop generates code that will use IDisposable if the
enumerator implements it. Example 7-13 shows a foreach loop that uses
just such an enumerator.

Example 7-13. A foreach loop
foreach (string file in Directory.EnumerateFiles(@"C:\temp"))
{
 Console.WriteLine(file);
}

The Directory class’s EnumerateFiles method returns an
IEnumerable<string>. As you saw in Chapter 5, this has a
GetEnumerator method that returns an IEnumer ator <string>, an
interface that inherits from IDisposable. Consequently, the C# compiler
will produce code equivalent to Example 7-14.

Example 7-14. How foreach loops expand
{
 IEnumerator<string> e =
 Directory.EnumerateFiles(@"C:\temp").GetEnumerator();
 try
 {
 while (e.MoveNext())
 {
 string file = e.Current;
 Console.WriteLine(file);
 }
 }
 finally
 {
 if (e != null)
 {
 ((IDisposable) e).Dispose();
 }
 }
}

There are a few variations the compiler can produce, depending on the
collection’s enumerator type. If it’s a value type that implements
IDisposable, the compiler won’t generate the check for null in the
finally block (just as in a using statement). If the static type of the
enumerator does not implement IDisposable, the outcome depends on
whether the type is open for inheritance. If it is sealed, or if it is a value
type, the compiler will not generate code that attempts to call Dispose at
all. If it is not sealed, the compiler generates code in the finally block
that tests at runtime whether the enumerator implements IDisposable,
calling Dispose if it does and doing nothing otherwise.

The IDisposable interface is easiest to consume when you obtain a
resource and finish using it in the same method, because you can write a
using statement (or where applicable, a foreach loop) to ensure that
you call Dispose. But sometimes, you will write a class that creates a
disposable object and puts a reference to it in a field, because it will need to
use that object over a longer timescale. For example, you might write a
logging class, and if a logger object writes data to a file, it might hold on to
a StreamWriter object. C# provides no automatic help here, so it’s up to

you to ensure that any contained objects get disposed. You would write your
own implementation of IDisposable that disposes the other objects, as
Example 7-15 does. Note that this example sets _file to null, so it will
not attempt to dispose the file twice. This is not strictly necessary, because
the StreamWriter will tolerate multiple calls to Dispose. But it does
give the Logger object an easy way to know that it is in a disposed state,
so if we were to add some real methods, we could check _file and throw
an ObjectDisposedException if it is null.

Example 7-15. Disposing a contained instance
public sealed class Logger : IDisposable
{
 private StreamWriter? _file;

 public Logger(string filePath)
 {
 _file = File.CreateText(filePath);
 }

 public void Dispose()
 {
 if (_file != null)
 {
 _file.Dispose();
 _file = null;
 }
 }
 // A real class would go on to do something with the
StreamWriter, of course
}

This example dodges an important problem. The class is sealed, which
avoids the issue of how to cope with inheritance. If you write an unsealed
class that implements IDisposable, you should provide a way for a
derived class to add its own disposal logic. The most straightforward
solution would be to make Dispose virtual so that a derived class can
override it, performing its own cleanup in addition to calling your base
implementation. However, there is a more complicated pattern that you will
see from time to time in .NET.

Some objects implement IDisposable and also have a finalizer. Since
the introduction of SafeHandle and related classes, it’s relatively unusual
for a class to need to provide both (unless it derives from SafeHandle).
Only wrappers for handles normally need finalization, and classes that use
handles now typically defer to a SafeHandle to provide that, rather than
implementing their own finalizers. However, there are exceptions, and some
library types implement a pattern designed to support both finalization and
IDisposable, allowing you to provide custom behaviors for both in
derived classes. For example, the Stream base class works this way.

WARNING
This pattern is called the dispose pattern, but do not take that to mean that you should
normally use this when implementing IDisposable. On the contrary, it is extremely
unusual to need this pattern. Even back when it was invented, few classes needed it, and
now that we have SafeHandle, it is almost never necessary. (SafeHandle was
introduced in .NET 2.0, so it has been a very long time since the dispose pattern was
broadly useful.) Unfortunately, some people misunderstood the narrow utility of this
pattern, so you will find a certain amount of well-intentioned but utterly wrong advice
telling you that you should use this for all IDisposable implementations. Ignore it.
The pattern’s main relevance today is that you sometimes encounter it in old types such
as Stream.

The pattern is to define a protected overload of Dispose that takes a
single bool argument. The base class calls this from its public Dispose
method and also its destructor, passing in true or false, respectively.
That way, you have to override only one method, the protected Dispose.
It can contain logic common to both finalization and disposal, such as
closing handles, but you can also perform any disposal-specific or
finalization-specific logic because the argument tells you which sort of
cleanup is being performed. Example 7-16 shows how this might look.
(This is for illustration only—the
MyCustomLibraryInteropWrapper class has been made up for this
example.)

Example 7-16. Custom finalization and disposal logic
public class MyFunkyStream : Stream
{
 // For illustration purposes only. Usually better to avoid this
whole
 // pattern and to use some type derived from SafeHandle
instead.
 private IntPtr _myCustomLibraryHandle;
 private Logger? _log;

 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);

 if (_myCustomLibraryHandle != IntPtr.Zero)
 {

MyCustomLibraryInteropWrapper.Close(_myCustomLibraryHandle);
 _myCustomLibraryHandle = IntPtr.Zero;
 }
 if (disposing)
 {
 if (_log != null)
 {
 _log.Dispose();
 _log = null;
 }
 }
 }

 // ...overloads of Stream's abstract methods would go here
}

This hypothetical example is a custom implementation of the Stream
abstraction that uses some external non-.NET library that provides handle-
based access to resources. We prefer to close the handle when the public
Dispose method is called, but if that hasn’t happened by the time our
finalizer runs, we want to close the handle then. So the code checks to see if
the handle is still open and closes it if necessary, and it does this whether
the call to the Dispose(bool) overload happened as a result of the
object being explicitly disposed or being finalized—we need to ensure that
the handle is closed in either case. However, this class also appears to use
an instance of the Logger class from Example 7-15. Because that’s an

ordinary object, we shouldn’t attempt to use it during finalization, so we
attempt to dispose it only if our object is being disposed. If we are being
finalized, then although Logger itself is not finalizable, it uses a
FileStream, which is finalizable; and it’s quite possible that the
FileStream finalizer will already have run by the time our
MyFunkyStream class’s finalizer runs, so it would be a bad idea to call
methods on the Logger.

When a base class provides this virtual protected form of Dispose, it
should call GC.SuppressFinalization in its public Dispose. The
Stream base class does this. More generally, if you find yourself writing a
class that offers both Dispose and a finalizer, then whether or not you
choose to support inheritance with this pattern, you should in any case
suppress finalization when Dispose is called.

Since I’ve recommended avoiding this pattern, what should code like
Example 7-15 do if using sealed is unacceptable? The answer is
straightforward: if you are writing a class that implements IDisposable
and you want that class to be open for inheritance (i.e., not sealed), make
your Dispose method virtual. That way, derived types can override it
to add their own disposal logic (and these overrides should always call the
base class’s Dispose).

Optional Disposal
Although you should call Dispose at some point on most objects that
implement IDisposable, there are a few exceptions. For example, the
Reactive Extensions for .NET (described in Chapter 11) provide
IDisposable objects that represent subscriptions to streams of events.
You can call Dispose to unsubscribe, but some event sources come to a
natural end, automatically shutting down any subscriptions. If that happens,
you are not required to call Dispose. Also, the Task type, which is used
extensively in conjunction with the asynchronous programming techniques
described in Chapter 17, implements IDisposable but does not need to
be disposed unless you cause it to allocate a WaitHandle, something that

will not occur in normal usage. The way Task is generally used makes it
particularly awkward to find a good time to call Dispose on it, so it’s
fortunate that it’s not normally necessary.

The HttpClient class is another exception to the normal rules but in a
different way. We rarely call Dispose on instances of this type, but in this
case it’s because we are encouraged to reuse instances. If you construct,
use, and dispose an HttpClient each time you need one, you will defeat
its ability to reuse existing connections when making multiple requests to
the same server. This can cause two problems. First, opening an HTTP
connection can sometimes take longer than sending the request and
receiving the response, so preventing HttpClient from reusing
connections to send multiple requests over time can cause significant
performance problems. Connection reuse only works if you reuse the
HttpClient. Second, the TCP protocol (which underpins HTTP) has
characteristics that mean the OS cannot always instantly reclaim all the
resources associated with a connection: it may need to keep the
connection’s TCP port reserved for a considerable time (maybe a few
minutes) after you’ve told the OS to close the connection, and it’s possible
to run out of ports, preventing all further communication.

Such exceptions are unusual. It is only safe to omit calls to Dispose when
the documentation for the class you’re using explicitly states that it is not
required.

Boxing
While I’m discussing GC and object lifetime, there’s one more topic I
should talk about in this chapter: boxing. Boxing is the process that enables
a variable of type object to refer to a value type. An object variable is
capable only of holding a reference to something on the heap, so how can it
refer to an int? What happens when the code in Example 7-17 runs?

9

Example 7-17. Using an int as an object
static void Show(object o)
{
 Console.WriteLine(o.ToString());
}

int num = 42;
Show(num);

The Show method expects an object, and I’m passing it num, which is a
local variable of the value type int. In these circumstances, C# generates a
box, which is essentially a reference type wrapper for a value. The CLR can
automatically provide a box for any value type, although if it didn’t, you
could write your own class that does something similar. Example 7-18
shows a hand-built box.

Example 7-18. Not actually how a box works
// Not a real box but similar in effect.
public class Box<T>
 where T : struct
{
 public readonly T Value;
 public Box(T v)
 {
 Value = v;
 }

 public override string? ToString() => Value.ToString();
 public override bool Equals(object? obj) => Value.Equals(obj);
 public override int GetHashCode() => Value.GetHashCode();
}

This is a fairly ordinary class that contains a single instance of a value type
as its only field. If you invoke the standard members of object on the
box, this class’s overrides make it look as though you invoked them directly
on the field itself. So, if I passed new Box<int>(num) as the argument
to Show in Example 7-17, Show would receive a reference to that box.
When Show called ToString, the box would call the int field’s
ToString, so you’d expect the program to display 42.

We don’t need to write Example 7-18, because the CLR will build the box
for us. It will create an object on the heap that contains a copy of the boxed
value and forward the standard object methods to the boxed value. And it
does some things that we can’t. If you ask a boxed int its type by calling
GetType, it will return the same Type object as you’d get if you called
GetType directly on an int variable—I can’t do that with my custom
Box<T>, because GetType is not virtual. Also, getting back the
underlying value is easier than it would be with a hand-built box, because
unboxing is an intrinsic CLR feature.

If you have a reference of type object, and you cast it to int, the CLR
checks to see if the reference does indeed refer to a boxed int; if it does,
the CLR returns a copy of the boxed value. (If not, it throws an
InvalidCastException.) So, inside the Show method of Example 7-
17, I could write (int) o to get back a copy of the original value,
whereas if I were using the class in Example 7-18, I’d need the more
convoluted ((Box<int>) o).Value.

I can also use pattern matching to extract a boxed value. Example 7-19 uses
a declaration pattern to detect whether the variable o contains a reference to
a boxed int, and if it does, it extracts that into the local variable i. As we
saw in Chapter 2, when you use a pattern with the is operator like this, the
resulting expression evaluates to true if the pattern matches and false if
it does not. So the body of this if statement runs only if there was an int
value there to be unboxed.

Example 7-19. Unboxing a value with a type pattern
if (o is int i)
{
 Console.WriteLine(i * 2);
}

Boxes are automatically available for all structs, not just the built-in value
types. If the struct implements any interfaces, the box will provide all the
same interfaces. (That’s another trick that Example 7-18 cannot perform.)

10

Some implicit conversions cause boxing. You can see this in Example 7-17.
I have passed an expression of type int where object was required,
without needing an explicit cast. Implicit conversions also exist between a
value and any of the interfaces that value’s type implements. For example,
you can assign a value of type int into a variable of type
IComparable<int> (or pass it as a method argument of that type)
without needing a cast. This causes a box to be created, because variables of
any interface type are like variables of type object, in that they can hold
only a reference to an item on the garbage-collected heap.

NOTE
Implicit boxing conversions are not implicit reference conversions. This means that they
do not come into play with covariance or contravariance. For example,
IEnumerable<int> is not compatible with IEnumerable<object> despite the
existence of an implicit conversion from int to object, because that is not an
implicit reference conversion.

Implicit boxing can occasionally cause problems for one of two reasons.
First, it makes it easy to generate extra work for the GC. The CLR does not
attempt to cache boxes, so if you write a loop that executes 100,000 times,
and that loop contains an expression that uses an implicit boxing
conversion, you’ll end up generating 100,000 boxes, which the GC will
eventually have to clean up just like anything else on the heap. Second,
each box operation (and each unbox) copies the value, which might not
provide the semantics you were expecting. Example 7-20 illustrates some
potentially surprising behavior.

Example 7-20. Illustrating the pitfalls of mutable structs
static void CallDispose(IDisposable o)
{
 o.Dispose();
}

DisposableValue dv = new ();
Console.WriteLine("Passing value variable:");
CallDispose(dv);

CallDispose(dv);
CallDispose(dv);

IDisposable id = dv;
Console.WriteLine("Passing interface variable:");
CallDispose(id);
CallDispose(id);
CallDispose(id);

Console.WriteLine("Calling Dispose directly on value variable:");
dv.Dispose();
dv.Dispose();
dv.Dispose();

Console.WriteLine("Passing value variable:");
CallDispose(dv);
CallDispose(dv);
CallDispose(dv);

public struct DisposableValue : IDisposable
{
 private bool _disposedYet;

 public void Dispose()
 {
 if (!_disposedYet)
 {
 Console.WriteLine("Disposing for first time");
 _disposedYet = true;
 }
 else
 {
 Console.WriteLine("Was already disposed");
 }
 }
}

The DisposableValue struct implements the IDisposable interface
we saw earlier. It keeps track of whether it has been disposed already. The
program contains a CallDispose method that calls Dispose on any
IDisposable instance. The program declares a single variable of type
DisposableValue and passes this to CallDispose three times.
Here’s the output from that part of the program:

Passing value variable:
Disposing for first time
Disposing for first time
Disposing for first time

On all three occasions, the struct seems to think this is the first time we’ve
called Dispose on it. That’s because each call to CallDispose created
a new box—we are not really passing the dv variable; we are passing a
newly boxed copy each time, so the CallDispose method is working on
a different instance of the struct each time. This is consistent with how
value types normally work—even when there’s no boxing, when you pass
one as an argument, you get a copy (unless you use the ref or in
keywords).

The next part of the program ends up generating just a single box—it
assigns the value into another local variable of type IDisposable. This
uses the same implicit conversion as we did when passing the variable
directly as an argument, so this creates yet another box, but it does so only
once. We then pass the same reference to this particular box three times
over, which explains why the output from this phase of the program looks
different:

Passing interface variable:
Disposing for first time
Was already disposed
Was already disposed

These three calls to CallDispose all use the same box, which contains
an instance of our struct, and so after the first call, it remembers that it has
been disposed already. Next, our program calls Dispose directly on the
local variable, producing this output:

Calling Dispose directly on value variable:
Disposing for first time
Was already disposed
Was already disposed

No boxing at all is involved here, so we are modifying the state of the local
variable. Someone who only glanced at the code might not have expected
this output—we have already passed the dv variable to a method that called
Dispose on its argument, so it might be surprising to see that it thinks it
hasn’t been disposed the first time around. But once you understand that
CallDispose requires a reference and therefore cannot use a value
directly, it’s clear that every call to Dispose before this point has operated
on some boxed copy, and not the local variable.

Finally, we make three more calls passing the dv directly to
CallDispose again. This is exactly what we did at the start of the code,
so these calls generate yet more boxed copies. But this time, we are copying
a value that’s already in the state of having been disposed, so we see
different output:

Passing value variable:
Was already disposed
Was already disposed
Was already disposed

The behavior is all straightforward when you understand what’s going on,
but it requires you to be mindful that you’re dealing with a value type and
to understand when boxing causes implicit copying. This is one of the
reasons Microsoft discourages developers from writing value types that can
change their state—if a value cannot change, then a boxed value of that
type also cannot change. It matters less whether you’re dealing with the
original or a boxed copy, so there’s less scope for confusion, although it is
still useful to understand when boxing will occur to avoid performance
penalties.

Boxing used to be a much more common occurrence in early versions of
.NET. Before generics arrived in .NET 2.0, collection classes all worked in
terms of object, so if you wanted a resizable list of integers, you’d end
up with a box for each int in the list. Generic collection classes do not
cause boxing—a List<int> is able to store unboxed values directly.

Boxing Nullable<T>
Chapter 3 described the Nullable<T> type, a wrapper that adds null
value support to any value type. Remember, C# has special syntax for this,
in which you can just put a question mark on the end of a value type name,
so we’d normally write int? instead of Nullable<int>. The CLR has
special support for Nullable<T> when it comes to boxing.

Nullable<T> itself is a value type, so if you attempt to get a reference to
it, the compiler will generate code that attempts to box it, as it would with
any other value type. However, at runtime, the CLR will not produce a box
containing a copy of the Nullable<T> itself. Instead, it checks to see if
the value is in a null state (i.e., its HasValue property returns false),
and if so, it just returns null. Otherwise, it boxes the contained value. For
example, if a Nullable<int> has a value, boxing it will produce a box
of type int. This will be indistinguishable from the box you’d get if you
had started with an ordinary int value. (One upshot of this is that the
pattern matching shown in Example 7-19 works whether the type of
variable originally boxed was an int or an int?. You use int in the
declaration pattern in either case.)

You can unbox a boxed int into variables of either type int? or int. So
all three unboxing operations in Example 7-21 will succeed. They would
also succeed if the first line were modified to initialize the boxed variable
from a Nullable<int> that was not in the null state. (If you were to
initialize boxed from a Nullable<int> in the null state, that would
have the same effect as initializing it to null, in which case the final line
of this example would throw a NullReferenceException.)

Example 7-21. Unboxing an int to nullable and non-nullable variables
object boxed = 42;
int? nv = boxed as int?;
int? nv2 = (int?) boxed;
int v = (int) boxed;

This is a runtime feature, and not simply the compiler being clever. The IL
box instruction, which is what C# generates when it wants to box a value,

detects Nulla ble <T> values; the unbox and unbox.any IL
instructions are able to produce a Nulla ble <T> value from either a
null or a reference to a boxed value of the underlying type. So, if you
wrote your own wrapper type that looked like Nullable<T>, it would not
behave in the same way; if you assigned a value of your type into an
object, it would box your whole wrapper just like any other value. It’s
only because the CLR knows about Nullable<T> that it behaves
differently.

Summary
In this chapter, I described the heap that the runtime provides. I showed the
strategy that the CLR uses to determine which heap objects can still be
reached by your code, and the generation-based mechanism it uses to
reclaim the memory occupied by objects that are no longer in use. The GC
is not clairvoyant, so if your program keeps an object reachable, the GC has
to assume that you might use that object in the future. This means you will
sometimes need to be careful to make sure you don’t cause memory leaks
by accidentally keeping hold of objects for too long. We looked at the
finalization mechanism, and its various limitations and performance issues,
and we also looked at IDisposable, which is the preferred system for
cleaning up nonmemory resources. Finally, we saw how value types can act
like reference types thanks to boxing.

In the next chapter, I will show how C# presents the error-handling
mechanisms of the CLR.

1 The acronym GC is used throughout this chapter to refer to both the garbage collector
mechanism and also garbage collection, which is what the garbage collector does.

2 The Mono runtime’s GC shares no code with the .NET GC, even though both now live in the
same GitHub repository. Nonetheless, they both use the same approach here.

3 Value types defined with ref struct are an exception: they always live on the stack.
Chapter 18 discusses these.

4 The CLR doesn’t always wait until it runs out of memory. I will discuss the details later. For
now, the important point is that from time to time, it will try to free up some space.

5 The Mono runtime uses a slightly simpler scheme, but it still relies on the basic principle of
treating new and old objects differently.

6 .NET provides a configuration setting that lets you change this threshold.

7 Rare though single-core CPUs are these days, it’s still common to run in virtual machines that
present only one core to the code they host. This is often the case if your application runs on a
cloud-hosted service using a consumption-based tariff, for example.

8 You can do this with a free Microsoft tool called PerfView. Alternatively, the free
BenchmarkDotNet tool has a memory diagnosis feature.

9 Strictly speaking, it’s the underlying MessageHandler that needs to be reused. If you
obtain an HttpClient from an IHttpClientFactory, it is harmless to dispose it
because the factory holds on to the handler and reuses it across HttpClient instances.

10 Except for ref struct types, because those invariably live on the stack.

Chapter 8. Exceptions

Some operations can fail. If your program is reading data from a file stored
on an external drive, someone might disconnect the drive. Your application
might try to construct an array only to discover that the system does not
have enough free memory. Intermittent wireless network connectivity can
cause network requests to fail. One widely used way for a program to
discover these sorts of failures is for each API to return a value indicating
whether the operation succeeded. This requires developers to be vigilant if
all errors are to be detected, because programs must check the return value
of every operation. This is certainly a viable strategy, but it can obscure the
code; the logical sequence of work to be performed when nothing goes
wrong can get buried by all of the error checking, making the code harder to
maintain. C# supports another popular error-handling mechanism that can
mitigate this problem: exceptions.

When an API reports failure with an exception, this disrupts the normal
flow of execution, leaping straight to the nearest suitable error-handling
code. This enables a degree of separation between error-handling logic and
the code that tries to perform the task at hand. This can make code easier to
read and maintain, although it does have the downside of making it harder
to see all the possible ways in which the code may execute.

Exceptions can also report problems with operations where a return code
might not be practical. For example, the runtime can detect and report
problems for basic operations, even something as simple as using a
reference. Reference type variables can contain null, and if you try to
invoke a method on a null reference, it will fail. The runtime reports this
with an exception.

Most errors in .NET are represented as exceptions. However, some APIs
offer you a choice between return codes and exceptions. For example, the
int type has a Parse method that takes a string and attempts to interpret

its contents as a number, and if you pass it some nonnumeric text (e.g.,
"Hello"), it will indicate failure by throwing a FormatException. If
you don’t like that, you can call TryParse instead, which does exactly the
same job, but if the input is nonnumeric, it returns false instead of
throwing an exception. (Since the method’s return value has the job of
reporting success or failure, the method provides the integer result via an
out parameter.) Numeric parsing is not the only operation to use this
pattern, in which a pair of methods (Parse and TryParse, in this case)
provides a choice between exceptions and return values. As you saw in
Chapter 5, dictionaries offer a similar choice. The indexer throws an
exception if you use a key that’s not in the dictionary, but you can also look
up values with TryGetValue, which returns false on failure, just like
TryParse. Although this pattern crops up in a few places, for the majority
of APIs, exceptions are the only choice.

If you are designing an API that could fail, how should it report failure?
Should you use exceptions, a return value, or both? Microsoft’s class library
design guidelines contain instructions that seem unequivocal:

Do not return error codes. Exceptions are the primary means of reporting
errors in frameworks.

—.NET Framework Design Guidelines

But how does that square with the existence of int.TryParse? The
guidelines have a section on performance considerations for exceptions that
says this:

Consider the Try-Parse pattern for members that might throw exceptions
in common scenarios to avoid performance problems related to
exceptions.

—.NET Framework Design Guidelines

Failing to parse a number is not necessarily an error. For example, you
might want your application to allow the month to be specified numerically
or as text. So there are certainly common scenarios in which the operation
might fail, but the guideline has another criterion: it suggests using it for

“extremely performance-sensitive APIs,” so you should offer the
TryParse approach only when the operation is fast compared to the time
taken to throw and handle an exception.

Exceptions can typically be thrown and handled in a fraction of a
millisecond, so they’re not desperately slow—not nearly as slow as reading
data over a network connection, for example—but they’re not blindingly
fast either. I find that on my computer, a single thread can parse five-digit
numeric strings at a rate of roughly 80 million strings per second on .NET
6.0, and it’s capable of rejecting nonnumeric strings at a similar speed if I
use TryParse. The Parse method handles numeric strings just as fast,
but it’s roughly 400 times slower at rejecting nonnumeric strings than
TryParse, thanks to the cost of exceptions. Of course, converting strings
to integers is a pretty fast operation, so this makes exceptions look
particularly bad, but that’s why this pattern is most common on operations
that are naturally fast.

Exceptions can be especially slow when debugging. This is partly because
the debugger has to decide whether to break in, but it’s particularly
pronounced with the first unhandled exception your program hits. This can
give the impression that exceptions are considerably more expensive than
they really are. The numbers in the preceding paragraph are based on
observed runtime behavior without debugging overheads. That said, those
numbers slightly understate the costs, because handling an exception tends
to cause the CLR to run bits of code and access data structures it would not
otherwise need to use, which can have the effect of pushing useful data out
of the CPU’s cache. This can cause code to run slower for a short while
after the exception has been handled, until the nonexceptional code and data
can make their way back into the cache. The simplicity of my example
reduces this effect.

Most APIs do not offer a TryXxx form, and will report all failures as
exceptions, even in cases where failure might be common. For example, the
file APIs do not provide a way to open an existing file for reading without
throwing an exception if the file is missing. (You can use a different API to
test whether the file is there first, but that’s no guarantee of success. It’s

always possible for some other process to delete the file between your
asking whether it’s there and attempting to open it.) Since filesystem
operations are inherently slow, the TryXxx pattern would not offer a
worthwhile performance boost here even though it might make logical
sense.

WARNING
If you do use the TryXxx pattern, be aware that in cases where there are multiple
reasons the operation could fail, the false return value typically indicates just one
particular kind of failure. So a method of this kind might still throw an exception for
some failure modes.

Exception Sources
Class library APIs are not the only source of exceptions. They can be
thrown in any of the following scenarios:

Your own code detects a problem.

Your program uses a class library API, which detects a problem.

The runtime detects the failure of an operation (e.g., arithmetic
overflow in a checked context, or an attempt to use a null reference, or
an attempt to allocate an object for which there is not enough
memory).

The runtime detects a situation outside of your control that affects your
code (e.g., the runtime tries to allocate memory for some internal
purpose and finds that there is not enough free memory).

Although these all use the same exception-handling mechanisms, the places
in which the exceptions emerge are different. When your own code throws
an exception (which I’ll show you how to do later), you’ll know what
conditions cause it to happen, but when do these other scenarios produce

exceptions? I’ll describe where to expect each sort of exception in the
following sections.

Exceptions from APIs
With an API call, there are several kinds of problems that could result in
exceptions. You may have provided arguments that make no sense, such as
a null reference where a non-null one is required, or an empty string
where the name of a file was expected. Or the arguments might look OK
individually but not collectively. For example, you could call an API that
copies data into an array, asking it to copy more data than will fit. You
could describe these as “that will never work”–style errors, and they are
usually the result of mistakes in the code. (One developer who used to work
on the C# compiler team refers to these as boneheaded exceptions.)

A different class of problems arises when the arguments all look plausible
but the operation turns out not to be possible given the current state of the
world. For example, you might ask to open a particular file, but the file may
not be present; or perhaps it exists, but some other program already has it
open and has demanded exclusive access to the file. Yet another variation is
that things may start well but conditions can change, so perhaps you opened
a file successfully and have been reading data for a while, but then the file
becomes inaccessible. As suggested earlier, someone may have unplugged a
disk, or the drive could have failed due to overheating or age.

Software that communicates with external services over a network needs to
take into account that an exception doesn’t necessarily indicate that
anything is really wrong—sometimes requests fail due to some temporary
condition, and you may just need to retry the operation. This is particularly
common in cloud environments, where it’s common for individual servers
to come and go as part of the load balancing that cloud platforms typically
offer—it is normal for a few operations to fail for no particular reason.

TIP
When using services via a library, you should find out whether it already handles this for
you. For example, the Azure Storage libraries perform retries automatically by default
and will only throw an exception if you disable this behavior or if problems persist after
several attempts. You shouldn’t normally add your own exception handling and retry
loops for this kind of error around libraries that do this for you.

Asynchronous programming adds yet another variation. In Chapters 16 and
17 , I’ll show various asynchronous APIs—ones where work can progress
after the method that started it has returned. Work that runs asynchronously
can also fail asynchronously, in which case the library might have to wait
until your code next calls into it before it can report the error.

Despite the variations, in all these cases the exception will come from some
API that your code calls. (Even when asynchronous operations fail,
exceptions emerge either when you try to collect the result of an operation
or when you explicitly ask whether an error has occurred.) Example 8-1
shows some code where exceptions of this kind could emerge.

Example 8-1. Getting an exception from a library call
static void Main(string[] args)
{
 using (var r = new StreamReader(@"C:\Temp\File.txt"))
 {
 while (!r.EndOfStream)
 {
 Console.WriteLine(r.ReadLine());
 }
 }
}

There’s nothing categorically wrong with this code, so we won’t get any
exceptions complaining about arguments being self-evidently wrong. (In
the unofficial terminology, it makes no boneheaded mistakes.) If your
computer’s C: drive has a Temp folder, and if that contains a File.txt file,
and if the user running the program has permission to read that file, and if
nothing else on the computer has already acquired exclusive access to the
file, and if there are no problems—such as disk corruption—that could

make any part of the file inaccessible, and if no new problems (such as the
drive catching fire) develop while the program runs, this code will work just
fine: it will show each line of text in the file. But that’s a lot of ifs.

If there is no such file, the StreamReader constructor will not complete.
Instead, it will throw an exception. This program makes no attempt to
handle that, so the application would terminate. If you ran the program
outside of Visual Studio’s debugger, you would see the following output:

Unhandled exception. System.IO.FileNotFoundException: Could not
find file 'C:\Te
mp\File.txt'.
File name: 'C:\Temp\File.txt'
 at
Microsoft.Win32.SafeHandles.SafeFileHandle.CreateFile(String
fullPath, Fil
eMode mode, FileAccess access, FileShare share, FileOptions
options)
 at Microsoft.Win32.SafeHandles.SafeFileHandle.Open(String
fullPath, FileMode
mode, FileAccess access, FileShare share, FileOptions options,
Int64 preallocati
onSize)
 at System.IO.Strategies.OSFileStreamStrategy..ctor(String
path, FileMode mode
, FileAccess access, FileShare share, FileOptions options, Int64
preallocationSi
ze)
 at
System.IO.Strategies.FileStreamHelpers.ChooseStrategyCore(String
path, Fil
eMode mode, FileAccess access, FileShare share, FileOptions
options, Int64 preal
ocationSize)
 at
System.IO.Strategies.FileStreamHelpers.ChooseStrategy(FileStream
fileStrea
m, String path, FileMode mode, FileAccess access, FileShare
share, Int32 bufferS
ize, FileOptions options, Int64 preallocationSize)
 at System.IO.StreamReader.ValidateArgsAndOpenPath(String path,
Encoding encod
ing, Int32 bufferSize)
 at System.IO.StreamReader..ctor(String path)
 at Exceptional.Program.Main(String[] args) in

c:\Examples\Ch08\Example1\Progr
am.cs:line 10

This tells us what error occurred, and shows the full call stack of the
program at the point at which the problem happened. On Windows, the
system-wide error handling will also step in, so depending on how your
computer is configured, you might see its error reporting dialog, and it may
even report the crash to Microsoft’s error reporting service. If you run the
same program in a debugger, it will tell you about the exception and
highlight the line on which the error occurred, as Figure 8-1 shows.

Figure 8-1. Visual Studio reporting an exception

What we’re seeing here is the default behavior that occurs when a program
does nothing to handle exceptions: if a debugger is attached, it will step in,
and if not, the program just crashes. I’ll show how to handle exceptions
soon, but this illustrates that you cannot simply ignore them.

The call to the StreamReader constructor is not the only line that could
throw an exception in Example 8-1, by the way. The code calls ReadLine
multiple times, and any of those calls could fail. In general, any member
access could result in an exception, even just reading a property, although
class library designers usually try to minimize the extent to which
properties throw exceptions. If you make an error of the “that will never
work” (boneheaded) kind, then a property might throw an exception but

usually not for errors of the “this particular operation didn’t work” kind. For
example, the documentation states that the EndOfStream property used
in Example 8-1 would throw an exception if you tried to read it after having
called Dispose on the StreamReader object—an obvious coding error
—but if there are problems reading the file, StreamReader will throw
exceptions only from methods or the constructor.

Failures Detected by the Runtime
Another source of exceptions is when the CLR itself detects that some
operation has failed. Example 8-2 shows a method in which this could
happen. As with Example 8-1, there’s nothing innately wrong with this code
(other than not being very useful). It is perfectly possible to use this without
causing problems. However, if someone passes in 0 as the second
argument, the code will attempt an illegal operation.

Example 8-2. A potential runtime-detected failure
static int Divide(int x, int y)
{
 return x / y;
}

The CLR will detect when this division operation attempts to divide by zero
and will throw a DivideByZeroException. This will have the same
effect as an exception from an API call: if the program makes no attempt to
handle the exception, it will crash, or the debugger will break in.

NOTE
Division by zero is not always illegal in C#. Floating-point types support special values
representing positive and negative infinity, which is what you get when you divide a
positive or negative value by zero; if you divide zero by itself, you get the special Not a
Number value. None of the integer types support these special values, so integer
division by zero is always an error.

The final source of exceptions I described earlier is also the detection of
certain failures by the runtime, but they work a bit differently. They are not
necessarily triggered directly by anything that your code did on the thread
on which the exception occurred. These are sometimes referred to as
asynchronous exceptions, and in theory they can be thrown at literally any
point in your code, making it hard to ensure that you can deal with them
correctly. However, these tend to be thrown only in fairly catastrophic
circumstances, often when your program is about to be shut down, so you
can’t normally handle them in a useful way. For example,
Sta ckO ver flow Exc ept ion and OutOfMemoryException can in
theory be thrown at any point (because the CLR may need to allocate
memory for its own purposes even if your code didn’t do anything that
explicitly attempts this).

I’ve described the usual situations in which exceptions are thrown, and
you’ve seen the default behavior, but what if you want your program to do
something other than crash?

Handling Exceptions
When an exception is thrown, the CLR looks for code to handle the
exception. The default exception-handling behavior comes into play only if
there are no suitable handlers anywhere on the entire call stack. To provide
a handler, we use C#’s try and catch keywords, as Example 8-3 shows.

Example 8-3. Handling an exception
try
{
 using (var r = new StreamReader(@"C:\Temp\File.txt"))
 {
 while (!r.EndOfStream)
 {
 Console.WriteLine(r.ReadLine());
 }
 }
}
catch (FileNotFoundException)
{

 Console.WriteLine("Couldn't find the file");
}

The block immediately following the try keyword is usually known as a
try block, and if the program throws an exception while it’s inside such a
block, the CLR looks for matching catch blocks. Example 8-3 has just a
single catch block, and in the parentheses following the catch keyword,
you can see that this particular block is intended to handle exceptions of
type FileNotFoundException.

You saw earlier that if there is no C:\Temp\File.txt file, the
StreamReader constructor throws a FileNotFoundException. In
Example 8-1, that caused our program to crash, but because Example 8-3
has a catch block for that exception, the CLR will run that catch block.
At this point, it will consider the exception to have been handled, so the
program does not crash. Our catch block is free to do whatever it wants,
and in this case, my code just displays a message indicating that it couldn’t
find the file.

Exception handlers do not need to be in the method in which the exception
originated. The CLR walks up the stack until it finds a suitable handler. If
the failing StreamReader constructor call were in some other method
that was called from inside the try block in Example 8-3, our catch
block would still run (unless that method provided its own handler for the
same exception).

Exception Objects
Exceptions are objects, and their type derives from the Exception base
class. This defines properties providing information about the exception,
and some derived types add properties specific to the problem they
represent. Your catch block can get a reference to the exception if it needs
information about what went wrong. Example 8-4 shows a modification to
the catch block from Example 8-3. In the parentheses after the catch
keyword, as well as specifying the exception type, we also provide an
identifier (x) with which code in the catch block can refer to the

1

exception object. This enables the code to read a property specific to the
FileNotFoundException class: FileName.

Example 8-4. Using the exception in a catch block
try
{
 // ...same code as Example 8-3...
}
catch (FileNotFoundException x)
{
 Console.WriteLine($"File '{x.FileName}' is missing");
}

This will display the name of the file that couldn’t be found. With this
simple program, we already knew which file we were trying to open, but
you could imagine this property being helpful in a more complex program
that deals with multiple files.

The general-purpose members defined by the base Exception class
include the Message property, which returns a string containing a textual
description of the problem. The default error handling for console
applications displays this. The text Could not find file
'C:\Temp\File.txt' that we saw when first running Example 8-1
came from the Message property. This property is important when you’re
diagnosing unexpected exceptions.

WARNING
The Message property is intended for human consumption, so APIs might localize
these messages. It is therefore a bad idea to write code that attempts to interpret an
exception by inspecting the Message property, because this may well fail when your
code runs on a computer configured to run in a region where the main spoken language
is different than yours. (And Microsoft doesn’t treat exception message changes as
breaking changes, so the text might change even within the same locale.) It is best to
rely on the actual exception type, although some exceptions such as IOException get
used in ambiguous ways. So you sometimes need to inspect the HResult property,
which will be set to an error code from the OS in such cases.

Exception also defines an InnerException property. This is often
null, but it comes into play when one operation fails as a result of some
other failure. Sometimes, exceptions that occur deep inside a library would
make little sense if they were allowed to propagate all the way up to the
caller. For example, .NET provides a library for parsing XAML files.
(XAML—Extensible Application Markup Language—is used by various
.NET UI frameworks, including WPF.) XAML is extensible, so it’s possible
that your code (or perhaps some third-party code) will run as part of the
process of loading an XAML file, and this extension code could fail—
suppose a bug in your code causes an IndexOutOfRangeException
to be thrown while trying to access an array element. It would be somewhat
mystifying for that exception to emerge from an XAML API, so regardless
of the underlying cause of the failure, the library throws an
XamlParseException. This means that if you want to handle the
failure to load an XAML file, you know exactly which exception to handle,
but the underlying cause of the failure is not lost: when some other
exception caused the failure, it will be in the InnerException.

All exceptions contain information about where the exception was thrown.
The StackTrace property provides the call stack as a string. As you’ve
already seen, the default exception handler for console applications displays
that. There’s also a TargetSite property, which tells you which method
was executing. It returns an instance of the reflection API’s MethodBase
class. See Chapter 13 for details on reflection.

Multiple catch Blocks
A try block can be followed by multiple catch blocks. If the first catch
does not match the exception being thrown, the CLR will then look at the
next one, then the next, and so on. Example 8-5 supplies handlers for
FileNotFoundException, DirectoryNotFoundException,
and IOException.

Example 8-5. Handling multiple exception types
try
{

 using (var r = new StreamReader(@"C:\Temp\File.txt"))
 {
 while (!r.EndOfStream)
 {
 Console.WriteLine(r.ReadLine());
 }
 }
}
catch (FileNotFoundException x)
{
 Console.WriteLine($"File '{x.FileName}' is missing");
}
catch (DirectoryNotFoundException)
{
 Console.WriteLine($"The containing directory does not exist.");
}
catch (IOException x)
{
 Console.WriteLine($"IO error: '{x.Message}'");
}

An interesting feature of this example is that both
FileNotFoundException and DirectoryNotFoundException
derive from IOException. I could remove the first two catch blocks,
and this would still handle these exceptions correctly (just with less-specific
messages), because the CLR considers a catch block to be a match if it
handles the base type of the exception. So Example 8-5 has two viable
handlers for a FileNotFoundException and also two viable handlers
for DirectoryNotFound Excep tion. (The third handler is still useful
because the documentation tells us that for certain kinds of failure,
StreamReader will throw an IOException, and not either of the more
specific types.) In these cases, C# requires more specific handlers to come
first. If I were to move the IOException handler above the other
handlers, I’d get this compiler error for each of the more specific handlers:

error CS0160: A previous catch clause already catches all
exceptions of this or
of a super type ('IOException')

If you write a catch block for the Exception base type, it will catch all
exceptions. In most cases, this is the wrong thing to do. While it’s good to

handle the exceptions you can anticipate, if you don’t know what an
exception represents, you should normally let it pass. Otherwise, you risk
masking a problem. If you let the exception carry on, it’s more likely to get
to a place where it will be noticed, increasing the chances that you will fix
the problem properly at some point. A catchall handler would be
appropriate if you intend to wrap all exceptions in another exception and
throw that, like the XamlParseException described earlier. A catchall
exception handler might also make sense if it’s at a point where the only
place left for the exception to go is the default handling supplied by the
system. (That might mean the Main method for a console application, but
for multithreaded applications, it might mean the code at the top of a newly
created thread’s stack.) It might be appropriate in these locations to catch all
exceptions and write the details to a logfile or some similar diagnostic
mechanism. Even then, once you’ve logged it, you would probably want to
rethrow the exception, as described later in this chapter, or even terminate
the process with a nonzero exit code.

WARNING
For critically important services, you might be tempted to write code that swallows the
exception so that your application can limp on. This is a bad idea. If an exception you
did not anticipate occurs, your application’s internal state may no longer be trustworthy,
because your code might have been halfway through an operation when the failure
occurred. If you cannot afford for the application to go offline, the best approach is to
arrange for it to restart automatically after a failure. A Windows Service can be
configured to do this automatically, for example.

Exception Filters
You can make a catch block conditional: if you provide an exception filter
for your catch block, it will only catch exceptions when the filter
condition is true. Example 8-6 shows how this can be useful. It uses the
client API for Azure Table Storage, a NoSQL storage service offered as part
of Microsoft’s Azure cloud computing platform. This API’s
TableClient class has an AddEntity method that will throw a

RequestFailedException if something goes wrong. The problem is
that “something goes wrong” is very broad and covers more than
connectivity and authentication failures. You will also see this exception for
situations such as an attempt to insert a row when another row with the
same keys already exists. That is not necessarily an error—it can occur as
part of normal usage in some optimistic concurrency models.

Example 8-6. catch block with exception filter
public static bool InsertIfDoesNotExist(MyEntity item, TableClient
table)
{
 try
 {
 table.AddEntity(item);
 return true;
 }
 catch (RequestFailedException x)
 when (x.Status == 409)
 {
 return false;
 }
}

Example 8-6 looks for that specific failure case and returns false instead
of allowing the exception to continue propagating up the stack. It does this
with a when clause containing a filter, which must be an expression of type
bool. If the Execute method throws a StorageException that does
not match the filter condition, the exception will propagate as usual—it will
be as though the catch block were not there.

TIP
When using exception filters, a single try block can have multiple catch blocks for
the same exception. Normally that would cause a compiler error, because only the first
such catch would do anything, but with filters, that’s not necessarily the case, so the
compiler allows it. You can even have one unfiltered catch for a particular exception
type when there are also filtered catch blocks for the same type, but the unfiltered one
must appear last.

An exception filter must be an expression that produces a bool. It can
invoke external methods if necessary. Example 8-6 just fetches a property
and performs a comparison, but you are free to invoke any method as part
of the expression. However, you should be careful to avoid doing anything
in your filter that might cause another exception. If that happens, that
second exception will be lost.

Nested try Blocks
If an exception occurs in a try block that does not provide a suitable
handler, the CLR will keep looking. It will walk up the stack if necessary,
but you can have multiple sets of handlers in a single method by nesting
one try/catch inside another try block, as Example 8-7 shows.
ShowFirstLineLength nests a try/catch pair inside the try block
of another try/catch pair. Nesting can also be done across methods—the
Main method will catch any NullReferenceException that emerges
from the ShowFirstLineLength method (which will be thrown if the
file is completely empty—the call to ReadLine will return null in that
case).

Example 8-7. Nested exception handling
static void Main(string[] args)
{
 try
 {
 ShowFirstLineLength(@"C:\Temp\File.txt");
 }
 catch (NullReferenceException)
 {
 Console.WriteLine("NullReferenceException");
 }
}

static void ShowFirstLineLength(string fileName)
{
 try
 {
 using (var r = new StreamReader(fileName))
 {
 try

2

 {
 Console.WriteLine(r.ReadLine()!.Length);
 }
 catch (IOException x)
 {
 Console.WriteLine("Error while reading file: {0}",
 x.Message);
 }
 }
 }
 catch (FileNotFoundException x)
 {
 Console.WriteLine("Couldn't find the file '{0}'",
x.FileName);
 }
}

I nested the IOException handler here to make it apply to one particular
part of the work: it handles only errors that occur while reading the file after
it has been opened successfully. It might sometimes be useful to respond to
that scenario differently than for an error that prevented you from opening
the file in the first place.

The cross-method handling here is somewhat contrived. The
NullReference Excep tion could be avoided by testing the return
value of ReadLine for null. However, the underlying CLR mechanism
this illustrates is extremely important. A particular try block can define
catch blocks just for those exceptions it knows how to handle, allowing
others to escape up to higher levels.

Letting exceptions carry on up the stack is often the right thing to do.
Unless there is something useful your method can do in response to
discovering an error, it’s going to need to let its caller know there’s a
problem, so unless you want to wrap the exception in a different kind of
exception, you may as well let it through.

NOTE
If you’re familiar with Java, you may be wondering if C# has anything equivalent to
checked exceptions. It does not. Methods do not formally declare the exceptions they
throw, so there’s no way the compiler can tell you if you have failed either to handle
them or declare that your method might, in turn, throw them.

You can also nest a try block inside a catch block. This is important if
there are ways in which your error handler itself can fail. For example, if
your exception handler logs information about a failure to disk, that could
fail if there’s a problem with the disk.

Some try blocks never catch anything. It’s illegal to write a try block
that isn’t followed directly by something, but that something doesn’t have
to be a catch block: it can be a finally block.

finally Blocks
A finally block contains code that always runs once its associated try
block has finished. It runs whether execution left the try block simply by
reaching the end, returning from the middle, or throwing an exception. The
finally block will run even if you use a goto statement to jump right
out of the block. Example 8-8 shows a finally block in use.

Example 8-8. A finally block
using Microsoft.Office.Interop.PowerPoint;

...

[STAThread]
static void Main(string[] args)
{
 var pptApp = new Application();
 Presentation pres = pptApp.Presentations.Open(args[0]);
 try
 {
 ProcessSlides(pres);
 }

 finally
 {
 pres.Close();
 }
}

This is an excerpt from a utility I wrote to process the contents of a
Microsoft Office PowerPoint file. This just shows the outermost code; I’ve
omitted the actual detailed processing code, because it’s not relevant here
(although if you’re curious, the full version in the downloadable examples
for this book exports animated slides as video clips). I’m showing it
because it uses finally. This example uses COM interop to control the
PowerPoint application. This example closes the document once it has
finished, and the reason I put that code in a finally block is that I don’t
want the program to leave things open if something goes wrong partway
through. This is important because of the way COM automation works. It’s
not like opening a file, where the OS automatically closes everything when
the process terminates. If this program exits suddenly, PowerPoint will not
close whatever had been opened—it just assumes that you meant to leave
things open. (You might do this deliberately when creating a new document
that the user will then edit.) I don’t want that, and closing the file in a
finally block is a reliable way to avoid it.

Normally, you’d write a using statement for this sort of thing, but
PowerPoint’s COM-based automation API doesn’t support .NET’s
IDisposable interface. In fact, as we saw in the previous chapter, the
using statement works in terms of finally blocks under the covers, as
does foreach, so you’re relying on the exception-handling system’s
finally mechanism even when you write using statements and
foreach loops.

NOTE
finally blocks run correctly when your exception blocks are nested. If some method
throws an exception that is handled by a method that’s, say, five levels above it in the
call stack, and if some of the methods in between were in the middle of using
statements, foreach loops, or try blocks with associated finally blocks, all of
these intermediate finally blocks (whether explicit or generated implicitly by the
compiler) will execute before the handler runs.

Handling exceptions is only half of the story, of course. Your code may well
detect problems, and exceptions may be an appropriate mechanism for
reporting them.

Throwing Exceptions
Throwing an exception is very straightforward. You simply construct an
exception object of the appropriate type, and then use the throw keyword.
Example 8-9 does this when its position argument is outside the range
that makes sense.

Example 8-9. Throwing an exception
public static string GetCommaSeparatedEntry(string text, int
position)
{
 string[] parts = text.Split(',');
 if (position < 0 || position >= parts.Length)
 {
 throw new ArgumentOutOfRangeException(nameof(position));
 }
 return parts[position];
}

The CLR does all of the work for us. It captures the information required
for the exception to be able to report its location through properties like
StackTrace and TargetSite. (It doesn’t calculate their final values,
because these are relatively expensive to produce. It just makes sure that it
has the information it needs to be able to produce them if asked.) It then

hunts for a suitable try/catch block, and if any finally blocks need to
be run, it’ll execute those.

Example 8-9 illustrates a common technique used when throwing
exceptions that report a problem with a method argument. Exceptions such
as ArgumentNull Excep tion,
ArgumentOutOfRangeException, and their base class
ArgumentException can all report the name of the offending
argument. (This is optional because sometimes you need to report
inconsistency across multiple arguments, in which case there isn’t a single
argument to be named.) It’s a good idea to use C#’s nameof operator. You
can use this with any expression that refers to a named item, such as an
argument, a variable, a property, or a method. It compiles into a string
containing the item’s name.

I could have simply used the string literal "position" here instead, but
the advantages of nameof are that it can avoid silly mistakes (if I type
positon instead of position, the compiler will tell me that there’s no
such symbol), and it can help avoid problems caused when renaming a
symbol. If I were to rename the position argument in Example 8-9, I
could easily forget to change a string literal to match. But by using
nameof(position), I’ll get an error if I change the name of the
argument to, say, pos, without also changing nameof(position)—the
compiler will report that there is no identifier called position. If I ask a
C#-aware IDE (e.g., Visual Studio or JetBrains Rider) to rename the
argument, it will automatically update all the places in the code that use the
symbol, so it will replace the exception’s constructor argument with
nameof(input) for me.

We could use a similar technique with ArgumentNullException, but
.NET 6.0 adds a helper function that can simplify throwing this particular
exception. As Example 8-10 shows, instead of having to write an if
statement that tests the input, with a body that throws an exception
identifying the correct parameter name, we can just call
ArgumentNullException.ThrowIfNull.

Example 8-10. Throwing an ArgumentNullException
public static int CountCommas(string text)
{
 ArgumentNullException.ThrowIfNull(text);
 return text.Count(ch => ch == ',');
}

This tests whatever argument you pass and throws an
ArgumentNullException if it is null. But how can this set the
parameter name correctly? This ThrowIfNull method takes advantage of
a new C# 10.0 feature: it is annotated with the CallerArgument
Ex pression attribute. As Chapter 14 describes, this attribute enables the
ThrowIfNull helper to discover the text of the expression that the caller
used as the argument. Since we pass our text argument to this helper, it
will be passed an additional hidden argument, the string "text". So this
has all the same benefits as using nameof with other argument exceptions,
but it also performs the relevant test for us.

WARNING
Many exception types provide a constructor overload that lets you set the Message
text. A more specialized message may make problems easier to diagnose, but there’s one
thing to be careful of. Exception messages often find their way into diagnostic logs and
may also be sent automatically in emails by monitoring systems. You should therefore
be careful about what information you put in these messages. This is particularly
important if your software will be used in countries with data protection laws—putting
information in an exception message that refers in any way to a specific user can
sometimes contravene those laws.

Rethrowing Exceptions
Sometimes it is useful to write a catch block that performs some work in
response to an error but allows the error to continue once that work is
complete. There’s an obvious but wrong way to do this, illustrated in
Example 8-11.

Example 8-11. How not to rethrow an exception
try
{
 DoSomething();
}
catch (IOException x)
{
 LogIOError(x);
 // This next line is BAD!
 throw x; // Do not do this
}

This will compile without errors, and it will even appear to work, but it has
a serious problem: it loses the context in which the exception was originally
thrown. The CLR treats this as a brand-new exception (even though you’re
reusing the exception object) and will reset the location information: the
StackTrace and TargetSite will report that the error originated
inside your catch block. This could make it hard to diagnose the problem,
because you won’t be able to see where it was originally thrown. Example
8-12 shows how you can avoid this problem.

Example 8-12. Rethrowing without loss of context
try
{
 DoSomething();
}
catch (IOException x)
{
 LogIOError(x);
 throw;
}

The only difference between this and Example 8-11 (aside from removing
the warning comments) is that I’m using the throw keyword without
specifying which object to use as the exception. You’re allowed to do this
only inside a catch block, and it rethrows whichever exception the
catch block was in the process of handling. This means that the
Exception properties that report the location from which the exception
was thrown will still refer to the original throw location, not the rethrow.

WARNING
On .NET Framework (i.e., if you’re not using .NET or .NET Core), Example 8-12 does
not completely fix the problem. Although the point at which the exception was thrown
(which happens somewhere inside the DoSomething method in this example) will be
preserved, the part of the stack trace showing where the method in Example 8-12 had
reached will not. Instead of reporting that the method had reached the line that calls to
DoSomething, it will indicate that it was on the line containing the throw. The
slightly strange effect of this is that the stack trace will make it look as though the
DoSomething method was called by the throw keyword. .NET Core 3.1 and .NET
5.0 or later don’t have this problem.

There is another context-related issue to be aware of when handling
exceptions that you might need to rethrow that arises from how the CLR
supplies information to Windows Error Reporting (WER), the component
that leaps into action when an application crashes on Windows. Depending
on how your machine is configured, WER might show a crash dialog that
can offer options including restarting the application, reporting the crash to
Microsoft, debugging the application, or just terminating it. In addition to
all that, when a Windows application crashes, WER captures several pieces
of information to identify the crash location. For .NET applications, this
includes the name, version, and timestamp of the component that failed, the
exception type that was thrown, and information about the location from
which the exception was thrown. These pieces of information are
sometimes referred to as the bucket values. If the application crashes twice
with the same values, those two crashes go into the same bucket, meaning
that they are considered to be in some sense the same crash.

Retrieving this information from the Windows Event Log is all very well
for code running on computers you control (or you might prefer to use more
direct ways to monitor such applications, using systems such as Microsoft’s
Application Insights to collect telemetry, in which case WER is not very
interesting). Where WER becomes more important is for applications that
may run on other computers outside of your control, e.g., applications with
a UI that run entirely locally or console applications. Computers can be
configured to upload crash reports to an error reporting service, and usually,

3

just the bucket values get sent, although the services can request additional
data if the end user consents. Bucket analysis can be useful when deciding
how to prioritize bug fixes: it makes sense to start with the largest bucket,
because that’s the crash your users are seeing most often. (Or, at least, it’s
the one seen most often by users who have not disabled crash reporting. I
always enable this on my computers, because I want the bugs I encounter in
the programs I use to be fixed first.)

NOTE
The way to get access to accumulated crash bucket data depends on the kind of
application you’re writing. For a line-of-business application that runs only inside your
enterprise, you will probably want to run an error reporting server of your own, but if
the application runs outside of your administrative control, you can use Microsoft’s own
crash servers. There’s a certificate-based process for verifying that you are entitled to
the data, but once you’ve jumped through the relevant hoops, Microsoft will show you
all reported crashes for your applications, sorted by bucket size.

Certain exception-handling tactics can defeat the crash bucket system. If
you write common error-handling code that gets involved with all
exceptions, there’s a risk that WER will think that your application only
ever crashes inside that common handler, which would mean that crashes of
all kinds would go into the same bucket. This is not inevitable, but to avoid
it, you need to understand how your exception-handling code affects WER
crash bucket data.

If an exception rises to the top of the stack without being handled, WER
will get an accurate picture of exactly where the crash happened, but things
may go wrong if you catch an exception before eventually allowing it (or
some other exception) to continue up the stack. A bit surprisingly, .NET will
successfully preserve the location for WER even if you use the bad
approach shown in Example 8-11. (It’s only from .NET’s perspective inside
that application that this loses the exception context—StackTrace will
show the rethrow location. So WER does not necessarily report the same
crash location as .NET code will see in the exception object.) It’s a similar

story when you wrap an exception as the InnerException of a new
one: .NET will use that inner exception’s location for the crash bucket
values.

This means that it’s relatively easy to preserve the WER bucket. The only
ways to lose the original context are either to handle the exception
completely (i.e., not to crash) or to write a catch block that handles the
exception and then throws a new one without passing the original one in as
an InnerException.

Although Example 8-12 preserves the original context, this approach has a
limitation: you can rethrow the exception only from inside the block in
which you caught it. With asynchronous programming becoming more
prevalent, it is increasingly common for exceptions to occur on some
random worker thread. We need a reliable way to capture the full context of
an exception, and to be able to rethrow it with that full context some
arbitrary amount of time later, possibly from a different thread.

The ExceptionDispatchInfo class solves these problems. If you call
its static Capture method from a catch block, passing in the current
exception, it captures the full context, including the information required by
WER. The Capture method returns an instance of
ExceptionDispatchInfo. When you’re ready to rethrow the
exception, you can call this object’s Throw method, and the CLR will
rethrow the exception with the original context fully intact. Unlike the
mechanism shown in Example 8-12, you don’t need to be inside a catch
block when you rethrow. You don’t even need to be on the thread from
which the exception was originally thrown.

NOTE
If you use the async and await keywords described in Chapter 17, they use
ExceptionDispatchInfo for you to ensure that exception context is preserved
correctly.

Failing Fast
Some situations call for drastic action. If you detect that your application is
in a hopelessly corrupt state, throwing an exception may not be sufficient,
because there’s always the chance that something may handle it and then
attempt to continue. This risks corrupting persistent state—perhaps the
invalid in-memory state could lead to your program writing bad data into a
database. It may be better to bail out immediately before you do any lasting
damage.

The Environment class provides a FailFast method. If you call this,
the CLR will then terminate your application. (If you’re running on
Windows, it will also write a message to the Windows Event Log and
provide details to WER.) You can pass a string to be included in the event
log entry, and you can also pass an exception, in which case on Windows
the exception’s details will also be written to the log, including the WER
bucket values for the point at which the exception was thrown.

Exception Types
When your code detects a problem and throws an exception, you need to
choose which type of exception to throw. You can define your own
exception types, but the runtime libraries define a large number of
exception types, so in a lot of situations, you can just pick an existing type.
There are hundreds of exception types, so a full list would be inappropriate
here; if you want to see the complete set, the online documentation for the
Exception class lists the derived types. However, there are certain ones
that it’s important to know about.

The runtime libraries define an ArgumentException class, which is the
base of several exceptions that indicate when a method has been called with
bad arguments. Example 8-9 used ArgumentOutOfRangeException,
and Example 8-10 indirectly threw an ArgumentNullException. The
base ArgumentException defines a ParamName property, which
contains the name of the parameter that was supplied with a bad argument.

This is important for multiargument methods, because the caller will need
to know which one was wrong. All these exception types have constructors
that let you specify the parameter name, and you can see one of these in use
in Example 8-9. The base ArgumentException is a concrete class, so if
the argument is wrong in a way that is not covered by one of the derived
types, you can just throw the base exception, providing a textual description
of the problem.

Besides the general-purpose types just described, some APIs define more
specialized derived argument exceptions. For example, the
System.Globalization namespace defines an exception type called
CultureNotFoundException that derives from
ArgumentException. You can do something similar, and there are two
reasons you might want to. If there is additional information you can supply
about why the argument is invalid, you will need a custom exception type
so you can attach that information to the exception.
(CultureNotFoundException provides three properties describing
aspects of the culture information for which it was searching.) Alternatively,
it might be that a particular form of argument error could be handled
specially by a caller. Often, an argument exception simply indicates a
programming error, but in situations where it might indicate an environment
or configuration problem (e.g., not having the right language packs
installed), developers might want to handle that specific issue differently.
Using the base ArgumentException would be unhelpful in that case,
because it would be hard to distinguish between the particular failure they
want to handle and any other problem with the arguments.

Some methods may want to perform work that could produce multiple
errors. Perhaps you’re running some sort of batch job, and if some
individual tasks in the batch fail, you’d like to abort those but carry on with
the rest, reporting all the failures at the end. For these scenarios, it’s worth
knowing about AggregateException. This extends the
InnerException concept of the base Exception, adding an
InnerExceptions property that returns a collection of exceptions.

TIP
If you nest work that can produce an AggregateException (e.g., if you run a batch
within a batch), you can end up with some of your inner exceptions also being of type
AggregateException. This exception offers a Flatten method, which
recursively walks through any such nested exceptions and produces a single flat list with
all the nesting removed. It returns an AggregateException with that list as its
InnerExceptions.

Another commonly used type is InvalidOperationException. You
would throw this if someone tries to do something with your object that it
cannot support in its current state. For example, suppose you have written a
class that represents a request that can be sent to a server. You might design
this in such a way that each instance can be used only once, so if the request
has already been sent, trying to modify the request further would be a
mistake, and this would be an appropriate exception to throw. Another
important example is if your type implements IDisposable and
someone tries to use an instance after it has been disposed. That’s a
sufficiently common case that there’s a specialized type derived from
InvalidOperationException called
ObjectDisposedException.

You should be aware of the distinction between
NotImplementedException and the similar-sounding but
semantically different NotSupportedException. The latter should be
thrown when an interface demands it. For example, the IList<T>
interface defines methods for modifying collections but does not require
collections to be modifiable—instead, it says that read-only collections
should throw NotSupported Ex ception from members that would
modify the collection. An implementation of IList<T> can throw this and
still be considered to be complete, whereas Not
Imp lem ent edE xce pti on means something is missing. You will most
often see this in code generated by IDEs—these can create stub methods if
you ask them to generate an interface implementation or provide an event
handler. They generate this code to save you from having to type in the full

method declaration, but it’s still your job to implement the body of the
method, so the generated methods will throw this exception so that you do
not accidentally leave empty methods in place.

You would normally want to remove all code that throws
NotImplementedException before shipping, replacing it with
appropriate implementations. However, there is a situation in which you
might want to throw it. Suppose you’ve written a library containing an
abstract base class, and your customers write classes that derive from this.
When you release new versions of the library, you can add new methods to
that base class. Now imagine that you want to add a new library feature for
which it would seem to make sense to add a new abstract method to your
base class. That would be a breaking change—existing code that
successfully derives from the old version of the class would no longer work.
You can avoid this problem by providing a virtual method instead of an
abstract method, but what if there’s no useful default implementation that
you can provide? In that case, you might write a base implementation that
throws a NotImplementedException. Code built against the old
version of the library will not try to use the new feature, so it would never
attempt to invoke the method. But if a customer tried to use the new library
feature without overriding the relevant method in their class, they would
then get this exception. In other words, this provides a way to enforce a
requirement of the form: you must override this method if and only if you
want to use the feature it represents. (You could use the same approach
when adding new members to an interface with default implementations.)

There are, of course, other, more specialized exceptions in the framework,
and you should always try to find an exception that matches the problem
you wish to report. However, you will sometimes need to report an error for
which the runtime libraries do not supply a suitable exception. In this case,
you will need to write your own exception class.

Custom Exceptions
The minimum requirement for a custom exception type is that it should
derive from Exception (either directly or indirectly). However, there are
some design guidelines. The first thing to consider is the immediate base
class: if you look at the built-in exception types, you’ll notice that many of
them derive only indirectly from Exception, through either
ApplicationException or SystemException. You should avoid
both of these. They were originally introduced with the intention of
distinguishing between exceptions produced by applications and ones
produced by .NET. However, this did not prove to be a useful distinction.
Some exceptions could be thrown by both in different scenarios, and in any
case, it was not normally useful to write a handler that caught all
application exceptions but not all system ones, or vice versa. The class
library design guidelines now tell you not to use these two base types.

Custom exception classes normally derive directly from Exception,
unless they represent a specialized form of some existing exception. For
example, we already saw that ObjectDisposedException is a special
case of InvalidOperationException, and the runtime libraries
define several more specialized derivatives of that same base class, such as
ProtocolViolationException for networking code. If the problem
you wish your code to report is clearly an example of some existing
exception type, but it still seems useful to define a more specialized type,
then you should derive from that existing type.

Although the Exception base class has a parameterless constructor, you
should not normally use it. Exceptions should provide a useful textual
description of the error, so your custom exception’s constructors should all
call one of the Exception constructors that take a string. You can either
hardcode the message string in your derived class or define a constructor
that accepts a message, passing it on to the base class; it’s common for
exception types to provide both, although that might be a waste of effort if
your code uses only one of the constructors. It depends on whether your
exception might be thrown by other code or just yours.

4

It’s also common to provide a constructor that accepts another exception,
which will become the InnerException property value. Again, if
you’re writing an exception entirely for your own code’s use, there’s not
much point in adding this constructor until you need it, but if your
exception is part of a reusable library, this is a common feature. Example 8-
13 shows a hypothetical example that offers various constructors, along
with an enumeration type that is used by the property the exception adds.

Example 8-13. A custom exception
public class DeviceNotReadyException : InvalidOperationException
{
 public DeviceNotReadyException(DeviceStatus status)
 : this("Device status must be Ready", status)
 {
 }

 public DeviceNotReadyException(string message, DeviceStatus
status)
 : base(message)
 {
 Status = status;
 }

 public DeviceNotReadyException(string message, DeviceStatus
status,
 Exception innerException)
 : base(message, innerException)
 {
 Status = status;
 }

 public DeviceStatus Status { get; }
}

public enum DeviceStatus
{
 Disconnected,
 Initializing,
 Failed,
 Ready
}

The justification for a custom exception here is that this particular error has
something more to tell us besides the fact that something was not in a

suitable state. It provides information about the object’s state at the moment
at which the operation failed.

The .NET Framework Design Guidelines used to recommend that
exceptions be serializable. Historically, this was to enable them to cross
between appdomains. An appdomain is an isolated execution context;
however, they are now deprecated because they are only supported in .NET
Framework, and not in .NET Core or .NET. That said, there are still some
application types in which serialization of exceptions is interesting, most
notably microservice-based architectures such as those running on
Akka.NET or Microsoft Service Fabric, in which a single application runs
across multiple processes, often spread across many different machines. By
making an exception serializable, you make it possible for the exception to
cross process boundaries—the original exception object cannot be used
directly across the boundary, but serialization enables a copy of the
exception to be built in the target process.

So although serialization is no longer recommended for all exception types,
it is useful for exceptions that may be used in these kinds of multiprocess
environments. Most exception types in .NET Core and .NET continue to
support serialization for this reason. If you don’t need to support this, your
exceptions don’t have to be made serializable, but since it’s fairly common
to do so, I’ll describe the changes you would need to make. First, you
would need to add the [Serializable] attribute in front of the class
declaration. Then, you’d need to override a method defined by
Exception that handles serialization. Finally, you must provide a special
constructor to be used when deserializing your type. Example 8-14 shows
the members you would need to add to make the custom exception in
Example 8-13 support serialization. The GetObjectData method simply
stores the current value of the exception’s Status property in a
name/value container supplied during serialization. It retrieves this value in
the constructor that gets called during deserialization.

Example 8-14. Adding serialization support
public override void GetObjectData(SerializationInfo info,
 StreamingContext context)

https://oreil.ly/akka

{
 base.GetObjectData(info, context);
 info.AddValue("Status", Status);
}

protected DeviceNotReadyException(SerializationInfo info,
 StreamingContext context)
 : base(info, context)
{
 Status = (DeviceStatus) info.GetValue("Status",
typeof(DeviceStatus))!;
}

Unhandled Exceptions
Earlier, you saw the default behavior that a console application exhibits
when your application throws an exception that it does not handle. It
displays the exception’s type, message, and stack trace and then terminates
the process. This happens whether the exception went unhandled on the
main thread or a thread you created explicitly, or even a thread pool thread
that the CLR created for you.

Be aware that there have been a couple of changes to unhandled exception
behavior over the years that still have some relevance because you can
optionally reenable the old behavior. Before .NET 2.0, threads created for
you by the CLR would swallow exceptions without reporting them or
crashing. You may occasionally encounter old applications that still rely on
this: if the application has a .NET Framework–style configuration file that
contains a legacyUnhandledExceptionPolicy element with an
enabled="1" attribute, the old .NET 1 behavior returns, meaning that
unhandled exceptions can vanish silently. .NET 4.5 moved in the opposite
direction for one feature. If you use the Task class (described in Chapter
16) to run concurrent work instead of using threads or the thread pool
directly, any unhandled exceptions inside tasks would once have terminated
the process, but as of .NET 4.5, they no longer do by default. You can revert
to the old behavior through the configuration file. (See Chapter 16 for
details.)

The CLR provides a way to discover when unhandled exceptions reach the
top of the stack. The AppDomain class provides an
UnhandledException event, which the CLR raises when this happens
on any thread. I’ll be describing events in Chapter 9, but jumping ahead a
little, Example 8-15 shows how to handle this event. It also throws an
unhandled exception to try the handler out.

Example 8-15. Unhandled exception notifications
static void Main(string[] args)
{
 AppDomain.CurrentDomain.UnhandledException +=
OnUnhandledException;

 // Crash deliberately to illustrate the UnhandledException
event
 throw new InvalidOperationException();
}

private static void OnUnhandledException(object sender,
 UnhandledExceptionEventArgs e)
{
 Console.WriteLine($"An exception went unhandled:
{e.ExceptionObject}");
}

When the handler is notified, it’s too late to stop the exception—the CLR
will terminate the process shortly after calling your handler. The main
reason this event exists is to provide a place to put logging code so that you
can record some information about the failure for diagnostic purposes. In
principle, you could also attempt to store any unsaved data to facilitate
recovery if the program restarts, but you should be careful: if your
unhandled exception handler gets called, then by definition your program is
in a suspect state, so whatever data you save may be invalid.

Some application frameworks provide their own ways to deal with
unhandled exceptions. For example, UI frameworks (e.g., Windows Forms
or WPF) for desktop applications for Windows do this, partly because the
default behavior of writing details to the console is not very useful for
applications that don’t show a console window. These applications need to
run a message loop to respond to user input and system messages. It

5

inspects each message and may decide to call one or more methods in your
code, in which case it wraps each call in a try block so that it can catch
any exceptions your code may throw. The frameworks may show error
information in a window instead. And web frameworks, such as ASP.NET
Core, need a different mechanism: at a minimum, they should generate a
response that indicates a server-side error in the way recommended by the
HTTP specification.

This means that the UnhandledException event that Example 8-15
uses may not be raised when an unhandled exception escapes from your
code, because it may be caught by a framework. If you are using an
application framework, you should check to see if it provides its own
mechanism for dealing with unhandled exceptions. For example, ASP.NET
Core applications can supply a callback to a method called Use
Ex ceptionHandler during application startup. WPF has its own
Application class, and its DispatcherUnhandledException
event is the one to use. Likewise, Windows Forms provides an
Application class with a ThreadException member.

Even when you’re using these frameworks, their unhandled exception
mechanisms deal only with exceptions that occur on threads the
frameworks control. If you create a new thread and throw an unhandled
exception on that, it would show up in the AppDomain class’s
UnhandledException event, because frameworks don’t control the
whole CLR.

Summary
In .NET, errors are usually reported with exceptions, apart from in certain
scenarios where failure is expected to be common and the cost of
exceptions is likely to be high compared to the cost of the work at hand.
Exceptions allow error-handling code to be separate from code that does
work. They also make it hard to ignore errors—unexpected errors will
propagate up the stack and eventually cause the program to terminate and
produce an error report. catch blocks allow us to handle those exceptions

that we can anticipate. (You can also use them to catch all exceptions
indiscriminately, but that’s usually a bad idea—if you don’t know why a
particular exception occurred, you cannot know for certain how to recover
from it safely.) finally blocks provide a way to perform cleanup safely
regardless of whether code executes successfully or encounters exceptions.
The runtime libraries define numerous useful exception types, but if
necessary, we can write our own.

In the chapters so far, we’ve looked at the basic elements of code, classes
and other custom types, collections, and error handling. There’s one last
feature of the C# type system to look at: a special kind of object called a
delegate.

1 Strictly speaking, the CLR allows any type as an exception. However, C# can throw only
Exception-derived types. Some languages let you throw other types, but it is strongly
discouraged. C# can handle exceptions of any type, though only because the compiler
automatically sets a RuntimeCompatibility attribute on every component it produces,
asking the CLR to wrap exceptions not derived from Exception in a
RuntimeWrappedException.

2 Exception filters cannot use the await keyword, which is discussed in Chapter 17.

3 Some people refer to WER by the name of an older Windows crash-reporting mechanism: Dr.
Watson.

4 You could also consider looking up a localized string with the facilities in the
System.Resources namespace instead of hardcoding it. The exceptions in the runtime
libraries all do this. It’s not mandatory, because not all programs run in multiple regions, and
even for those that do, exception messages will not necessarily be shown to end users.

5 Although .NET Core and .NET do not support the creation of new appdomains, they still
provide the AppDomain class, because it exposes certain important features, such as this
event. It will provide a single instance via AppDomain.CurrentDomain.

Chapter 9. Delegates, Lambdas,
and Events

The most common way to use an API is to invoke the methods and
properties its classes provide, but sometimes things need to work in reverse
—the API may need to call your code, an operation often described as a
callback. In Chapter 5, I showed the search features offered by arrays and
lists. To use these, I wrote a method that returned true when its argument
met my criteria, and the relevant APIs called my method for each item they
inspected. Not all callbacks are this immediate. Asynchronous APIs can call
a method in our code when long-running work completes. In a client-side
application, I want my code to run when the user interacts with certain
visual elements in particular ways, such as clicking a button.

Interfaces and virtual methods can enable callbacks. In Chapter 4, I showed
the IComparer<T> interface, which defines a single CompareTo
method. This is called by methods like Array.Sort when we want a
customized sort ordering. You could imagine a UI framework that defined
an IClickHandler interface with a Click method, and perhaps also
DoubleClick. The framework could require us to implement this
interface if we want to be notified of button clicks.

In fact, none of .NET’s UI frameworks use the interface-based approach,
because it gets cumbersome when you need multiple kinds of callback.
Single- and double-clicks are the tip of the iceberg for user interactions—in
WPF applications, each UI element can provide over 100 kinds of
notifications. Most of the time, you need to handle only one or two events
from any particular element, so an interface with 100 methods to implement
would be annoying.

Splitting notifications across multiple interfaces could mitigate this
inconvenience. Default interface implementations could help, because it

would make it possible to provide default, empty implementations for all
callbacks, meaning we’d need to override only the ones we were interested
in. (Neither .NET Standard 2.0 nor .NET Framework support this language
feature, but a library targeting those could supply a base class with virtual
methods instead.) But even with these refinements, there’s a serious
drawback with this object-oriented approach. Imagine a UI with four
buttons. In a hypothetical UI framework that used the approach I’ve just
described, if you wanted each button to have its own click handler, you’d
need four distinct implementations of the IClickHandler interface. A
single class can implement any particular interface only once, so you’d
need to write four classes. That seems very cumbersome when all we really
want to do is tell a button to call a particular method when clicked.

C# provides a much simpler solution in the form of a delegate, which is a
reference to a method. If you want a library to call your code back for any
reason, you will normally just pass a delegate referring to the method you’d
like it to call. I showed an example of that in Chapter 5, which I’ve
reproduced in Example 9-1. This finds the index of the first element in an
int[] array with a value above zero.

Example 9-1. Searching an array using a delegate
public static int GetIndexOfFirstNonEmptyBin(int[] bins) =>
 Array.FindIndex(bins, IsGreaterThanZero);

private static bool IsGreaterThanZero(int value) => value > 0;

At first glance, this seems very simple: the second parameter to
Array.FindIndex requires a method that it can call to ask whether a
particular element is a match, so I passed my IsGreaterThanZero
method as an argument. But what does it really mean to pass a method, and
how does this fit in with .NET’s type system, the CTS?

Delegate Types
Example 9-2 shows the declaration of the FindIndex method used in
Example 9-1. The first parameter is the array to be searched, but it’s the

second one we’re interested in—that’s where I passed a method.

Example 9-2. Method with a delegate parameter
public static int FindIndex<T>(
 T[] array,
 Predicate<T> match)

The method’s second parameter’s type is Predicate<T>, where T is the
array element type, and since Example 9-1 uses an int[], that will be a
Predicate<int>. (In case you don’t have a background in either formal
logic or computer science, this type uses the word predicate in the sense of
a function that determines whether something is true or false. For example,
you could have a predicate that tells you whether a number is even.
Predicates are often used in this kind of filtering operation.) Example 9-3
shows how this type is defined. This is the whole of the definition, not an
excerpt; if you wanted to write a type that was equivalent to
Predicate<T>, that’s all you’d need to write.

Example 9-3. The Predicate<T> delegate type
public delegate bool Predicate<in T>(T obj);

Breaking Example 9-3 down, we begin as usual with the accessibility, and
we can use all the same keywords we could for other types, such as
public or internal. (Like any type, delegate types can optionally be
nested inside some other type, in which case you can also use private or
protected.) Next is the delegate keyword, which tells the C#
compiler that we’re defining a delegate type. The rest of the definition
looks, not coincidentally, just like a method declaration. We have a return
type of bool. You put the delegate type name where you’d normally see
the method name. The angle brackets indicate that this is a generic type
with a single type parameter T, and the in keyword indicates that T is
contravariant. Finally, the method signature has a single parameter of that
type.

TIP
The use of contravariance here lets you use a predicate that is more general than would
otherwise be required. For example, because all values of type string are compatible
with the type object, all values of Predicate<object> are compatible with the
type Predicate<string>. Or to put that informally, if an API needs a method that
inspects a string, it will work perfectly well if you pass it a method that is able to
inspect any object. Chapter 6 described contravariance in detail.

Delegate types are special in .NET, and they work quite differently than
classes or structs. The compiler generates a superficially normal-looking
type definition with various members that we’ll look at in more detail later,
but the members are all empty—C# produces no IL for any of them. The
CLR provides the implementation at runtime.

Instances of delegate types are usually just called delegates, and they refer
to methods. A method is compatible with (i.e., can be referred to by an
instance of) a particular delegate type if its signature matches. The
IsGreaterThanZero method in Example 9-1 takes an int and returns
a bool, so it is compatible with Predicate<int>. The match does not
have to be precise. If implicit reference conversions are available for
parameter types, you can use a more general method. (Although this may
sound very similar to the upshot of T being contravariant, this is a subtly
different issue. T being contravariant in Predicate<T> determines what
types an existing instance of Predicate<T> can be converted to. This is
separate from the rules around whether you can construct a new delegate of
some specific type from a particular method: the signature matching rules
I’m now describing apply even for nongeneric delegates, and for generic
delegates with invariant type parameters.) For example, a method with a
return type of bool, and a single parameter of type object, would be
compatible with Predicate<object>, but because such a method can
accept string arguments, it would also be compatible with
Predicate<string>. (It would not be compatible with
Predicate<int>, because there’s no implicit reference conversion from

int to object. There’s an implicit conversion, but it’s a boxing
conversion, not a reference conversion.)

Creating a Delegate
The simplest way to create a delegate is to write just the method name.
Example 9-4 declares a variable, p, and initializes it with the
IsGreaterThanZero method from Example 9-1. (This code requires
IsGreaterThanZero to be in scope, so we could only write this inside
the same class.)

Example 9-4. Creating a delegate
var p = IsGreaterThanZero;

This example says nothing about the particular delegate type required,
which causes the compiler to pick from one of a couple of families of
generic types that I’ll be describing later in this chapter. In the unusual
cases where you can’t use those, it will define a type for you. In this case, it
will use Func<int, bool>, reflecting the fact that
IsGreaterThanZero is a method that takes an int and returns a
bool. This is a reasonable choice, but what if I wanted to use the
Predicate<int> type because I’m planning to pass it to
Array.FindIndex, as in Example 9-1? If you don’t want the compiler’s
default choice, you can use the new keyword, as Example 9-5 shows. This
lets you state the type, and where you’d normally pass constructor
arguments, you can supply the name of a compatible method.

Example 9-5. Constructing a delegate
var p = new Predicate<int>(IsGreaterThanZero);

In practice, we rarely use new for delegates. It’s necessary only in cases
where the compiler will not infer the right delegate type. Typically, the
compiler can work it out from context. Example 9-6 declares a variable
with an explicit type, so the compiler knows a Predicate<int> is
required—we don’t need to use new here. This compiles to the same code
as Example 9-5.

1

Example 9-6. Implicit delegate construction
Predicate<int> p = IsGreaterThanZero;

That still mentions the delegate type name explicitly, but often we don’t
even need to do that. Example 9-1 correctly determined that
IsGreaterThanZero needed to be turned into a Predicate<int>
without us needing to say so. The compiler knows that the second argument
to FindIndex is Predicate<T>, and because we supplied a first
argument of type int[], it deduced that T is int, so it knows the second
argument’s full type is Predicate<int>. Having worked that out, it
uses the same built-in implicit conversion rules to construct the delegate as
Example 9-6. So when you pass a delegate to a method, the compiler will
normally work out the right type by itself.

When code refers to a method by name like this, the name is technically
called a method group, because multiple overloads may exist for a single
name. The compiler narrows this down by looking for the best possible
match, in a similar way to how it chooses an overload when you invoke a
method. As with method invocation, it is possible that there will be either
no matches or multiple equally good matches, and in those cases the
compiler will produce an error.

Method groups can take several forms. In the examples shown so far, I have
used an unqualified method name, which works only when the method in
question is in scope. If you want to refer to a static method defined in some
other class, you would need to qualify it with the class name, as Example 9-
7 shows.

Example 9-7. Delegates referring to methods in another class
internal class Program
{
 static void Main(string[] args)
 {
 Predicate<int> p1 = Tests.IsGreaterThanZero;
 Predicate<int> p2 = Tests.IsLessThanZero;
 }
}

internal class Tests

{
 public static bool IsGreaterThanZero(int value) => value > 0;

 public static bool IsLessThanZero(int value) => value < 0;
}

Delegates don’t have to refer to static methods. They can refer to an
instance method. There are a couple of ways you can make that happen.
One is simply to refer to an instance method by name from a context in
which that method is in scope. The GetIsGreaterThanPredicate
method in Example 9-8 returns a delegate that refers to IsGreaterThan.
Both are instance methods, so they can be used only with an object
reference, but GetIsGreaterThanPredicate has an implicit this
reference, and the compiler automatically provides that to the delegate that
it implicitly creates.

Example 9-8. Implicit instance delegate
public class ThresholdComparer
{
 public int Threshold { get; set; }

 public bool IsGreaterThan(int value) => value > Threshold;

 public Predicate<int> GetIsGreaterThanPredicate() =>
IsGreaterThan;
}

Alternatively, you can be explicit about which instance you want. Example
9-9 creates three instances of the ThresholdComparer class from
Example 9-8, and then creates three delegates referring to the
IsGreaterThan method, one for each instance.

Example 9-9. Explicit instance delegate
var zeroThreshold = new ThresholdComparer { Threshold = 0 };
var tenThreshold = new ThresholdComparer { Threshold = 10 };
var hundredThreshold = new ThresholdComparer { Threshold = 100 };

Predicate<int> greaterThanZero = zeroThreshold.IsGreaterThan;
Predicate<int> greaterThanTen = tenThreshold.IsGreaterThan;
Predicate<int> greaterThanOneHundred =
hundredThreshold.IsGreaterThan;

You don’t have to limit yourself to simple expressions of the form
variableName.MethodName. You can take any expression that
evaluates to an object reference, and then just append .MethodName; if
the object has one or more methods called MethodName, that will be a
valid method group.

NOTE
I’ve shown only single-parameter delegates so far, but you can define delegate types
with any number of parameters. For example, the runtime libraries define
Comparison<T>, which compares two items, and therefore takes two arguments
(both of type T).

C# will not let you create a delegate that refers to an instance method
without specifying either implicitly or explicitly which instance you mean,
and it will always initialize the delegate with that instance.

NOTE
When you pass a delegate to some other code, that code does not need to know whether
the delegate’s target is a static or an instance method. And for instance methods, the
code that uses the delegate does not supply the instance. Delegates that refer to instance
methods always know which instance they refer to, as well as which method.

There’s another way to create a delegate that can be useful if you do not
necessarily know which method or object you will use until runtime: you
can use the reflection API (which I will explain in detail in Chapter 13).
First, you obtain a MethodInfo, an object representing a particular
method. Then you call its CreateDelegate method, passing the
delegate type and, where required, the target object. (If you’re creating a
delegate referring to a static method, there is no target object, so there’s an
overload that takes only the delegate type.) This will create a delegate
referring to whichever method the MethodInfo instance identifies.
Example 9-10 uses this technique. It obtains a Type object (also part of the

reflection API; it’s a way to refer to a particular type) representing the
ThresholdComparer class. Next, it asks it for a MethodInfo
representing the IsGreaterThan method. On this, it calls the overload
of Create Dele gate that takes the delegate type and the target instance.

Example 9-10. CreateDelegate
MethodInfo m =
typeof(ThresholdComparer).GetMethod("IsGreaterThan")!;
var greaterThanZero = (Predicate<int>) m.CreateDelegate(
 typeof(Predicate<int>), zeroThreshold);

There is another way to perform the same job: the Delegate type has a
static CreateDelegate method, which avoids the need to obtain the
MethodInfo. You pass it two Type objects—the delegate type and the
type defining the target method—and also the method name. If you already
have a MethodInfo in hand, you may as well use that, but if all you have
is the name, this alternative is more convenient.

To summarize what we’ve seen so far, a delegate identifies a specific
function, and if that’s an instance function, the delegate also contains an
object reference. But some delegates do more.

Multicast Delegates
If you look at any delegate type with a reverse-engineering tool such as
ILDASM, you’ll see that whether it’s a type supplied by the runtime
libraries or one you’ve defined yourself, it derives from a base type called
MulticastDelegate. As the name suggests, this means delegates can
refer to more than one method. This is mostly of interest in notification
scenarios where you may need to invoke multiple methods when some
event occurs. However, all delegates support this whether you need it or
not.

Even delegates with non-void return types derive from
MulticastDelegate. That doesn’t usually make much sense. For
example, code that requires a Predicate<T> will normally inspect the
return value. Array.FindIndex uses it to find out whether an element

2

matches our search criteria. If a single delegate refers to multiple methods,
what’s FindIndex supposed to do with multiple return values? As it
happens, it will execute all the methods but will ignore the return values of
all except the final method that runs. (It’s possible to write code to provide
special handling for multicast delegates, but FindIndex does not.)

The multicast feature is available through the Delegate class’s static
Combine method. This takes any two delegates and returns a single
delegate. When the resulting delegate is invoked, it is as though you
invoked the two original delegates one after the other. This works even
when the delegates you pass to Combine already refer to multiple methods
—you can chain together ever larger multicast delegates. If the same
method is referred to in both arguments, the resulting combined delegate
will invoke it twice.

NOTE
Delegate combination always produces a new delegate. And the Combine method
doesn’t modify either of the delegates you pass it.

In fact, we rarely call Delegate.Combine explicitly, because C# has
built-in support for combining delegates. You can use the + or += operators.
Example 9-11 shows both, combining the three delegates from Example 9-9
into a single multicast delegate. The two resulting delegates are equivalent
—this just shows two ways of writing the same thing. Both cases compile
into a couple of calls to Delegate.Combine.

Example 9-11. Combining delegates
Predicate<int> megaPredicate1 =
 greaterThanZero + greaterThanTen + greaterThanOneHundred;

Predicate<int> megaPredicate2 = greaterThanZero;
megaPredicate2 += greaterThanTen;
megaPredicate2 += greaterThanOneHundred;

You can also use the - or -= operators, which produce a new delegate that
is a copy of the first operand but with its last reference to the method
referred to by the second operand removed. As you might guess, this turns
into a call to Delegate.Remove.

Invoking a Delegate
So far, I’ve shown how to create a delegate, but what if you’re writing your
own API that needs to call back into a method supplied by your caller?
First, you would need to pick a delegate type. You could use one supplied
by the runtime libraries, or, if necessary, you can define your own. Then,
you can use this delegate type for a method parameter or a property.
Example 9-12 shows what to do when you want to call the method (or
methods) the delegate refers to.

Example 9-12. Invoking a delegate
public static void CallMeRightBack(Predicate<int> userCallback)
{
 bool result = userCallback(42);
 Console.WriteLine(result);
}

As this not terribly realistic example shows, you can use an argument of
delegate type as though it were a function. This also works for local
variables, fields, and properties. In fact, any expression that produces a
delegate can be followed by an argument list in parentheses. The compiler
will generate code that invokes the delegate. If the delegate has a non-void
return type, the invocation expression’s value will be whatever the
underlying method returns (or, in the case of a delegate referring to multiple
methods, whatever the final method returns).

Although delegates are special types with runtime-generated code, there is
ultimately nothing magical about invoking them. Invoking a delegate with a
single target method works as though your code had called the target
method in the conventional way. Invoking a multicast delegate is just like
calling each of its target methods in turn. In either case, calls happen on the
same thread, and exceptions propagate out of methods that were invoked

via a delegate in exactly the same way as they do when you invoke the
method directly.

If you want to get all the return values from a multicast delegate, you can
take control of the invocation process. Delegates offer a
GetInvocationList method, which returns an array containing a
single-method delegate for each of the methods to which the original
multicast delegate refers. If you call this on a normal, nonmulticast
delegate, this list will contain just that one delegate, but if the multicast
feature is being exploited, you could then loop over the array, invoking each
in turn.

There is one more way to invoke a delegate that is occasionally useful. The
base Delegate class provides a DynamicInvoke method. You can call
this on a delegate of any type without needing to know at compile time
exactly what arguments are required. It takes a params array of type
object[], so you can pass any number of arguments. It will verify the
number and type of arguments at runtime. This can enable certain late-
binding scenarios. The intrinsic language features enabled by the dynamic
keyword (discussed in Chapter 2) are more comprehensive, but they are
slightly more heavyweight due to the extra flexibility, so if
DynamicInvoke does precisely what you need, it is the better choice.

Common Delegate Types
The runtime libraries provide several useful delegate types, and you will
often be able to use these instead of needing to define your own. For
example, there is a set of generic delegates named Action with varying
numbers of type parameters. These all follow a common pattern: for each
type parameter, there’s a single method parameter of that type. Example 9-
13 shows the first four, including the zero-argument form.

Example 9-13. The first few Action delegates
public delegate void Action();
public delegate void Action<in T1>(T1 arg1);
public delegate void Action<in T1, in T2 >(T1 arg1, T2 arg2);

public delegate void Action<in T1, in T2, in T3>(T1 arg1, T2 arg2,
T3 arg3);

Although this is clearly an open-ended concept—you could imagine
delegates of this form with any number of parameters—the CTS does not
provide a way to define this sort of type as a pattern, so the runtime libraries
have to define each form as a separate type. Consequently, there is no 200-
parameter form of Action. The largest has 16 parameters.

The obvious limitation with Action is that these types have a void return
type, so they cannot refer to methods that return values. But there’s a
similar family of delegate types, Func, that allows any return type.
Example 9-14 shows the first few delegates in this family, and as you can
see, they’re pretty similar to Action. They just get an additional final type
parameter, TResult, which specifies the return type. As with
Action<T>, these go up to 16 parameters.

Example 9-14. The first few Func delegates
public delegate TResult Func<out TResult>();
public delegate TResult Func<in T1, out TResult>(T1 arg1);
public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2
arg2);
public delegate TResult Func<in T1, in T2, in T3, out TResult>(
 T1 arg1, T2 arg2, T3 arg3);

These Action and Func types are the ones C# will use as the natural type
of a delegate expression, when possible. You saw this earlier in Example 9-
4, when, in the absence of any other direction, the compiler picked
Func<int, bool>. It will use the Action family for methods that
have a void return type.

These two families of delegates would appear to have most requirements
covered. Unless you’re writing monster methods with more than 16
parameters, when would you ever need anything else? Well, there are some
cases that cannot be expressed with generic type arguments. For example, if
you need a delegate that can work with ref, in, or out parameters, you
can’t just write, say, Func<bool, string, out int>. This is
because there is no such type as out int in .NET. The out keyword

makes a statement about exactly how the argument should be passed to the
method. Generic type arguments only get to specify a type and cannot fully
convey the distinction between in, out, and ref parameters. So in these
cases, you’ll have to write a matching delegate type.

Another reason to define a custom delegate type is that you cannot use a
ref struct as a generic type argument. (Chapter 18 discusses these
types.) So if you try to instantiate the generic Action<T> type with the
ref struct type Span<int>, by writing Action<Span<int>>,
you will get a compiler error. This limitation exists because ref struct
types can only be used in certain scenarios (they must always live on the
stack), and there’s no way to determine whether any particular generic type
or method uses its type arguments only in the ways that are allowed. (You
could imagine a new kind of type argument constraint that expressed this,
but at the time of writing this, no such constraint exists.) So if you want a
delegate type that can refer to a method that takes a ref struct
argument, it needs to be a dedicated, nongeneric delegate.

NOTE
If you’re relying on the compiler to determine a delegate expression’s natural type (e.g.,
you write var m = SomeMethod;), these cases in which the Func and Action
delegates cannot be used are the cases in which the compiler will generate a delegate
type for you.

None of these restrictions explains why the runtime libraries define a
separate Predicate<T> delegate type. Func<T, bool> would work
perfectly well. Sometimes this kind of specialized delegate type exists as an
accident of history: many delegate types have been around since before
these general-purpose Action and Func types were added. But that’s not
the only reason—new delegate types continue to be added even now. The
main reason is that sometimes it’s useful to define a specialized delegate
type to indicate particular semantics.

3

If you have a Func<T, bool>, all you know is that you’ve got a method
that takes a T and returns a bool. But with a Predicate<T>, there’s an
implied meaning: it makes a decision about that T instance and returns
true or false accordingly; not all methods that take a single argument
and return a bool necessarily fit that pattern. By providing a
Predicate<T>, you’re not just saying that you have a method with a
particular signature; you’re saying you have a method that serves a
particular purpose. For example, HashSet<T> (described in Chapter 5)
has an Add method that takes a single argument and returns a bool, so it
matches the signature of Predicate<T> but not the semantics. Add’s
main job is to perform an action with side effects, returning some
information about what it did, whereas predicates just tell you something
about a value or object.

The runtime libraries define many delegate types, most of them even more
specialized than Predicate<T>. For example, the System.IO
namespace and its descendants define several that relate to specific events,
such as SerialPinChangedEventHandler, which is used only when
you’re working with old-fashioned serial ports such as the once-ubiquitous
RS232 interface.

Type Compatibility
Delegate types do not derive from one another. Any delegate type you
define in C# will derive directly from MulticastDelegate, as do all of
the delegate types in the runtime libraries. However, the type system
supports certain implicit reference conversions for generic delegate types
through covariance and contravariance. The rules are very similar to those
for interfaces. As the in keyword in Example 9-3 showed, the type
parameter T in Predicate<T> is contravariant, which means that if an
implicit reference conversion exists between two types, A and B, an implicit
reference conversion also exists between the types Predicate and
Predicate<A>. Example 9-15 shows an implicit conversion that this
enables.

Example 9-15. Delegate covariance
public static bool IsLongString(object o)
{
 return o is string s && s.Length > 20;
}

static void Main(string[] args)
{
 Predicate<object> po = IsLongString;
 Predicate<string> ps = po;
 Console.WriteLine(ps("Too short"));
}

The Main method first creates a Predicate<object> referring to the
IsLongString method. Any target method for this predicate type is
capable of inspecting any object of any kind; thus, it’s clearly able to
meet the needs of code that requires a predicate capable of inspecting
strings, so it makes sense that the implicit conversion to
Predicate<string> should succeed—which it does, thanks to
contravariance. Covariance also works in the same way as it does with
interfaces, so it would typically be associated with a delegate’s return type.
(We denote covariant type parameters with the out keyword.) All of the
built-in Func delegate types have a covariant type parameter representing
the function’s return type called TResult. The type parameters for the
function’s parameters are all contravariant, as are all of the type parameters
for the Action delegate types.

NOTE
The variance-based delegate conversions are implicit reference conversions. This means
that when you convert the reference, the result still refers to the same delegate instance.
(All implicit reference conversions have this characteristic, but not all implicit
conversions work this way. Implicit numeric conversions create a new instance of the
target type; implicit boxing conversions create a new box on the heap.) So in Example
9-15, po and ps refer to the same delegate on the heap. This is subtly different from
assigning IsLongString into both variables—that would create two delegates of
different types.

You might also expect delegates that look the same to be compatible. For
example, a Predicate<int> can refer to any method that a
Func<int, bool> can use, and vice versa, so you might expect an
implicit conversion to exist between these two types. You might be further
encouraged by the “Delegate compatibility” section in the C# specification,
which says that delegates with identical parameter lists and return types are
compatible. (In fact, it goes further, saying that certain differences are
allowed. For example, I mentioned earlier that argument types may be
different as long as certain implicit reference conversions are available.)
However, if you try the code in Example 9-16, it won’t work.

Example 9-16. Illegal delegate conversion
Predicate<string> pred = IsLongString;
Func<string, bool> f = pred; // Will fail with compiler error

Adding an explicit cast doesn’t work either—it removes the compiler error,
but you just get a runtime error instead. The CTS considers these to be
incompatible types, so a variable declared with one delegate type cannot
hold a reference to a different delegate type even if their method signatures
are compatible (except for when the two delegate types in question are
based on the same generic delegate type and are compatible thanks to
covariance or contravariance). This is not the scenario for which C#’s
delegate compatibility rules are designed—they are mainly used to
determine whether a particular method can be the target for a particular
delegate type.

The lack of type compatibility between “compatible” delegate types may
seem odd, but structurally identical delegate types don’t necessarily have
the same semantics, as we’ve already seen with Predicate<T> and
Func<T,bool>. If you find yourself needing to perform this sort of
conversion, it may be a sign that something is not quite right in your code’s
design.4

Behind the Syntax
Although it takes just a single line of code to define a delegate type (as
Example 9-3 showed), the compiler turns this into a type that defines three
methods and a constructor. Of course, the type also inherits members from
its base classes. All delegates derive from MulticastDelegate,
although all of the interesting instance members come from its base class,
Delegate. (Delegate inherits from object, so delegates all have the
ubiquitous object methods too.) Even GetInvocationList, clearly a
multicast-oriented feature, is defined by the Delegate base class.

NOTE
The split between Delegate and MulticastDelegate is the meaningless and
arbitrary result of a historical accident. The original plan was to support both multicast
and unicast delegates, but toward the end of the prerelease period for .NET 1.0 this
distinction was dropped, and now all delegate types support multicast instances. This
happened sufficiently late in the day that Microsoft felt it was too risky to merge the two
base types into one, so the split remained even though it serves no purpose.

I’ve already described a couple of the public instance members that
Delegate defines: the DynamicInvoke and GetInvocationList
methods. There are two more. The Method property returns the
MethodInfo representing the target method. (Chapter 13 describes the
MethodInfo type.) The Target property returns the object that will be
passed as the implicit this argument of the target method; if the delegate
refers to a static method, Target will return null. Example 9-17 shows
the signatures of the compiler-generated constructor and methods for a
delegate type. The details vary from one type to the next; these are the
generated members in the Predicate<T> type.

Example 9-17. The members of a delegate type
public Predicate(object target, IntPtr method);

public bool Invoke(T obj);

public IAsyncResult BeginInvoke(T obj, AsyncCallback callback,
object state);
public bool EndInvoke(IAsyncResult result);

Any delegate type you define will have four similar members. After
compilation, none of them will have bodies yet. The compiler generates
only their declarations, because the CLR supplies their implementations at
runtime.

The constructor takes the target object (which is null for static methods)
and an IntPtr identifying the method. Notice that this is not the
MethodInfo returned by the Method property. Instead, this is a function
token, an opaque binary identifier for the target method. The CLR can
provide binary metadata tokens for all members and types, but there’s no
C# syntax for working with them, so we don’t normally see them. When
you construct a new instance of a delegate type, the compiler automatically
generates IL that fetches the function token. The reason delegates use
tokens internally is that they can be more efficient than working with
reflection API types such as MethodInfo.

The Invoke method is the one that calls the delegate’s target method (or
methods). You can use this explicitly from C#, as Example 9-18 shows. It is
almost identical to Example 9-12, the only difference being that the
delegate variable is followed by .Invoke. This generates exactly the same
code as Example 9-12, so whether you write Invoke or just use the syntax
that treats delegate identifiers as though they were method names is a
matter of style. As a former C++ developer, I’ve always felt at home with
the Example 9-12 syntax, because it’s similar to using function pointers in
that language, but there’s an argument that writing Invoke explicitly
makes it easier to see that the code is using a delegate.

Example 9-18. Using Invoke explicitly
public static void CallMeRightBack(Predicate<int> userCallback)
{
 bool result = userCallback.Invoke(42);
 Console.WriteLine(result);
}

5

One benefit of this explicit form is that you can use the null-conditional
operator to handle the case where the delegate variable is null. Example 9-
19 uses this to attempt invocation only when a non-null argument is
supplied.

Example 9-19. Using Invoke with the null-conditional operator
public static void CallMeMaybe(Action<int>? userCallback)
{
 userCallback?.Invoke(42);
}

The Invoke method is the home for a delegate type’s method signature.
When you define a delegate type, this is where the return type and
parameter list you specify end up. When the compiler needs to check
whether a particular method is compatible with a delegate type (e.g., when
you create a new delegate of that type), the compiler compares the Invoke
method with the method you’ve supplied.

As Example 9-17 shows, all delegate types also have BeginInvoke and
EndInvoke methods. These used to provide a way to use the thread pool,
but they are deprecated and do not work on the current version of .NET.
(You’ll get a PlatformNotSupportedException if you call either
method.) They still work on .NET Framework, but they are obsolete. You
should ignore these outdated methods and use the techniques described in
Chapter 16 instead. The main reason these methods used to be popular is
that they provided an easy way to pass a set of values from one thread to
another—you could just pass whatever you needed as the arguments for the
delegate. However, C# now has a much better way to solve the problem:
anonymous functions.

Anonymous Functions
C# lets you create delegates without needing to define a separate method
explicitly. You can write a special kind of expression whose value is a
method. You could think of them as method expressions or function
expressions, but the official name is anonymous functions. Expressions can

be passed directly as arguments or assigned directly into variables, so the
methods these expressions produce don’t have names. (At least, not in C#.
The runtime requires all methods to have names, so C# generates hidden
names for these things, but from a C# language perspective, they are
anonymous.)

For simple methods, the ability to write them inline as expressions can
remove a lot of clutter. And as we’ll see in “Captured Variables”, the
compiler exploits the fact that delegates are more than just a reference to a
method to provide anonymous functions with access to any variables that
were in scope in the containing method at the point at which the anonymous
function appears.

For historical reasons, C# provides two ways to define an anonymous
function. The older way involves the delegate keyword and is shown in
Example 9-20. This form is known as an anonymous method. I’ve put each
argument for FindIndex on a separate line to make the anonymous
functions (the second argument) stand out, but C# does not require this.

Example 9-20. Anonymous method syntax
public static int GetIndexOfFirstNonEmptyBin(int[] bins)
{
 return Array.FindIndex(
 bins,
 delegate (int value) { return value > 0; }
);
}

In some ways, this resembles the normal syntax for defining methods. The
parameter list appears in parentheses and is followed by a block containing
the body of the method (which can contain as much code as you like, by the
way, and is free to contain nested blocks, local variables, loops, and
anything else you can put in a normal method). But instead of a method
name, we just have the keyword delegate. The compiler infers the return
type. In this case, the FindIndex method’s signature declares the second
parameter to be a Predicate<T>, which tells the compiler that the return
type has to be bool.

6

In fact, the compiler knows more than just the return type. I’ve passed
FindIndex an int[] array, so the compiler will deduce that the type
argument T is int, making the second argument a Predicate<int>.
This means that in Example 9-20, I had to supply information—the type of
the delegate’s parameter—that the compiler already knew. A later version of
C# introduced a more compact anonymous function syntax that takes better
advantage of what the compiler can deduce, shown in Example 9-21.

Example 9-21. Lambda syntax
public static int GetIndexOfFirstNonEmptyBin(int[] bins)
{
 return Array.FindIndex(
 bins,
 value => value > 0
);
}

This form of anonymous function is called a lambda expression, and it is
named after a branch of mathematics that is the foundation of a function-
based model for computation. There is no particular significance to the
choice of the Greek letter lambda (λ). It was the accidental result of the
limitations of 1930s printing technology. The inventor of lambda calculus,
Alonzo Church, originally wanted a different notation, but when he
published his first paper on the subject, the typesetting machine operator
decided to print λ instead, because that was the closest approximation to
Church’s notation that the machine could produce. Despite these
inauspicious origins, this arbitrarily chosen term has become ubiquitous.
LISP, an early and influential programming language, used the name
lambda for expressions that are functions, and since then, many languages
have followed suit, including C#.

Example 9-21 is exactly equivalent to Example 9-20; I’ve just been able to
leave various things out. The => token unambiguously marks this out as
being a lambda, so the compiler does not need that cumbersome and ugly
delegate keyword just to recognize this as an anonymous function. The
compiler knows from the surrounding context that the method has to take
an int, so there’s no need to specify the parameter’s type; I just provided

the parameter’s name: value. For simple methods that consist of just a
single expression, the lambda syntax lets you omit the block and the
return statement. This all makes for very compact lambdas, but in some
cases, you might not want to omit quite so much, so as Example 9-22
shows, there are various optional features. Every lambda in this example is
equivalent.

Example 9-22. Lambda variations
Predicate<int> p1 = value => value > 0;
Predicate<int> p2 = (value) => value > 0;
Predicate<int> p3 = (int value) => value > 0;
Predicate<int> p4 = value => { return value > 0; };
Predicate<int> p5 = (value) => { return value > 0; };
Predicate<int> p6 = (int value) => { return value > 0; };
Predicate<int> p7 = bool (value) => value > 0;
Predicate<int> p8 = bool (int value) => value > 0;
Predicate<int> p9 = bool (value) => { return value > 0; };
Predicate<int> pA = bool (int value) => { return value > 0; };

The first variation is that you can put parentheses around the parameter.
This is optional with a single parameter, but it is mandatory for
multiparameter lambdas. You can also be explicit about the parameters’
types (in which case you will also need parentheses, even if there’s only one
parameter). And, if you like, you can use a block instead of a single
expression, at which point you also have to use the return keyword if the
lambda returns a value. The normal reason for using a block would be if
you wanted to write multiple statements inside the method. The final four
lines show a capability added in C# 10.0: you can specify the return type
explicitly, although that’s only allowed when the parameter list is in
parentheses.

You may be wondering why there are quite so many different forms—why
not have just one syntax and be done with it? Although the final line of
Example 9-22 shows the most general form, it’s also a lot more cluttered
than the first line. Since one of the goals of lambdas is to provide a more
concise alternative to anonymous methods, C# supports these shorter forms
where they can be used without ambiguity.

You can also write a lambda that takes no arguments. As Example 9-23
shows, we just put an empty pair of parentheses in front of the => token.
(And, as this example also shows, lambdas that use the greater than or
equals operator, >=, can look a bit odd due to the meaningless similarity
between the => and >= tokens.)

Example 9-23. A zero-argument lambda
Func<bool> isAfternoon = () => DateTime.Now.Hour >= 12;

The flexible and compact syntax means that lambdas have all but displaced
the older anonymous method syntax. However, the older syntax offers one
advantage: it allows you to omit the parameter list entirely. In some
situations where you provide a callback, you need to know only that
whatever you were waiting for has now happened. This is particularly
common when using the standard event pattern described later in this
chapter, because that requires event handlers to accept arguments even in
situations where they serve no purpose. For example, when a button is
clicked, there’s not much else to say beyond the fact that it was clicked, and
yet all of the button types in .NET’s various UI frameworks pass two
arguments to the event handler. Example 9-24 successfully ignores this by
using an anonymous method that omits the parameter list.

Example 9-24. Ignoring arguments in an anonymous method
EventHandler clickHandler = delegate { Debug.WriteLine("Clicked!");
};

EventHandler is a delegate type that requires its target methods to take
two arguments, of type object and EventArgs. If our handler needed
access to either, we could, of course, add a parameter list, but the
anonymous method syntax lets us leave it out if we want. You cannot do
this with a lambda. That said, C# 10.0 adds a new feature that makes
ignoring arguments slightly less cumbersome, which Example 9-25
illustrates.

Example 9-25. A lambda discarding its arguments
EventHandler clickHandler = (_, _) => Debug.WriteLine("Clicked!");

This has exactly the same effect as Example 9-24 but using the lambda
syntax. I’ve provided an argument list in parentheses, but because I don’t
want to use either argument, I’ve put an underscore in each position. This
denotes a discard. You’ve seen the _ character in patterns in early chapters,
and it’s broadly similar in meaning here: it indicates that we know there’s a
value available; it’s just that we don’t care what it is and don’t intend to use
it.

TIP
Before C# 10.0 introduced support for this discard syntax, people would often use a
similar-looking convention. The underscore symbol is a valid identifier, so for single-
argument lambdas, nothing stops you from defining an argument named _ and choosing
not to refer to it. It got weird with multiple arguments because you can’t use the same
name for two arguments, meaning Example 9-25 would not compile on older versions
of C#. To work around this, people just used multiple underscores, so you might see a
lambda starting (_, __, ___) =>. Thankfully, C# 10.0 allows us to use a single _
throughout.

Captured Variables
While anonymous functions often take up much less space in your source
code than a full, normal method, they’re not just about conciseness. The C#
compiler uses a delegate’s ability to refer not just to a method but also to
some additional context to provide an extremely useful feature: it can make
variables from the containing method available to the anonymous function.
Example 9-26 shows a method that returns a Predicate<int>. It
creates this with a lambda that uses an argument from the containing
method.

Example 9-26. Using a variable from the containing method
public static Predicate<int> IsGreaterThan(int threshold)
{
 return value => value > threshold;
}

This provides the same functionality as the ThresholdComparer class
from Example 9-8, but instead of having to write an entire class, we need
only a single, simple method. We can make this even more compact by
using an expression-bodied method, as Example 9-27 shows. (This might
be a bit too concise—two different uses of => in close proximity to > won’t
win any prizes for readability.)

Example 9-27. Using a variable from the containing method (expression-
bodied)
public static Predicate<int> IsGreaterThan(int threshold) =>
 value => value > threshold;

In either form, the code is almost deceptively simple, so it’s worth looking
closely at what it does. The IsGreaterThan method returns a delegate
instance. That delegate’s target method performs a simple comparison—it
evaluates the value > threshold expression and returns the result.
The value variable in that expression is just the delegate’s argument—the
int passed by whichever code invokes the Predicate<int> that
IsGreaterThan returns. The second line of Example 9-28 invokes that
code, passing in 200 as the argument for value.

Example 9-28. Where the value argument comes from
Predicate<int> greaterThanTen = IsGreaterThan(10);
bool result = greaterThanTen(200);

The threshold variable in the expression is trickier. This is not an
argument to the anonymous function. It’s the argument of
IsGreaterThan, and Example 9-28 passes a value of 10 as the
threshold argument. However, IsGreaterThan has to return before
we can invoke the delegate it returns. Since the method for which that
threshold variable was an argument has already returned, you might
think that the variable would no longer be available by the time we invoke
the delegate. In fact, it’s fine, because the compiler does some work on our
behalf. If an anonymous function uses local variables that were declared by
the containing method, or if it uses that method’s parameters, the compiler
generates a class to hold those variables so that they can outlive the method

that created them. The compiler generates code in the containing method to
create an instance of this class. (Remember, each invocation of a block gets
its own set of local variables, so if any locals get pushed into an object to
extend their lifetime, a new object will be required for each invocation.)
This is one of the reasons why the popular myth that says local variables of
value type always live on the stack is not true—in this case, the compiler
copies the incoming threshold argument’s value to a field of an object
on the heap, and code that uses the threshold variable ends up using that
field instead. Example 9-29 shows the generated code that the compiler
produces for the anonymous function in Example 9-26.

Example 9-29. Code generated for an anonymous function
[CompilerGenerated]
private sealed class <>c__DisplayClass0_0
{
 public int threshold;

 public bool <IsGreaterThan>b__0(int value)
 {
 return (value > this.threshold);
 }
}

The class and method names all begin with characters that are illegal in C#
identifiers, to ensure that this compiler-generated code cannot clash with
anything we write—this is technically an unspeakable name. (The exact
names are not fixed, by the way—you may find they are slightly different if
you try this.) This generated code bears a striking resemblance to the
ThresholdComparer class from Example 9-8, which is unsurprising,
because the goal is the same: the delegate needs some method that it can
refer to, and that method’s behavior depends on a value that is not fixed.
Anonymous functions are not a feature of the runtime’s type system, so the
compiler has to generate a class to provide this kind of behavior on top of
the CLR’s basic delegate functionality.

NOTE
Local functions (described in Chapter 3) can also access the local variables of their
containing methods. Normally, this doesn’t change those variables’ lifetimes, because
the local function is inaccessible outside of its containing method. However, if you
create a delegate that refers to a local function, this means it might be invoked after the
containing method returns, so the compiler will then perform the same trick that it does
for anonymous functions, enabling variables to live on after the outer method returns.

Once you know that this is what’s really happening when you write an
anonymous function, it follows naturally that the inner method is able not
just to read the variable but also to modify it. This variable is just a field in
an object that two methods—the anonymous function and the containing
method—have access to. Example 9-30 uses this to maintain a count that is
updated from an anonymous function.

Example 9-30. Modifying a captured variable
static void Calculate(int[] nums)
{
 int zeroEntryCount = 0;
 int[] nonZeroNums = Array.FindAll(
 nums,
 v =>
 {
 if (v == 0)
 {
 zeroEntryCount += 1;
 return false;
 }
 else
 {
 return true;
 }
 });
 Console.WriteLine($"Number of zero entries: {zeroEntryCount}");
 Console.WriteLine($"First non-zero entry: {nonZeroNums[0]}");
}

Everything in scope for the containing method is also in scope for
anonymous functions. If the containing method is an instance method, this
includes any instance members of the type, so your anonymous function

could access fields, properties, and methods. (The compiler supports this by
adding a field to the generated class to hold a copy of the this reference.)
The compiler puts only what it needs to in generated classes of the kind
shown in Example 9-29, and if you don’t use variables or instance members
from the containing scope, it might be able to generate a static method.

The FindAll method in the preceding examples does not hold onto the
delegate after it returns—any callbacks will happen while FindAll runs.
Not everything works that way, though. Some APIs perform asynchronous
work and will call you back at some point in the future, by which time the
containing method may have returned. This means that any variables
captured by the anonymous function will live longer than the containing
method. In general, this is fine, because all of the captured variables live in
an object on the heap, so it’s not as though the anonymous function is
relying on a stack frame that is no longer present. The one thing you need to
be careful of, though, is explicitly releasing resources before callbacks have
finished. Example 9-31 shows an easy mistake to make. This uses an
asynchronous, callback-based API to download the resource at a particular
URL via HTTP. (This calls the ContinueWith method on the
Task<Stream> returned by HttpClient.GetStreamAsync,
passing a delegate that will be invoked once the HTTP response comes
back. This method is part of the Task Parallel Library described in Chapter
16.)

Example 9-31. Premature disposal
HttpClient http = GetHttpClient();
using (FileStream file = File.OpenWrite(@"c:\temp\page.txt"))
{
 http.GetStreamAsync("https://endjin.com/")
 .ContinueWith((Task<Stream> t) =>
t.Result.CopyToAsync(file));
} // Will probably dispose FileStream before callback runs

The using statement in this example will dispose the FileStream as
soon as execution reaches the point at which the file variable goes out of
scope in the outer method. The problem is that this file variable is also
used in an anonymous function, which will in all likelihood run after the

thread executing that outer method has left that using statement’s block.
The compiler has no understanding of when the inner block will run—it
doesn’t know whether that’s a synchronous callback like
Array.FindAll uses or an asynchronous one. So it cannot do anything
special here—it just calls Dispose at the end of the block, as that’s what
our code told it to do.

NOTE
The asynchronous language features discussed in Chapter 17 can help avoid this sort of
problem. When you use those to consume APIs that present this kind of Task-based
pattern, the compiler can then know exactly how long things remain in scope. This
enables the compiler to generate continuation callbacks for you, and as part of this, it
can arrange for a using statement to call Dispose at the correct moment.

In performance-critical code, you may need to bear the costs of anonymous
functions in mind. If the anonymous function uses variables from the outer
scope, then in addition to the delegate object that you create to refer to the
anonymous function, you may be creating an additional one: an instance of
the generated class to hold shared local variables. The compiler will reuse
these variable holders when it can—if one method contains two anonymous
functions, they may be able to share an object, for example. Even with this
sort of optimization, you’re still creating additional objects, increasing the
pressure on the GC. (And in some cases you can end up creating this object
even if you never hit the code path that creates the delegate.) It’s not
particularly expensive—these are typically small objects—but if you’re up
against a particularly oppressive performance problem, you might be able to
eke out some small improvements by writing things in a more long-winded
fashion in order to reduce the number of object allocations.

NOTE
Local functions do not always incur this same overhead. When a local function uses its
outer method’s variables, it does not extend their lifetime. The compiler therefore
doesn’t need to create an object on the heap to hold the shared variables. It still creates a
type to hold all the shared variables, but it defines this as a struct that it passes by
reference as a hidden in argument, avoiding the need for a heap block. (If you create a
delegate that refers to a local function, it can no longer use this optimization, and it
reverts to the same strategy it uses for anonymous functions, putting shared variables in
an object on the heap.)

More subtly, using an outer scope’s local variables in an anonymous
function will extend the liveness of those variables, which may mean the
GC will take longer to detect when objects those variables refer to are no
longer in use. As you may recall from Chapter 7, the CLR analyzes your
code to work out when variables are in use so that it can free objects
without waiting for the variables that refer to them to go out of scope. This
enables the memory used by some objects to be reclaimed significantly
earlier, particularly in methods that take a long time to complete. But
liveness analysis applies only to conventional local variables. It cannot be
applied for variables that are used in an anonymous function, because the
compiler transforms those variables into fields. (From the CLR’s
perspective, they are not local variables at all.) Since C# typically puts all of
these transformed variables for a particular scope into a single object, you
will find that none of the objects these variables refer to can be reclaimed
until the method completes and the object containing the variables becomes
unreachable itself. This can mean that in some cases there may be a
measurable benefit to setting a local variable to null when you’re done
with it, enabling that particular object’s memory to be reclaimed at the next
GC. (Normally, that would be bad advice, and even with anonymous
functions it might not have a useful effect in practice. You should only do
this if performance testing demonstrates a clear advantage. But it’s worth
investigating in cases where you’re seeing GC-related performance
problems and you make heavy use of long-running anonymous functions.)

You can easily avoid these potential performance downsides in anonymous
functions: just don’t use captured variables. If an anonymous function never
tries to use anything from its containing scope, the C# compiler won’t
engage the corresponding mechanisms, completely avoiding all the
overhead. You can tell the compiler that you are intending to avoid
capturing variables by annotating it with the static keyword, as Example
9-32 shows. Just as an ordinary static method does not have implicit
access to an instance of its defining type, a static anonymous function
has no access to its containing scope. This use of static doesn’t change
how code is generated—any anonymous function that does not rely on
capture will avoid all capture-related overheads, regardless of whether it
was marked as static. This just asks the compiler to report errors if you
inadvertently attempt to use variables from the function’s containing scope.

Example 9-32. Opting out of variable capture with static
public static Predicate<int> IsGreaterThan10() => static value =>
value > 10;

Variable capture can also occasionally lead to bugs, particularly due to a
subtle scope-related issue with for loops. (foreach loops don’t have this
problem.) Example 9-33 runs into this problem.

Example 9-33. Problematic variable capture in a for loop
public static void Caught()
{
 var greaterThanN = new Predicate<int>[10];
 for (int i = 0; i < greaterThanN.Length; ++i)
 {
 greaterThanN[i] = value => value > i; // Bad use of i
 }

 Console.WriteLine(greaterThanN[5](20));
 Console.WriteLine(greaterThanN[5](6));
}

This example initializes an array of Predicate<int> delegates, where
each delegate tests whether the value is greater than some number. (You
wouldn’t have to use arrays to see the problem I’m about to describe, by the
way. Your loop might instead pass the delegates it creates into one of the

mechanisms described in Chapter 16 that enable parallel processing by
running the code on multiple threads. But arrays make it easier to show the
problem.) Specifically, it compares the value with i, the loop counter that
decides where in the array each delegate goes, so you might expect the
element at index 5 to refer to a method that compares its argument with 5. If
that were so, this code would show True twice. In fact, it displays True
and then False. It turns out that Example 9-33 produces an array of
delegates where every single element compares its argument with 10.

This usually surprises people when they encounter it. With hindsight, it’s
easy enough to see why this happens when you know how the C# compiler
enables an anonymous function to use variables from its containing scope.
The for loop declares the i variable, and because it is used not only by the
containing Caught method but also by each delegate the loop creates, the
compiler will generate a class similar to the one in Example 9-29, and the
variable will live in a field of that class. Since the variable comes into scope
when the loop starts, and remains in scope for the duration of the loop, the
compiler will create one instance of that generated class, and it will be
shared by all of the delegates. So, as the loop increments i, this modifies
the behavior of all of the delegates, because they all use that same i
variable.

Fundamentally, the problem is that there’s only one i variable here. You
can fix the code by introducing a new variable inside the loop. Example 9-
34 copies the value of i into another local variable, current, which does
not come into scope until an iteration is under way, and goes out of scope at
the end of each iteration. So, although there is only one i variable, which
lasts for as long as the loop runs, we get what is effectively a new
current variable each time around the loop. Because each delegate gets
its own distinct current variable, this modification means that each
delegate in the array compares its argument with a different value—the
value that the loop counter had for that particular iteration.

Example 9-34. Modifying a loop to capture the current value
for (int i = 0; i < greaterThanN.Length; ++i)
{

 int current = i;
 greaterThanN[i] = value => value > current;
}

The compiler still generates a class similar to the one in Example 9-29 to
hold the current variable that’s shared by the inline and containing
methods, but this time, it will create a new instance of that class each time
around the loop in order to give each anonymous function a different
instance of that variable. (When you use a foreach loop, the scoping
rules are a little different: its iteration variable’s scope is per iteration,
meaning that it’s logically a different instance of the variable each time
around the loop, so there’s no need to add an extra variable inside the loop
as we had to with for.)

You may be wondering what would happen if you wrote an anonymous
function that used variables at multiple scopes. Example 9-35 declares a
variable called offset before the loop, and the lambda uses both that and
a variable whose scope lasts for only one iteration.

Example 9-35. Capturing variables at different scopes
int offset = 10;
for (int i = 0; i < greaterThanN.Length; ++i)
{
 int current = i;
 greaterThanN[i] = value => value > (current + offset);
}

In that case, the compiler would generate two classes, one to hold any per-
iteration shared variables (current, in this example) and one to hold
those whose scope spans the whole loop (offset, in this case). Each
delegate’s target object would contain inner scope variables, and that would
contain a reference to the outer scope.

Figure 9-1 shows roughly how this would work, although it has been
simplified to show just the first five items. The greaterThanN variable
contains a reference to an array. Each array element contains a reference to
a delegate. Each delegate refers to the same method, but each one has a
different target object, which is how each delegate can capture a different
instance of the current variable. Each of these target objects refers to a

single object containing the offset variable captured from the scope
outside of the loop.

Figure 9-1. Delegates and captured scopes

Lambdas and Expression Trees
Lambdas have an additional trick up their sleeves beyond providing
delegates. Some lambdas produce a data structure that represents code. This
occurs when you use the lambda syntax in a context that requires an
Expression<T>, where T is a delegate type. Expression<T> itself is
not a delegate type; it is a special type in the runtime libraries (in the

System.Linq.Expressions namespace) that triggers this alternative
handling of lambdas in the compiler. Example 9-36 uses this type.

Example 9-36. A lambda expression
Expression<Func<int, bool>> greaterThanZero = value => value > 0;

This example looks similar to some of the lambdas and delegates I’ve
shown already in this chapter, but the compiler handles this very differently.
It will not generate a method—there will be no compiled IL representing
the lambda’s body. Instead, the compiler will produce code similar to that in
Example 9-37.

Example 9-37. What the compiler does with a lambda expression
ParameterExpression valueParam = Expression.Parameter(typeof(int),
"value");
ConstantExpression constantZero = Expression.Constant(0);
BinaryExpression comparison = Expression.GreaterThan(valueParam,
constantZero);
Expression<Func<int, bool>> greaterThanZero =
 Expression.Lambda<Func<int, bool>>(comparison, valueParam);

This code calls various factory functions provided by the Expression
class to produce an object for each subexpression in the lambda. This starts
with the simple operands—the value parameter and the constant value 0.
These are fed into an object representing the “greater than” comparison
expression, which in turn becomes the body of an object representing the
whole lambda expression.

The ability to produce an object model for an expression makes it possible
to write an API where the behavior is controlled by the structure and
content of an expression. For example, some data access APIs can take an
expression similar to the ones produced by Examples 9-36 and 9-37 and use
it to generate part of a database query. I’ll be talking about C#’s integrated
query features in Chapter 10, but Example 9-38 gives a flavor of how a
lambda expression can be used as the basis of a query.

Example 9-38. Expressions and database queries
var expensiveProducts = dbContext.Products.Where(p => p.ListPrice >
3000);

This example happens to use a Microsoft library called the Entity
Framework, but various other data access technologies support the same
approach. In this example, the Where method takes an argument of type
Expression<Func<Product,bool>>. Product is a class that
corresponds to an entity in the database, but the important part here is the
use of Expression<T>. That means that the compiler will generate code
that creates a tree of objects whose structure corresponds to that lambda
expression. The Where method processes this expression tree, generating a
SQL query that includes this clause: WHERE [Extent1].
[ListPrice] > cast(3000 as decimal(18)). So, although I
wrote my query as a C# expression, the work required to find matching
objects will all happen on my database server.

Expression trees were added to C# to enable this sort of query handling as
part of the set of features known collectively as LINQ (which is the subject
of Chapter 10). However, as with most LINQ-related features, it’s possible
to use them for other things. For example, a popular .NET library used in
automated testing called Moq exploits this. It creates fake implementations
of interfaces for test purposes, and it uses lambda expressions to provide a
simple API for configuring how those fakes should behave. Example 9-39
uses Moq’s Mock<T> class to create a fake implementation of .NET’s
IEqualityComparer<string> interface. The code calls the Setup
method, which takes an expression indicating a specific invocation we’d
like to define special handling for—in this case, if the fake’s
implementation of IEqualityComparer<string>.Equals is called
with the arguments of "Color" and "Colour", we’d like it to return
true.

Example 9-39. Use of lambda expressions by the Moq library
var fakeComparer = new Mock<IEqualityComparer<string>>();
fakeComparer
 .Setup(c => c.Equals("Color", "Colour"))
 .Returns(true);

If that argument to Setup were just a delegate, there would be no way for
Moq to inspect it. But because it’s an expression tree, Moq is able to delve

7

https://github.com/moq

into it and find out what we’ve asked for.

WARNING
Unfortunately, expression trees are an area of C# that have lagged behind the rest of the
language. They were introduced in C# 3.0, and various language features added since
then, such as support for tuples and asynchronous expressions, can’t be used in an
expression tree because the object model has no way to represent them.

Events
Sometimes it is useful for objects to be able to provide notifications of
when interesting things have happened—in a client-side UI framework, you
will want to know when the user clicks one of your application’s buttons,
for example. Delegates provide the basic callback mechanism required for
notifications, but there are many ways you could go about using them.
Should the delegate be passed as a method argument, a constructor
argument, or perhaps as a property? How should you support unsubscribing
from notifications? The CTS formalizes the answers to these questions
through a special kind of class member called an event, and C# has syntax
for working with events. Example 9-40 shows a class with one event
member.

Example 9-40. A class with an event
public class Eventful
{
 public event Action<string>? Announcement;

 public void Announce(string message)
 {
 Announcement?.Invoke(message);
 }
}

As with all members, you can start with an accessibility specifier, and it
will default to private if you leave that off. Next, the event keyword
singles this out as an event. Then there’s the event’s type, which can be any

delegate type. I’ve used Action<string>, although as you’ll soon see,
this is an unorthodox choice. Finally, we put the member name, so this
example defines an event called Announcement.

To handle an event, you must provide a delegate of the right type, and you
must use the += syntax to attach that delegate as the handler. Example 9-41
uses a lambda, but you can use any expression that produces, or is
implicitly convertible to, a delegate of the type the event requires.

Example 9-41. Handling events
var source = new Eventful();
source.Announcement += m => Console.WriteLine("Announcement: " +
m);

As well as defining an event, Example 9-40 also shows how to raise it—
that is, how to invoke all the handlers that have been attached to the event.
Its Announce uses the same syntax we would use if Announcement
were a field containing a delegate that we wanted to invoke. In fact, as far
as the code inside the class is concerned, that’s exactly what an event looks
like—it appears to be a field. I’ve chosen to use the delegate’s Invoke
member explicitly here instead of writing Announcement(message)
because this lets me use the null-conditional operator (?.). This causes the
compiler to generate code that invokes the delegate only if it is not null.
Otherwise I would have had to write an if statement verifying that the
field is not null before invoking it.

So why do we need a special member type if this looks just like a field?
Well, it looks like a field only from inside the defining class. Code outside
of the class cannot raise the event, so the code shown in Example 9-42 will
not compile.

Example 9-42. How not to raise an event
var source = new Eventful();
source.Announcement("Will this work?"); // No, this will not even
compile

From the outside, the only things you can do to an event are to attach a
handler using += and to remove one using -=. The syntax for adding and

removing event handlers is unusual in that it’s the only case in C# in which
you get to use += and -= without the corresponding standalone + or -
operators being available. The actions performed by += and -= on events
both turn out to be method calls in disguise. Just as properties are really
pairs of methods with a special syntax, so are events. They are similar in
concept to the code shown in Example 9-43. (In fact, the real code includes
some moderately complex lock-free, thread-safe code. I’ve not shown this
because the multithreading obscures the basic intent.) This won’t have quite
the same effect, because the event keyword adds metadata to the type
identifying the methods as being an event, so this is just for illustration.

Example 9-43. The approximate effect of declaring an event
private Action<string>? Announcement;

// Not the actual code.
// The real code is more complex, to tolerate concurrent calls.
public void add_Announcement(Action<string> handler)
{
 Announcement += handler;
}
public void remove_Announcement(Action<string> handler)
{
 Announcement -= handler;
}

Just as with properties, events exist mainly to offer a convenient, distinctive
syntax and to make it easier for tools to know how to present the features
that classes offer. Events are particularly important for UI elements. In most
UI frameworks, the objects representing interactive elements can often raise
a wide range of events, corresponding to various forms of input such as
keyboard, mouse, or touch. There are also often events relating to behavior
specific to a particular control, such as selecting a new item in a list.
Because the CTS defines a standard idiom by which elements can expose
events, visual UI designers, such as the ones built into Visual Studio, can
display the available events and offer to generate handlers for you.

Standard Event Delegate Pattern
The event in Example 9-40 is unusual in that it uses the Action<T>
delegate type. This is perfectly legal, but in practice, you will rarely see
that, because almost all events use delegate types that conform to a
particular pattern. This pattern requires the delegate’s method signature to
have two parameters. The first parameter’s type is object, and the
second’s type is either EventArgs or some type derived from
EventArgs. Example 9-44 shows the EventHandler delegate type in
the System namespace, which is the simplest and most widely used
example of this pattern.

Example 9-44. The EventHandler delegate type
public delegate void EventHandler(object sender, EventArgs e);

The first parameter is usually called sender, because the event source
passes a reference to itself for this argument. This means that if you attach a
single delegate to multiple event sources, that handler can always know
which source raised any particular notification.

The second parameter provides a place to put information specific to the
event. For example, WPF UI elements define various events for handling
mouse input that use more specialized delegate types, such as
MouseButtonEventHandler, with signatures that specify a
corresponding specialized event parameter that offers details about the
event. For example, MouseButtonEventArgs defines a
GetPosition method that tells you where the mouse was when the
button was clicked, and it defines various other properties offering further
detail, including ClickCount and Timestamp.

Whatever the specialized type of the second parameter may be, it will
always derive from the base EventArgs type. That base type is not very
interesting—it does not add members beyond the standard ones provided by
object. However, it does make it possible to write a general-purpose
method that can be attached to any event that uses this pattern. The rules for
delegate compatibility mean that even if the delegate type specifies a

second parameter of type MouseButtonEventArgs, a method whose
second parameter is of type EventArgs is an acceptable target. This can
occasionally be useful for code generation or other infrastructure scenarios.
However, the main benefit of the standard event pattern is simply one of
familiarity—experienced C# developers generally expect events to work
this way.

Custom Add and Remove Methods
Sometimes, you might not want to use the default event implementation
generated by the C# compiler. For example, a class may define a large
number of events, most of which will not be used on the majority of
instances. UI frameworks often have this characteristic. A WPF UI can have
thousands of elements, every one of which offers over 100 events, but you
normally attach handlers only to a few of these elements, and even with
these, you handle only a fraction of the events on offer. It is inefficient for
every element to dedicate a field to every available event in this case.

Using the default field-based implementation for large numbers of rarely
used events could add hundreds of bytes to the footprint of each element in
a UI, which can have a discernible effect on performance. (In a typical WPF
application, this could add up to a few hundred thousand bytes. That might
not sound like much given modern computers’ memory capacities, but it
can put your code in a place where it is no longer able to make efficient use
of the CPU’s cache, causing a nosedive in application responsiveness. Even
if the cache is several megabytes in size, the fastest parts of the cache are
usually much smaller, and wasting a few hundred kilobytes in a critical data
structure can make a world of difference to performance.)

Another reason you might want to eschew the default compiler-generated
event implementation is that you may want more sophisticated semantics
when raising events. For example, WPF supports event bubbling: if a UI
element does not handle certain events, they will be offered to the parent
element, then the parent’s parent, and so on up the tree until a handler is
found or it reaches the top. Although it would be possible to implement this
sort of scheme with the standard event implementation C# supplies, much

more efficient strategies are possible when event handlers are relatively
sparse.

To support these scenarios, C# lets you provide your own add and remove
methods for an event. It will look just like a normal event from the outside
—anyone using your class will use the same += and -= syntax to add and
remove handlers—and it won’t be possible to tell that it provides a custom
implementation. Example 9-45 shows a class with two events, and it uses a
single dictionary, shared across all instances of the class, to keep track of
which events have been handled on which objects. The approach is
extensible to larger numbers of events—the dictionary uses pairs of objects
as the key, so each entry represents a particular (source, event) pair. (This is
not production-quality code, by the way. It’s not safe for multithreaded use,
and it will also leak memory when a ScarceEventSource instance that
still has event handlers attached falls out of use. This example just
illustrates how custom event handlers look; it’s not a fully engineered
solution.)

Example 9-45. Custom add and remove for sparse events
public class ScarceEventSource
{
 // One dictionary shared by all instances of this class,
 // tracking all handlers for all events.
 // Beware of memory leaks - this code is for illustration only.
 private static readonly
 Dictionary<(ScarceEventSource, object), EventHandler>
_eventHandlers
 = new();

 // Objects used as keys to identify particular events in the
dictionary.
 private static readonly object EventOneId = new();
 private static readonly object EventTwoId = new();

 public event EventHandler EventOne
 {
 add
 {
 AddEvent(EventOneId, value);
 }

 remove
 {
 RemoveEvent(EventOneId, value);
 }
 }

 public event EventHandler EventTwo
 {
 add
 {
 AddEvent(EventTwoId, value);
 }
 remove
 {
 RemoveEvent(EventTwoId, value);
 }
 }

 public void RaiseBoth()
 {
 RaiseEvent(EventOneId, EventArgs.Empty);
 RaiseEvent(EventTwoId, EventArgs.Empty);
 }

 private (ScarceEventSource, object) MakeKey(object eventId) =>
(this, eventId);

 private void AddEvent(object eventId, EventHandler handler)
 {
 var key = MakeKey(eventId);
 _eventHandlers.TryGetValue(key, out EventHandler? entry);
 entry += handler;
 _eventHandlers[key] = entry;
 }

 private void RemoveEvent(object eventId, EventHandler handler)
 {
 var key = MakeKey(eventId);
 EventHandler? entry = _eventHandlers[key];
 entry -= handler;
 if (entry == null)
 {
 _eventHandlers.Remove(key);
 }
 else
 {
 _eventHandlers[key] = entry;
 }

 }

 private void RaiseEvent(object eventId, EventArgs e)
 {
 var key = MakeKey(eventId);
 if (_eventHandlers.TryGetValue(key, out EventHandler?
handler))
 {
 handler(this, e);
 }
 }
}

The syntax for custom events is reminiscent of the full property syntax: we
add a block after the member declaration that contains the two members,
although they are called add and remove instead of get and set.
(Unlike with properties, you must always supply both methods.) This
disables the generation of the field that would normally hold the event,
meaning that the ScarceEventSource class has no instance fields at all
—instances of this type are as small as it’s possible for an object to be.

The price for this small memory footprint is a considerable increase in
complexity; I’ve written about 16 times as many lines of code as I would
have needed with compiler-generated events, and we’d need even more to
fix the shortcomings described earlier. Moreover, this technique provides an
improvement only if the events really are not handled most of the time—if I
attached handlers to both events for every instance of this class, the
dictionary-based storage would consume more memory than simply having
a field for each event in each instance of the class. So you should consider
this sort of custom event handling only if you either need nonstandard
event-raising behavior or are very sure that you really will be saving
memory, and that the savings are worthwhile.

Events and the Garbage Collector
As far as the GC is concerned, delegates are normal objects like any other.
If the GC discovers that a delegate instance is reachable, then it will inspect
the Target property, and whichever object that refers to will also be
considered reachable, along with whatever objects that object in turn refers

to. Although there is nothing remarkable about this, there are situations in
which leaving event handlers attached can cause objects to hang around in
memory when you might have expected them to be collected by the GC.

There’s nothing intrinsic to delegates and events that makes them unusually
likely to defeat the GC. If you do get an event-related memory leak, it will
have the same structure as any other .NET memory leak: starting from a
root reference, there will be some chain of references that keeps an object
reachable even after you’ve finished using it. Despite this, events often get
special blame for memory leaks, and that’s because they are often used in
ways that can cause problems.

For example, suppose your application maintains some object model
representing its state and that your UI code is in a separate layer that makes
use of that underlying model, adapting the information it contains for
presentation on screen. This sort of layering is usually advisable—it’s a bad
idea to intermingle code that deals with user interactions and code that
implements the application’s logic. But a problem can arise if the
underlying model advertises changes in state that the UI needs to reflect. If
these changes are advertised through events, your UI code will typically
attach handlers to those events.

Now imagine that someone closes one of your application’s windows. You
would hope that the objects representing that window’s UI would all be
detected as unreachable the next time the GC runs. The UI framework is
likely to have attempted to make that possible. For example, WPF ensures
that each instance of its Window class is reachable for as long as the
corresponding window is open, but once the window has been closed, it
stops holding references to the window, to enable all of the UI objects for
that window to be collected.

However, if you handle an event from your main application’s model with a
method in a Window-derived class, and if you do not explicitly remove that
handler when the window is closed, you will have a problem. As long as
your application is still running, something somewhere will presumably be
keeping your application’s underlying model reachable. This means that the

target objects of any delegates held by your application model (e.g.,
delegates that were added as event handlers) will continue to be reachable,
preventing the GC from freeing them. So, if a Window-derived object for
the now-closed window is still handling events from your application
model, that window—and all of the UI elements it contains—will still be
reachable and will not be garbage collected.

NOTE
There’s a persistent myth that this sort of event-based memory leak has something to do
with circular references. In fact, GC copes perfectly well with circular references. It’s
true that there are often circular references in these scenarios, but they’re not the issue.
The problem is caused by accidentally keeping objects reachable after you no longer
need them. Doing that will cause problems regardless of whether circular references are
present.

You can deal with this by ensuring that if your UI layer ever attaches
handlers to objects that will stay alive for a long time, you remove those
handlers when the relevant UI element is no longer in use. Alternatively,
you could use weak references to ensure that if your event source is the
only thing holding a reference to the target, it doesn’t keep it alive. WPF
can help you with this—it provides a WeakEventManager class that
allows you to handle an event in such a way that the handling object is able
to be garbage collected without needing to unsubscribe from the event.
WPF uses this technique itself when databinding the UI to a data source that
provides property change notification events.

NOTE
Although event-related leaks often arise in UIs, they can occur anywhere. As long as an
event source remains reachable, all of its attached handlers will also remain reachable.

Events Versus Delegates
Some APIs provide notifications through events, while others just use
delegates directly. How should you decide which approach to use? In some
cases, the decision may be made for you because you want to support some
particular idiom. For example, if you want your API to support the
asynchronous features in C#, you will need to implement the pattern
described in Chapter 17, which uses delegates, but not events, for
completion callbacks. Events, on the other hand, provide a clear way to
subscribe and unsubscribe, which will make them a better choice in some
situations. Convention is another consideration: if you are writing a UI
element, events will most likely be appropriate, because that’s the
predominant idiom.

In cases where constraints or conventions do not provide an answer, you
need to think about how the callback will be used. If there will be multiple
subscribers for a notification, an event could be the best choice. This is not
absolutely necessary, because any delegate is capable of multicast behavior,
but by convention, this behavior is usually offered through events. If users
of your class will need to remove the handler at some point, events are also
likely to be a good choice. That being said, the IObservable interface
also supports multicast and unsubscription and might be a better choice if
you need more advanced functionality. This interface is part of the Reactive
Extensions for .NET and is described in Chapter 11.

You would typically pass a delegate as an argument to a method or
constructor if it only makes sense to have a single target method. For
example, if the delegate type has a non-void return value that the API
depends on (such as the bool returned by the predicate passed to
Array.FindAll), it makes no sense to have multiple targets or zero
targets. An event is the wrong idiom here, because its subscription-oriented
model considers it perfectly normal to attach either no handlers or multiple
handlers.

Occasionally, scenarios arise in which it might make sense to have either
zero handlers or one handler, but never more than one. For example, take

WPF’s CollectionView class, which can sort, group, and filter data
from a collection. You configure filtering by providing a
Predicate<object>. This is not passed as a constructor argument,
because filtering is optional, so instead, the class defines a Filter
property. An event would be inappropriate here, partly because
Predicate<object> does not fit the usual event delegate pattern, but
mainly because the class needs an unambiguous answer of yes or no, so it
does not want to support multiple targets. (The fact that all delegate types
support multicast means that it’s still possible to supply multiple targets, of
course. But the decision to use a property rather than an event signals the
fact that it’s not useful to attempt to provide multiple callbacks here.)

Delegates Versus Interfaces
Back at the start of this chapter, I argued that delegates offer a less
cumbersome mechanism for callbacks and notifications than interfaces do.
So why do some APIs require callers to implement an interface to enable
callbacks? Why do we have IComparer<T> and not a delegate? Actually,
we have both—there’s a delegate type called Comparison<T>, which is
supported as an alternative by many of the APIs that accept an
IComparer<T>. Arrays and List<T> have overloads of their Sort
methods that take either.

There are some situations in which the object-oriented approach may be
preferable to using delegates. An object that implements IComparer<T>
could provide properties to adjust the way the comparison works (e.g., the
ability to select between various sorting criteria). You may want to collect
and summarize information across multiple callbacks, and although you can
do that through captured variables, it may be easier to get the information
back out again at the end if it’s available through properties of an object.

This is really a decision for whoever is writing the code that is being called
back, and not for the developer writing the code that makes the call.
Delegates ultimately are more flexible, because they allow the consumer of
the API to decide how to structure their code, whereas an interface imposes

constraints. However, if an interface happens to align with the abstractions
you want, delegates can seem like an irritating extra detail. This is why
some APIs present both options, such as the sorting APIs that accept either
an IComparer<T> or a Comparison<T>.

Interfaces might be preferable to delegates if you need to provide multiple
related callbacks. The Reactive Extensions for .NET define an abstraction
for notifications that includes the ability to know when you’ve reached the
end of a sequence of events or when there has been an error, so in that
model, subscribers implement an interface with three methods—OnNext,
OnCompleted, and OnError. It makes sense to use an interface,
because all three methods are typically required for a complete subscription.

Summary
Delegates are objects that provide a reference to a method, which can be
either a static or an instance method. With instance methods, the delegate
also holds a reference to the target object, so the code that invokes the
delegate does not need to supply a target. Delegates can also refer to
multiple methods, although that complicates matters if the delegate’s return
type is not void. While delegate types get special handling from the CLR,
they are still just reference types, meaning that a reference to a delegate can
be passed as an argument, returned from a method, and stored in a field,
variable, or property. A delegate type defines a signature for the target
method. This is represented through the type’s Invoke method, but C# can
hide this, offering a syntax in which you can invoke a delegate expression
directly without explicitly referring to Invoke. You can construct a
delegate that refers to any method with a compatible signature. You can also
get C# to do more of the work for you—if you use the lambda syntax to
create an anonymous function, C# will supply a suitable declaration for you
and can also do work behind the scenes to make variables in the containing
method available to the inner one. Delegates are the basis of events, which
provide a formalized publish/subscribe model for notifications.

One C# feature that makes particularly extensive use of delegates is LINQ,
which is the subject of the next chapter.

1 Before C# 10.0, the compiler didn’t pick one for you, and this example would have produced
a compiler error. If you come across code that goes out of its way to specify a delegate type
that the compiler would have chosen anyway, it was probably written before C# 10.0 came out.

2 ILDASM ships with Visual Studio. At the time of writing, Microsoft doesn’t provide a cross-
platform version, but you could use the open source project ILSpy.

3 You may recall that generic type definitions can use the in and out keywords, but that’s
different. It indicates when the type parameter is contra- or covariant in a generic type. You
can’t use in or out when you supply a specific argument for a type parameter.

4 Alternatively, you may just be one of nature’s dynamic language enthusiasts, with an allergy
to expressing semantics through static types. If that’s the case, C# may not be the language for
you.

5 IntPtr is a value type typically used for opaque handle values. You also sometimes see it in
interop scenarios—on the rare occasions that you see a raw handle from an OS API in .NET, it
may be represented as an IntPtr, although in many cases this has been superseded by
SafeHandle.

6 Unhelpfully, there are two similar terms that somewhat arbitrarily mean almost but not quite
the same thing. The C# documentation uses the term anonymous function as the general term
for either kind of method expression. Anonymous method would be a better name for this
because not all of these things are strictly functions—they can have a void return—but by the
time Microsoft needed a general term for these things, that name was already taken.

7 You may be surprised to see Func<Product,bool> here and not
Predicate<Product>. The Where method is part of a .NET feature called LINQ that
makes extensive use of delegates. To avoid defining huge numbers of new delegate types,
LINQ uses Func types, and for consistency across the API, it prefers Func even when other
standard types would fit.

https://oreil.ly/ILSpy

Chapter 10. LINQ

Language Integrated Query (LINQ) is a powerful collection of C# language
features for working with sets of information. It is useful in any application
that needs to work with multiple pieces of data (i.e., almost any
application). Although one of its original goals was to provide
straightforward access to relational databases, LINQ is applicable to many
kinds of information. For example, it can also be used with in-memory
object models, HTTP-based information services, JSON, and XML
documents. And as we’ll see in Chapter 11, it can work with live streams of
data too.

LINQ is not a single feature. It relies on several language elements that
work together. The most conspicuous LINQ-related language feature is the
query expression, a form of expression that loosely resembles a database
query but that can be used to perform queries against any supported source,
including plain old objects. As you’ll see, query expressions rely heavily on
some other language features such as lambdas, extension methods, and
expression object models.

Language support is only half the story. LINQ needs class libraries to
implement a set of querying primitives called LINQ operators. Each
different kind of data requires its own implementation, and a set of
operators for any particular type of information is referred to as a LINQ
provider. (These can also be used from Visual Basic and F#, by the way,
because those languages support LINQ too.) Microsoft supplies several
providers, some built into the runtime libraries and some available as
separate NuGet packages. There is a provider for Entity Framework Core
for example, an object/relational mapping system for working with
databases. The Cosmos DB cloud database (a feature of Microsoft Azure)
offers a LINQ provider. And the Reactive Extensions for .NET (Rx)
described in Chapter 11 provide LINQ support for live streams of data. In

short, LINQ is a widely supported idiom in .NET, and it’s extensible, so you
will also find open source and other third-party providers.

Most of the examples in this chapter use LINQ to Objects. This is partly
because it avoids cluttering the examples with extraneous details such as
database or service connections, but there’s a more important reason.
LINQ’s introduction in 2007 significantly changed the way I write C#, and
that’s entirely because of LINQ to Objects. Although LINQ’s query syntax
makes it look like it’s primarily a data access technology, I have found it to
be far more valuable than that. Having LINQ’s services available on any
collection of objects makes it useful in every part of your code.

Query Expressions
The most visible feature of LINQ is the query expression syntax. It’s not the
most important—as we’ll see later, it’s entirely possible to use LINQ
productively without ever writing a query expression. However, it’s a very
natural syntax for many kinds of queries.

At first glance, a query expression loosely resembles a relational database
query, but the syntax works with any LINQ provider. Example 10-1 shows
a query expression that uses LINQ to Objects to search for certain
CultureInfo objects. (A CultureInfo object provides a set of
culture-specific information, such as the symbol used for the local currency,
what language is spoken, and so on. Some systems call this a locale.) This
particular query looks at the character that denotes what would, in English,
be called the decimal point. Many countries actually use a comma instead
of a period, and in those countries, 100,000 would mean the number 100
written out to three decimal places; in English-speaking cultures, we would
normally write this as 100.000. The query expression searches all the
cultures known to the system and returns those that use a comma as the
decimal separator.

Example 10-1. A LINQ query expression
IEnumerable<CultureInfo> commaCultures =
 from culture in

CultureInfo.GetCultures(CultureTypes.AllCultures)
 where culture.NumberFormat.NumberDecimalSeparator == ","
 select culture;

foreach (CultureInfo culture in commaCultures)
{
 Console.WriteLine(culture.Name);
}

The foreach loop in this example shows the results of the query. On my
system, this lists the names of 354 cultures, indicating that slightly under
half of the 813 available cultures use a comma, not a decimal point. Of
course, I could easily have achieved this without using LINQ. Example 10-
2 will produce the same results.

Example 10-2. The non-LINQ equivalent
CultureInfo[] allCultures =
CultureInfo.GetCultures(CultureTypes.AllCultures);
foreach (CultureInfo culture in allCultures)
{
 if (culture.NumberFormat.NumberDecimalSeparator == ",")
 {
 Console.WriteLine(culture.Name);
 }
}

Both examples have eight nonblank lines of code, although if you ignore
lines that contain only braces, Example 10-2 contains just four, two fewer
than Example 10-1. Then again, if we count statements, the LINQ example
has just three, compared to four in the loop-based example. So it’s difficult
to argue convincingly that either approach is simpler than the other.

However, Example 10-1 has a significant advantage: the code that decides
which items to choose is well separated from the code that decides what to
do with those items. Example 10-2 intermingles these two concerns: the
code that picks the objects is half outside and half inside the loop.

Another difference is that Example 10-1 has a more declarative style: it
focuses on what we want, not how to get it. The query expression describes
the items we’d like, without mandating that this be achieved in any
particular way. For this very simple example, that doesn’t matter much, but

for more complex examples, and particularly when using a LINQ provider
for database access, it can be very useful to allow the provider a free hand
in deciding exactly how to perform the query. Example 10-2’s approach of
iterating over everything in a foreach loop and picking the item it wants
would be a bad idea if we were talking to a database—you generally want
to let the server do this sort of filtering work.

The query in Example 10-1 has three parts. All query expressions are
required to begin with a from clause, which specifies the source of the
query. In this case, the source is an array of type CultureInfo[],
returned by the CultureInfo class’s GetCultures method. As well as
defining the source for the query, the from clause contains a name, which
here is culture. This is called the range variable, and we can use it in the
rest of the query to represent a single item from the source. Clauses can run
many times—the where clause in Example 10-1 runs once for every item
in the collection, so the range variable will have a different value each time.
This is reminiscent of the iteration variable in a foreach loop. In fact, the
overall structure of the from clause is similar—we have the variable that
will represent an item from a collection, then the in keyword, then the
source for which that variable will represent individual items. Just as a
foreach loop’s iteration variable is in scope only inside the loop, the
range variable culture is meaningful only inside this query expression.

NOTE
Although analogies with foreach can be helpful for understanding the intent of LINQ
queries, you shouldn’t take this too literally. For example, not all providers directly
execute the expressions in a query. Some LINQ providers convert query expressions
into database queries, in which case the C# code in the various expressions inside the
query does not run in any conventional sense. So, although it is true to say that the range
variable represents a single value from the source, it’s not always true to say that clauses
will execute once for every item they process, with the range value taking that item’s
value. It happens to be true for Example 10-1 because it uses LINQ to Objects, but it’s
not so for all providers.

The second part of the query in Example 10-1 is a where clause. This
clause is optional, or if you want, you can have several in one query. A
where clause filters the results, and the one in this example states that I
want only the CultureInfo objects with a NumberFormat that
indicates that the decimal separator is a comma.

The final part of the query is a select clause. All query expressions end
with either a select clause or a group clause. This determines the final
output of the query. This example indicates that we want each
CultureInfo object that was not filtered out by the query. The
foreach loop in Example 10-1 that shows the results of the query uses
only the Name property, so I could have written a query that extracted only
that. As Example 10-3 shows, if I do this, I also need to change the loop,
because the resulting query now produces strings instead of
CultureInfo objects.

Example 10-3. Extracting just one property in a query
IEnumerable<string> commaCultures =
 from culture in
CultureInfo.GetCultures(CultureTypes.AllCultures)
 where culture.NumberFormat.NumberDecimalSeparator == ","
 select culture.Name;

foreach (string cultureName in commaCultures)
{
 Console.WriteLine(cultureName);
}

This raises a question: in general, what type do query expressions have? In
Example 10-1, commaCultures is an
IEnumerable<CultureInfo>; in Example 10-3, it’s an
IEnumerable<string>. The output item type is determined by the
final clause of the query—the select or, in some cases, the group
clause. However, not all query expressions result in an
IEnumerable<T>. It depends on which LINQ provider you use—I’ve
ended up with IEnumerable<T> because I’m using LINQ to Objects.

NOTE
It’s very common to use the var keyword when declaring variables that hold LINQ
queries. This is necessary if a select clause produces instances of an anonymous type,
because there is no way to write the name of the resulting query’s type. Even if
anonymous types are not involved, var is still widely used, and there are two reasons.
One is just a matter of consistency: some people feel that because you have to use var
for some LINQ queries, you should use it for all of them. Another argument is that
LINQ query types often have verbose and ugly names, and var results in less cluttered
code. This can be a particularly pressing concern in the strictly limiting confines of a
book’s layout, so in many examples in this chapter I have departed from my usual
preference for explicit types and have used var to make things fit.

How did C# know that I wanted to use LINQ to Objects? It’s because I used
an array as the source in the from clause. More generally, LINQ to Objects
will be used when you specify any IEnumerable<T> as the source,
unless a more specialized provider is available. However, this doesn’t really
explain how C# discovers the existence of providers in the first place and
how it chooses between them. To understand that, you need to know what
the compiler does with a query expression.

How Query Expressions Expand
The compiler converts all query expressions into one or more method calls.
Once it has done that, the LINQ provider is selected through exactly the
same mechanisms that C# uses for any other method call. The compiler
does not have any built-in concept of what constitutes a LINQ provider. It
just relies on convention. Example 10-4 shows what the compiler does with
the query expression in Example 10-3.

Example 10-4. The effect of a query expression
IEnumerable<string> commaCultures =
 CultureInfo.GetCultures(CultureTypes.AllCultures)
 .Where(culture => culture.NumberFormat.NumberDecimalSeparator
== ",")
 .Select(culture => culture.Name);

The Where and Select methods are examples of LINQ operators. A
LINQ operator is nothing more than a method that conforms to one of the
standard patterns. I’ll describe these patterns later, in “Standard LINQ
Operators”.

The code in Example 10-4 is all one statement, and I’m chaining method
calls together—I call the Where method on the return value of
GetCultures, and I call the Select method on the return value of
Where. The formatting looks a little peculiar, but it’s too long to go on one
line; and, even though it’s not terribly elegant, I prefer to put the . at the
start of the line when splitting chained calls across multiple lines, because it
makes it much easier to see that each new line continues from where the
last one left off. Leaving the period at the end of the preceding line looks
neater but also makes it much easier to misread the code.

The compiler has turned the where and select clauses’ expressions into
lambdas. Notice that the range variable ends up as a parameter in each
lambda. This is one example of why you should not take the analogy
between query expressions and foreach loops too literally. Unlike a
foreach iteration variable, the range variable does not exist as a single
conventional variable. In the query, it is just an identifier that represents an
item from the source, and in expanding the query into method calls, C# may
end up creating multiple real variables for a single range variable, like it has
with the arguments for the two separate lambdas here.

All query expressions boil down to this sort of thing—chained method calls
with lambdas. (This is why we don’t strictly need the query expression
syntax—you could write any query using method calls instead.) Some are
more complex than others. The expression in Example 10-1 ends up with a
simpler structure despite looking almost identical to Example 10-3.
Example 10-5 shows how it expands. It turns out that when a query’s
select clause just passes the range variable straight through, the compiler
interprets that as meaning that we want to pass the results of the preceding
clause straight through without further processing, so it doesn’t add a call to
Select. (There is one exception to this: if you write a query expression

that contains nothing but a from and a select clause, it will generate a
call to Select even if the select clause is trivial.)

Example 10-5. How trivial select clauses expand
IEnumerable<CultureInfo> commaCultures =
 CultureInfo.GetCultures(CultureTypes.AllCultures)
 .Where(culture => culture.NumberFormat.NumberDecimalSeparator
== ",");

The compiler has to work harder if you introduce multiple variables within
the query’s scope. You can do this with a let clause. Example 10-6
performs the same job as Example 10-3, but I’ve introduced a new variable
called numFormat to refer to the number format. This makes my where
clause shorter and easier to read, and in a more complex query that needed
to refer to that format object multiple times, this technique could remove a
lot of clutter.

Example 10-6. Query with a let clause
IEnumerable<string> commaCultures =
 from culture in
CultureInfo.GetCultures(CultureTypes.AllCultures)
 let numFormat = culture.NumberFormat
 where numFormat.NumberDecimalSeparator == ","
 select culture.Name;

When you write a query that introduces additional variables like this, the
compiler automatically generates a hidden class with a field for each of the
variables so that it can make them all available at every stage. To get the
same effect with ordinary method calls, we’d need to do something similar,
and an easy way to do that is to introduce an anonymous type to contain
them, as Example 10-7 shows.

Example 10-7. How multivariable query expressions expand
(approximately)
IEnumerable<string> commaCultures =
 CultureInfo.GetCultures(CultureTypes.AllCultures)
 .Select(culture => new { culture, numFormat =
culture.NumberFormat })
 .Where(vars => vars.numFormat.NumberDecimalSeparator == ",")
 .Select(vars => vars.culture.Name);

No matter how simple or complex they are, query expressions are nothing
more than a specialized syntax for method calls. This suggests how we
might go about writing a custom source for a query expression.

Supporting Query Expressions
Because the C# compiler just converts the various clauses of a query
expression into method calls, we can write a type that participates in these
expressions by defining some suitable methods. To illustrate that the C#
compiler really doesn’t care what these methods do, Example 10-8 shows a
class that makes absolutely no sense but nonetheless keeps C# happy when
used from a query expression. The compiler just mechanically converts a
query expression into a series of method calls, so if suitable-looking
methods exist, the code will compile successfully.

Example 10-8. Nonsensical Where and Select
public class SillyLinqProvider
{
 public SillyLinqProvider Where(Func<string, int> pred)
 {
 Console.WriteLine("Where invoked");
 return this;
 }

 public string Select<T>(Func<DateTime, T> map)
 {
 Console.WriteLine($"Select invoked, with type argument
{typeof(T)}");
 return "This operator makes no sense";
 }
}

I can use an instance of this class as the source of a query expression. That’s
crazy because this class does not in any way represent a collection of data,
but the compiler doesn’t care. It just needs certain methods to be present, so
if I write the code in Example 10-9, the compiler will be perfectly happy
even though the code doesn’t make any sense.

Example 10-9. A meaningless query
var q = from x in new SillyLinqProvider()
 where int.Parse(x)
 select x.Hour;

The compiler converts this into method calls in exactly the same way that it
did with the more sensible query in Example 10-1. Example 10-10 shows
the result. If you’re paying close attention, you’ll have noticed that my
range variable actually changes type partway through—my Where method
requires a delegate that takes a string, so in that first lambda, x is of type
string. But my Select method requires its delegate to take a
DateTime, so that’s the type of x in that lambda. (And it’s all ultimately
irrelevant, because my Where and Select methods don’t even use these
lambdas.) Again, this is nonsense, but it shows how mechanically the C#
compiler converts queries to method calls.

Example 10-10. How the compiler transforms the meaningless query
var q = new SillyLinqProvider().Where(x => int.Parse(x)).Select(x
=> x.Hour);

Obviously, it’s not useful to write code that makes no sense. The reason I’m
showing you this is to demonstrate that the query expression syntax knows
nothing about semantics—the compiler has no particular expectation of
what any of the methods it invokes will do. All that it requires is that they
accept lambdas as arguments and return something other than void.

Clearly, the real work is happening elsewhere. It’s the LINQ providers
themselves that make things happen. So now I’ll outline what we would
need to write to make the queries I showed in the first couple of examples
work if LINQ to Objects didn’t exist.

You’ve seen how LINQ queries are transformed into code such as that
shown in Example 10-4, but this isn’t the whole story. The where clause
becomes a call to the Where method, but we’re calling it on an array of
type CultureInfo[], a type that does not in fact have a Where method.
This works only because LINQ to Objects defines an appropriate extension
method. As I showed in Chapter 3, it’s possible to add new methods to

existing types, and LINQ to Objects does that for IEnumerable<T>.
(Since most collections implement IEnumerable<T>, this means LINQ
to Objects can be used on almost any kind of collection.) To use these
extension methods, you need a using directive for the System.Linq
namespace; in .NET 6.0, newly created projects enable the implicit global
usings feature (described in “Namespaces”), which automatically generates
a suitable global using directive for System.Linq, so unless you’ve
disabled that feature, or your project was created before .NET 6.0 and has
not subsequently enabled that setting, you won’t need to write the directive
yourself. (The extension methods are all defined by a static class in that
namespace called Enumerable, by the way.) If you attempted to use
LINQ without that directive, the compiler would produce this error for the
query expression for Example 10-1 or Example 10-3:

error CS1935: Could not find an implementation of the query
pattern for source
type 'CultureInfo[]'. 'Where' not found. Are you missing
required assembly
references or a using directive for 'System.Linq'?

In general, that error message’s suggestion would be helpful, but in this
case, I want to write my own LINQ implementation. Example 10-11 does
this, and I’ve shown the whole source file because extension methods are
sensitive to the use of namespaces and using directives. (If you download
the examples, you’ll also find that I’ve not enabled implicit global usings
for this particular project, just so it’s completely clear what’s happening.)
The contents of the Main method should look familiar—this is similar to
Example 10-3, but this time, instead of using the LINQ to Objects provider,
it will use the extension methods from my CustomLinqProvider class.
(Normally, you make extension methods available with a using directive,
but because Cus tom Linq Pro vid er is in the same namespace as the
Program class, all of its extension methods are automatically available to
Main.)

WARNING
Although Example 10-11 behaves as intended, you should not take this as an example of
how a LINQ provider normally executes its queries. This does illustrate how LINQ
providers put themselves in the picture, but as I’ll show later, there are some issues with
how this code goes on to perform the query. Also, it’s rather minimalistic—there’s more
to LINQ than Where and Select, and most real providers offer more than just these
two operators.

Example 10-11. A custom LINQ provider for CultureInfo[]
using System;
using System.Globalization;

namespace CustomLinqExample;

public static class CustomLinqProvider
{
 public static CultureInfo[] Where(this CultureInfo[] cultures,
 Predicate<CultureInfo>
filter)
 {
 return Array.FindAll(cultures, filter);
 }

 public static T[] Select<T>(this CultureInfo[] cultures,
 Func<CultureInfo, T> map)
 {
 var result = new T[cultures.Length];
 for (int i = 0; i < cultures.Length; ++i)
 {
 result[i] = map(cultures[i]);
 }
 return result;
 }
}

class Program
{
 static void Main(string[] args)
 {
 var commaCultures =
 from culture in
CultureInfo.GetCultures(CultureTypes.AllCultures)
 where culture.NumberFormat.NumberDecimalSeparator ==

","
 select culture.Name;

 foreach (string cultureName in commaCultures)
 {
 Console.WriteLine(cultureName);
 }
 }
}

As you’re now well aware, the query expression in Main will first call
Where on the source and will then call Select on whatever Where
returns. As before, the source is the return value of GetCultures, which
is an array of type CultureInfo[]. That’s the type for which
CustomLinqProvider defines extension methods, so this will invoke
CustomLinqProvider.Where. That uses the Array class’s
FindAll method to find all of the elements in the source array that match
the predicate. The Where method passes its own argument straight through
to FindAll as the predicate, and as you know, when the C# compiler calls
Where, it passes a lambda based on the expression in the LINQ query’s
where clause. That predicate will match the cultures that use a comma as
their decimal separator, so the Where clause returns an array of type
CultureInfo[] that contains only those cultures.

Next, the code that the compiler created for the query will call Select on
the CultureInfo[] array returned by Where. Arrays don’t have a
Select method, so the extension method in CustomLinqProvider
will be used. My Select method is generic, so the compiler will need to
work out what the type argument should be, and it can infer this from the
expression in the select clause.

First, the compiler transforms it into a lambda: culture =>
culture.Name. Because this becomes the second argument for Select,
the compiler knows that we require a Func<CultureInfo, T>, so it
knows that the culture parameter must be of type CultureInfo. This
enables it to infer that T must be string, because the lambda returns
culture.Name, and that Name property’s type is string. So the

compiler knows that it is invoking
CustomLinqProvider.Select<string>. (The deduction I just
described is not specific to query expressions, by the way. The type
inference takes place after the query has been transformed into method
calls. The compiler would have gone through exactly the same process if
we had started with the code in Example 10-4.)

The Select method will now produce an array of type string[]
(because T is string here). It populates that array by iterating through the
elements in the incoming CultureInfo[], passing each
CultureInfo as the argument to the lambda that extracts the Name
property. So we end up with an array of strings, containing the name of
each culture that uses a comma as its decimal separator.

That’s a slightly more realistic example than my SillyLinqProvider,
because this does now provide the expected behavior. However, although
the query produces the same strings as it did when using the real LINQ to
Objects provider, the mechanism by which it does so is somewhat different.
My CustomLinqProvider performed each operation immediately—the
Where and Select methods both returned fully populated arrays. LINQ
to Objects does something quite different. In fact, so do most LINQ
providers.

Deferred Evaluation
If LINQ to Objects worked in the same way as my custom provider in
Example 10-11, it would not cope well with Example 10-12. This has a
Fibonacci method that returns a never-ending sequence—it will keep
providing numbers from the Fibonacci series for as long as the code keeps
asking for them. I have used the IEn ume rab le <Big Inte ger> returned
by this method as the source for a query expression. Since we have a
using directive for System.Linq in place near the start, I’m back to
using LINQ to Objects here. (In the downloadable examples, I’ve disabled

implicit global using directives for this project to make it clear exactly
which namespaces are in use.)

Example 10-12. Query with an infinite source sequence
using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;

static IEnumerable<BigInteger> Fibonacci()
{
 BigInteger n1 = 1;
 BigInteger n2 = 1;
 yield return n1;
 while (true)
 {
 yield return n2;
 BigInteger t = n1 + n2;
 n1 = n2;
 n2 = t;
 }
}

var evenFib = from n in Fibonacci()
 where n % 2 == 0
 select n;

foreach (BigInteger n in evenFib)
{
 Console.WriteLine(n);
}

This will use the Where extension method that LINQ to Objects provides
for IEnumerable<T>. If that worked the same way as my
CustomLinqExtension class’s Where method for CultureInfo[]
in Example 10-11, this program would never make it as far as displaying a
single number. My Where method did not return until it had filtered the
whole of its input and produced a fully populated array as its output. If the
LINQ to Objects Where method tried that with my infinite Fibonacci
enumerator, it would never finish.

In fact, Example 10-12 works perfectly—it produces a steady stream of
output consisting of the Fibonacci numbers that are divisible by 2. This

means it can’t be attempting to perform all of the filtering when we call
Where. Instead, its Where method returns an IEnumerable<T> that
filters items on demand. It won’t try to fetch anything from the input
sequence until something asks for a value, at which point it will start
retrieving one value after another from the source until the filter delegate
says that a match has been found. It then produces that and doesn’t try to
retrieve anything more from the source until it is asked for the next item.
Example 10-13 shows how you could implement this behavior by taking
advantage of C#’s yield return feature.

Example 10-13. A custom deferred Where operator
public static class CustomDeferredLinqProvider
{
 public static IEnumerable<T> Where<T>(this IEnumerable<T> src,
 Func<T, bool> filter)
 {
 foreach (T item in src)
 {
 if (filter(item))
 {
 yield return item;
 }
 }
 }
}

The real LINQ to Objects implementation of Where is somewhat more
complex. It detects certain special cases, such as arrays and lists, and it
handles them in a way that is slightly more efficient than the general-
purpose implementation that it falls back to for other types. However, the
principle is the same for Where and all of the other operators: these
methods do not perform the specified work. Instead, they return objects that
will perform the work on demand. It’s only when you attempt to retrieve the
results of a query that anything really happens. This is called deferred
evaluation, or sometimes lazy evaluation.

Deferred evaluation has the benefit of not doing work until you need it, and
it makes it possible to work with infinite sequences. However, it also has
disadvantages. You may need to be careful to avoid evaluating queries

multiple times. Example 10-14 makes this mistake, causing it to do much
more work than necessary. This loops through several different numbers
and writes out each one using the currency format of each culture that uses
a comma as a decimal separator.

NOTE
If you run this on Windows, you may find that most of the lines this code displays will
contain ? characters, indicating that the console cannot display most of the currency
symbols. In fact, it can—it just needs permission. By default, the Windows console uses
an 8-bit code page for backward-compatibility reasons. If you run the command chcp
65001 from a Command Prompt, it will switch that console window into a UTF-8 code
page, enabling it to show any Unicode characters supported by your chosen console
font. You might want to configure the console to use a font with comprehensive support
for uncommon characters—Consolas or Lucida Console, for example—to take best
advantage of that.

Example 10-14. Accidental reevaluation of a deferred query
var commaCultures =
 from culture in
CultureInfo.GetCultures(CultureTypes.AllCultures)
 where culture.NumberFormat.NumberDecimalSeparator == ","
 select culture;

object[] numbers = { 1, 100, 100.2, 10000.2 };

foreach (object number in numbers)
{
 foreach (CultureInfo culture in commaCultures)
 {
 Console.WriteLine(string.Format(culture, "{0}: {1:c}",
 culture.Name, number));
 }
}

The problem with this code is that even though the commaCultures
variable is initialized outside of the number loop, we iterate through it for
each number. And because LINQ to Objects uses deferred evaluation, that
means that the actual work of running the query is redone every time
around the outer loop. So, instead of evaluating that where clause once for

each culture (813 times on my system), it ends up running four times for
each culture (3,252 times) because the whole query is evaluated once for
each of the four items in the numbers array. It’s not a disaster—the code
still works correctly. But if you do this in a program that runs on a heavily
loaded server, it will harm your throughput.

If you know you will need to iterate through the results of a query multiple
times, consider using either the ToList or ToArray extension methods
provided by LINQ to Objects. These immediately evaluate the whole query
once, producing an IList<T> or a T[] array, respectively (so you
shouldn’t use these methods on infinite sequences, obviously). You can then
iterate through that as many times as you like without incurring any further
costs (beyond the minimal cost inherent in reading array or list elements).
But in cases where you iterate through a query only once, it is usually better
not to use these methods, as they’ll consume more memory than necessary.

LINQ, Generics, and IQueryable<T>
Most LINQ providers use generic types. Nothing enforces this, but it is very
common. LINQ to Objects uses IEnumerable<T>. Several of the
database providers use a type called IQueryable<T>. More broadly, the
pattern is to have some generic type Source<T>, where Source
represents some source of items, and T is the type of an individual item. A
source type with LINQ support makes operator methods available on
Source<T> for any T, and those operators also typically return
Source<TResult>, where TResult may or may not be different than
T.

IQueryable<T> is interesting because it is designed to be used by
multiple providers. This interface, its base IQueryable, and the related
IQueryProvider are shown in Example 10-15.

Example 10-15. IQueryable and IQueryable<T>
public interface IQueryable : IEnumerable
{
 Type ElementType { get; }

 Expression Expression { get; }
 IQueryProvider Provider { get; }
}

public interface IQueryable<out T> : IEnumerable<T>, IQueryable
{
}

public interface IQueryProvider
{
 IQueryable CreateQuery(Expression expression);
 IQueryable<TElement> CreateQuery<TElement>(Expression
expression);
 object? Execute(Expression expression);
 TResult Execute<TResult>(Expression expression);
}

The most obvious feature of IQueryable<T> is that it adds no members
to its bases. That’s because it’s designed to be used entirely via extension
methods. The Sys tem. Li nq namespace defines all of the standard LINQ
operators for IQueryable<T> as extension methods provided by the
Queryable class. However, all of these simply defer to the Provider
property defined by the IQueryable base. So, unlike LINQ to Objects,
where the extension methods on IEnumerable<T> define the behavior,
an IQueryable<T> implementation is able to decide how to handle
queries because it gets to supply the IQueryProvider that does the real
work.

However, all IQueryable<T>-based LINQ providers have one thing in
common: they interpret the lambdas as expression objects, not delegates.
Example 10-16 shows the declaration of the Where extension methods
defined for IEnumerable<T> and IQueryable<T>. Compare the
predicate parameters.

Example 10-16. Enumerable versus Queryable
public static class Enumerable
{
 public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, bool> predicate)
 ...

}

public static class Queryable
{
 public static IQueryable<TSource> Where<TSource>(
 this IQueryable<TSource> source,
 Expression<Func<TSource, bool>> predicate)
 ...
}

The Where extension for IEnumerable<T> (LINQ to Objects) takes a
Func<TSource, bool>, and as you saw in Chapter 9, this is a delegate
type. But the Where extension method for IQueryable<T> (used by
numerous LINQ providers) takes Exp res sion <Fu nc<T Sou rce,
bool>>, and as you also saw in Chapter 9, this causes the compiler to
build an object model of the expression and pass that as the argument.

A LINQ provider typically uses IQueryable<T> if it wants these
expression trees. And that’s usually because it’s going to inspect your query
and convert it into something else, such as a SQL query.

There are some other common generic types that crop up in LINQ. Some
LINQ features guarantee to produce items in a certain order, and some do
not. More subtly, a handful of operators produce items in an order that
depends upon the order of their input. This can be reflected in the types for
which the operators are defined and the types they return. LINQ to Objects
defines IOrderedEnumerable<T> to represent ordered data, and
there’s a corresponding IOrderedQueryable<T> type for
IQueryable<T>-based providers. (Providers that use their own types
tend to do something similar—Parallel LINQ, described in Chapter 16,
defines an Ord ered Par all elQ uery<T>, for example.) These
interfaces derive from their unordered counterparts, such as
IEnumerable<T> and IQueryable<T>, so all the usual operators are
available, but they make it possible to define operators or other methods
that need to take the existing order of their input into account. For example,
in “Ordering”, I will show a LINQ operator called ThenBy, which is
available only on sources that are already ordered.

When looking at LINQ to Objects, this ordered/unordered distinction may
seem unnecessary, because IEnumerable<T> always produces items in
some sort of order. But some providers do not necessarily do things in any
particular order, perhaps because they parallelize query execution, or
because they get a database to execute the query for them, and databases
reserve the right to meddle with the order in certain cases if it enables them
to work more efficiently.

Standard LINQ Operators
In this section, I will describe the standard operators that LINQ providers
can supply. Where applicable, I will also describe the query expression
equivalent, although many operators do not have a corresponding query
expression form. Some LINQ features are available only through explicit
method invocation. This is even true with certain operators that can be used
in query expressions, because most operators are overloaded, and query
expressions can’t use some of the more advanced overloads.

NOTE
LINQ operators are not operators in the usual C# sense—they are not symbols such as +
or &&. LINQ has its own terminology, and for this chapter, an operator is a query
capability offered by a LINQ provider. In C#, it looks like a method.

All of these operators have something in common: they have all been
designed to support composition. This means that you can combine them in
almost any way you like, making it possible to build complex queries out of
simple elements. To enable this, operators not only take some type
representing a set of items (e.g., an IEnumerable<T>) as their input, but
most of them also return something representing a set of items. As already
mentioned, the item type is not always the same—an operator might take
some IEnumerable<T> as input, and produce
IEnumerable<TResult> as output, where TResult does not have to

be the same as T. Even so, you can still chain the things together in any
number of ways. Part of the reason this works is that LINQ operators are
like mathematical functions in that they do not modify their inputs; rather,
they produce a new result that is based on their operands. (Functional
programming languages typically have the same characteristic.) This means
that not only are you free to plug operators together in arbitrary
combinations without fear of side effects, but you are also free to use the
same source as the input to multiple queries, because no LINQ query will
ever modify its input. Each operator returns a new query based on its input.

Nothing enforces this functional style. As you saw with my
SillyLinqProvider, the compiler doesn’t care what a method
representing a LINQ operator does. However, the convention is that
operators are functional, in order to support composition. The built-in LINQ
providers all work this way.

Not all providers offer complete support for all operators. The main
providers Microsoft supplies—such as LINQ to Objects or the LINQ
support in Entity Framework Core and Rx—are as comprehensive as they
can be, but there are some situations in which certain operators will not
make sense.

To demonstrate the operators in action, I need some source data. Many of
the examples in the following sections will use the code in Example 10-17.

Example 10-17. Sample input data for LINQ queries
public record Course(
 string Title,
 string Category,
 int Number,
 DateOnly PublicationDate,
 TimeSpan Duration)
{
 public static readonly Course[] Catalog =
 {
 new Course(
 Title: "Elements of Geometry",
 Category: "MAT", Number: 101, Duration:
TimeSpan.FromHours(3),
 PublicationDate: new DateOnly(2009, 5, 20)),

 new Course(
 Title: "Squaring the Circle",
 Category: "MAT", Number: 102, Duration:
TimeSpan.FromHours(7),
 PublicationDate: new DateOnly(2009, 4, 1)),
 new Course(
 Title: "Recreational Organ Transplantation",
 Category: "BIO", Number: 305, Duration:
TimeSpan.FromHours(4),
 PublicationDate: new DateOnly(2002, 7, 19)),
 new Course(
 Title: "Hyperbolic Geometry",
 Category: "MAT", Number: 207, Duration:
TimeSpan.FromHours(5),
 PublicationDate: new DateOnly(2007, 10, 5)),
 new Course(
 Title: "Oversimplified Data Structures for Demos",
 Category: "CSE", Number: 104, Duration:
TimeSpan.FromHours(2),
 PublicationDate: new DateOnly(2021, 11, 8)),
 new Course(
 Title: "Introduction to Human Anatomy and
Physiology",
 Category: "BIO", Number: 201, Duration:
TimeSpan.FromHours(12),
 PublicationDate: new DateOnly(2001, 4, 11)),
 };
}

Filtering
One of the simplest operators is Where, which filters its input. You provide
a predicate, which is a function that takes an individual item and returns a
bool. Where returns an object representing the items from the input for
which the predicate is true. (Conceptually, this is very similar to the
FindAll method available on List<T> and array types, but using
deferred execution.)

As you’ve already seen, query expressions represent this with a where
clause. However, there’s an overload of the Where operator that provides
an additional feature not accessible from a query expression. You can write
a filter lambda that takes two arguments: an item from the input and an
index representing that item’s position in the source. Example 10-18 uses

this form to remove every second number from the input, and it also
removes courses shorter than three hours.

Example 10-18. Where operator with index
IEnumerable<Course> q = Course.Catalog.Where(
 (course, index) => (index % 2 == 0) &&
course.Duration.TotalHours >= 3);

Indexed filtering is meaningful only for ordered data. It always works with
LINQ to Objects, because that uses IEnumerable<T>, which produces
items one after another, but not all LINQ providers process items in
sequence. For example, with the Entity Framework Core (EF Core), the
LINQ queries you write in C# will be handled on the database. Unless a
query explicitly requests some particular order, a database is usually free to
process items in whatever order it sees fit, possibly in parallel. In some
cases, a database may have optimization strategies that enable it to produce
the results a query requires using a process that bears little resemblance to
the original query. So it might not even be meaningful to talk about, say, the
14th item handled by a WHERE clause. Consequently, if you were to write a
query similar to Example 10-18 using EF Core, executing the query would
cause an exception, complaining that the indexed Where operator is not
applicable. If you’re wondering why the overload is even present if the
provider doesn’t support it, it’s because EF Core uses IQueryable<T>,
so all the standard operators are available at compile time; providers that
choose to use IQueryable<T> can only report the nonavailability of
operators at runtime.

NOTE
LINQ providers that implement some or all of the query logic on the server side usually
limit what you can do in a query’s lambdas. Conversely, LINQ to Objects runs queries
in process, so it lets you invoke any method from inside a filter lambda—if you want to
call Console.WriteLine or read data from a file in your predicate, LINQ to
Objects can’t stop you. But only a very limited selection of methods is available in
providers for databases. These providers need to be able to translate your lambdas into
something the server can process, and they will reject expressions that attempt to invoke
methods that have no server-side equivalent.

Even so, you might have expected the exception to emerge when you
invoke Where, instead of when you try to execute the query (i.e., when you
first try to retrieve one or more items). However, providers that convert
LINQ queries into some other form, such as a SQL query, typically defer all
validation until you execute the query. This is because some operators may
be valid only in certain scenarios, meaning that the provider may not know
whether any particular operator will work until you’ve finished building the
whole query. It would be inconsistent if errors caused by nonviable queries
sometimes emerged while building the query and sometimes when
executing it, so even in cases where a provider could determine earlier that
a particular operator will fail, it will usually wait until you execute the
query to tell you.

The filter lambda you supply to the Where operator must take an argument
of the item type (the T in IEnumerable<T>, for example), and it must
return a bool. You may remember from Chapter 9 that the runtime
libraries define a suitable delegate type called Predicate<T>, but I also
mentioned in that chapter that LINQ avoids this, and we can now see why.
The indexed version of the Where operator cannot use Predicate<T>,
because there’s an additional argument, so that overload uses Func<T,
int, bool>. There’s nothing stopping the unindexed form of Where
from using Predicate<T>, but LINQ providers tend to use Func across
the board to ensure that operators with similar meanings have similar-
looking signatures. Most providers therefore use Func<T, bool>
instead, to be consistent with the indexed version. (C# doesn’t care which
you use—query expressions still work if the provider uses
Predicate<T>, as my custom Where operator in Example 10-11 shows,
but none of Microsoft’s providers do this.)

WARNING
The C# compiler’s nullability analysis doesn’t understand LINQ operators. If you have
an IEnumerable<string?>, you could write xs.Where(s => s is not
null) to remove any null items, but Where will still return an
IEnumerable<string?>. The compiler has no expectations around what Where
will do, so it doesn’t understand that the output is effectively an
IEnumerable<string>. Arguably it would be a mistake for the compiler to make
that inference: as Example 10-8 showed, it’s perfectly possible to supply a Where that
defies expectations.

LINQ defines another filtering operator: OfType<T>. This is useful if
your source contains a mixture of different item types—perhaps the source
is an IEnumerable<object> and you’d like to filter this down to only
the items of type string. Example 10-19 shows how the OfType<T>
operator can do this.

Example 10-19. The OfType<T> operator
static void ShowAllStrings(IEnumerable<object> src)
{
 foreach (string s in src.OfType<string>())
 {
 Console.WriteLine(s);
 }
}

When you use the OfType<T> operator with a reference type, it will filter
out any null values. If you’ve enabled nullable reference types, OfType
avoids the problems that Where(s => s is not null) encounters:
if you call OfType<string> on a sequence of type
IEnumerable<string?>, the resulting type will be
IEnumerable<string>. But that’s not because OfType was designed
with nullable reference types in mind. On the contrary, it effectively ignores
the nullability when you use a reference type as the type argument. It
happens to do what we want in this case because it’s always looking for a
positive match. (It effectively performs the same test as patterns like o is
string.) The surprising corollary is that OfType<string?> will also

filter out null items, with the slightly peculiar result that it returns an
IEnumerable<string?> that will never produce a null.

Both Where and OfType<T> will produce empty sequences if none of the
objects in the source meet the requirements. This is not considered to be an
error—empty sequences are quite normal in LINQ. Many operators can
produce them as output, and most operators can cope with them as input.

Select
When writing a query, we may want to extract only certain pieces of data
from the source items. The select clause at the end of most queries lets
us supply a lambda that will be used to produce the final output items, and
there are a couple of reasons we might want to make our select clause do
more than simply pass each item straight through. We might want to pick
just one specific piece of information from each item, or we might want to
transform it into something else entirely.

You’ve seen several select clauses already, and I showed in Example 10-
3 that the compiler turns them into a call to Select. However, as with
many LINQ operators, the version accessible through a query expression is
not the only option. There’s one other overload, which provides not just the
input item from which to generate the output item but also the index of that
item. Example 10-20 uses this to generate a numbered list of course titles.

Example 10-20. Select operator with index
IEnumerable<string> nonIntro = Course.Catalog.Select((course,
index) =>
 $"Course {index}: {course.Title}");

Be aware that the zero-based index passed into the lambda will be based on
what comes into the Select operator and will not necessarily represent
the item’s original position in the underlying data source. This might not
produce the results you were hoping for in code such as Example 10-21.

Example 10-21. Indexed Select downstream of Where operator
IEnumerable<string> nonIntro = Course.Catalog
 .Where(c => c.Number >= 200)

 .Select((course, index) => $"Course {index}: {course.Title}");

This code will select the courses found at indexes 2, 3, and 5, respectively,
in the Course.Catalog array, because those are the courses whose
Number property satisfies the Where expression. However, this query will
number the three courses as 0, 1, and 2, because the Select operator sees
only the items the Where clause let through. As far as it is concerned, there
are only three items, because the Select clause never had access to the
original source. If you wanted the indexes relative to the original collection,
you’d need to extract those upstream of the Where clause, as Example 10-
22 shows.

Example 10-22. Indexed Select upstream of Where operator
IEnumerable<string> nonIntro = Course.Catalog
 .Select((course, index) => new { course, index })
 .Where(vars => vars.course.Number >= 200)
 .Select(vars => $"Course {vars.index}: {vars.course.Title}");

You may be wondering why I’ve used an anonymous type here and not a
tuple. I could replace new { course, index } with just (course,
index), and the code would work equally well. (It might even be more
efficient, because tuples are value types, but anonymous types are reference
types. Tuples would create less work for the GC here.) However, in general,
tuples will not always work in LINQ. The lightweight tuple syntax was
introduced in C# 7.0, so they weren’t around when expression trees were
added back in C# 3.0. The expression object model has not been updated to
support this language feature, so if you try to use a tuple with an
IQueryable<T>-based LINQ provider, you will get compiler error
CS8143, telling you that An expression tree may not contain
a tuple literal. So I tend to use anonymous types in this chapter
because they work with query-based providers. But if you’re using a purely
local LINQ provider (e.g., Rx or LINQ to Objects), feel free to use tuples.

The indexed Select operator is similar to the indexed Where operator.
So, as you would probably expect, not all LINQ providers support it in all
scenarios.

1

Data shaping and anonymous types
If you are using a LINQ provider to access a database, the Select
operator can offer an opportunity to reduce the quantity of data you fetch,
which could reduce the load on your servers. When you use a data access
technology such as EF Core to execute a query that returns a set of objects
representing persistent entities, there’s a trade-off between doing too much
work up front and having to do lots of extra deferred work. Should those
frameworks fully populate all of the object properties that correspond to
columns in various database tables? Should they also load related objects?
In general, it’s more efficient not to fetch data you’re not going to use, and
data that is not fetched up front can always be loaded later on demand.
However, if you try to be too frugal in your initial request, you may
ultimately end up making a lot of extra requests to fill in the gaps, which
could outweigh any benefit from avoiding unnecessary work.

When it comes to related entities, EF Core allows you to configure which
related entities should be prefetched and which should be loaded on
demand, but for any particular entity that gets fetched, all properties relating
to columns are typically fully populated. This means queries that request
whole entities end up fetching all the columns for any row that they touch.

If you needed to use only one or two columns, fetching them all is relatively
expensive. Example 10-23 uses this somewhat inefficient approach. It
shows a fairly typical EF Core query.

Example 10-23. Fetching more data than is needed
var pq = from product in dbCtx.Product
 where product.ListPrice > 3000
 select product;
foreach (var prod in pq)
{
 Console.WriteLine($"{prod.Name} ({prod.Size}):
{prod.ListPrice}");
}

This LINQ provider translates the where clause into an efficient SQL
equivalent. However, the SQL SELECT clause retrieves all the columns
from the table. Compare that with Example 10-24. This modifies only one

part of the query: the LINQ select clause now returns an instance of an
anonymous type that contains only those properties we require. (The loop
that follows the query can remain the same. It uses var for its iteration
variable, which will work fine with the anonymous type, which provides the
three properties that loop requires.)

Example 10-24. A select clause with an anonymous type
var pq = from product in dbCtx.Product
 where product.ListPrice > 3000
 select new { product.Name, product.ListPrice, product.Size
};

The code produces exactly the same results, but it generates a much more
compact SQL query that requests only the Name, ListPrice, and Size
columns. If you’re using a table with many columns, this will produce a
significantly smaller response because it’s no longer dominated by data we
don’t need. This reduces the load on the network connection to the database
server and also results in faster processing because the data will take less
time to arrive. This technique is called data shaping.

This approach will not always be an improvement. For one thing, it means
you are working directly with data in the database instead of using entity
objects. This might mean working at a lower level of abstraction than would
be possible if you use the entity types, which might increase development
costs. Also, in some environments, database administrators do not allow ad
hoc queries, forcing you to use stored procedures, in which case you won’t
have the flexibility to use this technique.

Projecting the results of a query into an anonymous type is not limited to
database queries, by the way. You are free to do this with any LINQ
provider, such as LINQ to Objects. It can sometimes be a useful way to get
structured information out of a query without needing to define a class
specially. (As I mentioned in Chapter 3, anonymous types can be used
outside of LINQ, but this is one of the main scenarios for which they were
designed. Grouping by composite keys is another, as I’ll describe in
“Grouping”.)

Projection and mapping
The Select operator is sometimes referred to as projection, and it is the
same operation that many languages call map, which provides a slightly
different way to think about the Select operator. So far, I’ve presented
Select as a way to choose what comes out of a query, but you can also
look at it as a way to apply a transformation to every item in the source.
Example 10-25 uses Select to produce modified versions of a list of
numbers. It variously doubles the numbers, squares them, and turns them
into strings.

Example 10-25. Using Select to transform numbers
int[] numbers = { 0, 1, 2, 3, 4, 5 };

IEnumerable<int> doubled = numbers.Select(x => 2 * x);
IEnumerable<int> squared = numbers.Select(x => x * x);
IEnumerable<string> numberText = numbers.Select(x => x.ToString());

SelectMany
The SelectMany LINQ operator is used in query expressions that have
multiple from clauses. It’s called SelectMany because, instead of
selecting a single output item for each input item, you provide it with a
lambda that produces a whole collection for each input item. The resulting
query produces all of the objects from all of these collections, as though all
of the collections your lambda returns were merged into one. (This won’t
remove duplicates. Sequences can contain duplicates in LINQ. You can
remove them with the Distinct operator described in “Set Operations”.)
There are a couple of ways of thinking about this operator. One is that it
provides a means of flattening two levels of hierarchy—a collection of
collections—into a single level. Another way to look at it is as a Cartesian
product—that is, a way to produce every possible combination from some
input sets.

Example 10-26 shows how to use this operator in a query expression. This
code highlights the Cartesian-product-like behavior. It shows every
combination of the letters A, B, and C with a single digit from 1 to 5—that

is, A1, B1, C1, A2, B2, C2, etc. (If you’re wondering about the apparent
incompatibility of the two input sequences, the select clause of this
query relies on the fact that if you use the + operator to add a string and
some other type, C# generates code that calls ToString on the nonstring
operand for you.)

Example 10-26. Using SelectMany from a query expression
int[] numbers = { 1, 2, 3, 4, 5 };
string[] letters = { "A", "B", "C" };

IEnumerable<string> combined = from number in numbers
 from letter in letters
 select letter + number;
foreach (string s in combined)
{
 Console.WriteLine(s);
}

Example 10-27 shows how to invoke the operator directly. This is
equivalent to the query expression in Example 10-26.

Example 10-27. SelectMany operator
IEnumerable<string> combined = numbers.SelectMany(
 number => letters,
 (number, letter) => letter + number);

Example 10-26 uses two fixed collections—the second from clause returns
the same letters collection every time. However, you can make the
expression in the second from clause return a value based on the current
item from the first from clause. You can see in Example 10-27 that the first
lambda passed to SelectMany (which actually corresponds to the second
from clause’s final expression) receives the current item from the first
collection through its number argument, so you can use that to choose a
different collection for each item from the first collection. I can use this to
exploit SelectMany’s flattening behavior.

I’ve copied a jagged array from Example 5-16 in Chapter 5 into Example
10-28, which then processes it with a query containing two from clauses.

Note that the expression in the second from clause is now row, the range
variable of the first from clause.

Example 10-28. Flattening a jagged array
int[][] arrays =
{
 new[] { 1, 2 },
 new[] { 1, 2, 3, 4, 5, 6 },
 new[] { 1, 2, 4 },
 new[] { 1 },
 new[] { 1, 2, 3, 4, 5 }
};

IEnumerable<int> flattened = from row in arrays
 from number in row
 select number;

The first from clause asks to iterate over each item in the top-level array.
Each of these items is also an array, and the second from clause asks to
iterate over each of these nested arrays. This nested array’s type is int[],
so the range variable of the second from clause, number, represents an
int from that nested array. The select clause just returns each of these
int values.

The resulting sequence provides every number in the arrays in turn. It has
flattened the jagged array into a simple linear sequence of numbers. This
behavior is conceptually similar to writing a nested pair of loops, one
iterating over the outer int[][] array, and an inner loop iterating over the
contents of each individual int[] array.

The compiler uses the same overload of SelectMany for Example 10-28
as it does for Example 10-27, but there’s an alternative in this case. The
final select clause is simpler in Example 10-28—it just passes on items
from the second collection unmodified, which means the simpler overload
shown in Example 10-29 does the job equally well. With this overload, we
just provide a single lambda, which chooses the collection that
SelectMany will expand for each of the items in the input collection.

Example 10-29. SelectMany without item projection
var flattened = arrays.SelectMany(row => row);

That’s a somewhat terse bit of code, so in case it’s not clear quite how that
could end up flattening the array, Example 10-30 shows how you might
implement SelectMany for IEnumerable<T> if you had to write it
yourself.

Example 10-30. One implementation of SelectMany
static IEnumerable<T2> MySelectMany<T, T2>(
 this IEnumerable<T> src, Func<T, IEnumerable<T2>> getInner)
{
 foreach (T itemFromOuterCollection in src)
 {
 IEnumerable<T2> innerCollection =
getInner(itemFromOuterCollection);
 foreach (T2 itemFromInnerCollection in innerCollection)
 {
 yield return itemFromInnerCollection;
 }
 }
}

Why does the compiler not use the simpler option shown in Example 10-
29? The C# language specification defines how query expressions are
translated into method calls, and it mentions only the overload shown in
Example 10-26. Perhaps the reason the specification doesn’t mention the
simpler overload is to reduce the demands C# makes of types that want to
support this double-from query form—you’d need to write only one
method to enable this syntax for your own types. However, .NET’s various
LINQ providers are more generous, providing this simpler overload for the
benefit of developers who choose to use the operators directly. In fact, some
providers define two more overloads: there are versions of both the
SelectMany forms we’ve seen so far that also pass an item index to the
first lambda. (The usual caveats about indexed operators apply, of course.)

Although Example 10-30 gives a reasonable idea of what LINQ to Objects
does in SelectMany, it’s not the exact implementation. There are
optimizations for special cases. Moreover, other providers may use very
different strategies. Databases often have built-in support for Cartesian
products, so some providers may implement SelectMany in terms of
that.

Chunking
Whereas SelectMany flattens multiple sequences into one, LINQ’s
Chunk operator (added in .NET 6.0) works in the opposite direction,
turning a single sequence into a series of fixed-size sequences. This can be
useful in cases where it’s more efficient to process multiple items in a batch
than handling them one at a time. That’s often true when I/O is involved—
there are fixed minimum costs for writing data to disk or sending it over the
network, which can often mean that the cost of writing or sending a single
record is only slightly smaller than a single operation that writes or sends 10
records.

Example 10-31 uses the Range method (described later in “Sequence
Generation”) to create a sequence of numbers from 1 to 50, and then asks
Chunk to split these into chunks of 15 numbers each. While Range
produced an IEnumerable<int>—a sequence of int values—Chunk
returns a sequence of arrays of type int[].

Example 10-31. Splitting a sequence into batches with Chunk
IEnumerable<int> lotsOfNumbers = Enumerable.Range(1, 50);

IEnumerable<int[]> chunked = lotsOfNumbers.Chunk(15);
foreach(int[] chunk in chunked)
{
 Console.WriteLine(
 $"Chunk (length {chunk.Length}): {String.Join(", ",
chunk)}");
}

Looking at the output of Example 10-31, we can see that Chunk hands us
all of the numbers in order, just split into chunks:

Chunk (length 15): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15
Chunk (length 15): 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30
Chunk (length 15): 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45
Chunk (length 5): 46, 47, 48, 49, 50

In this example, the source sequence wasn’t an exact multiple of the chunk
size. Chunk dealt with this by making the final chunk smaller.

NOTE
Some LINQ providers use a different name for this operator: Buffer. The Rx library
described in Chapter 11 chose that name when it introduced an operator of this kind
about 10 years earlier. .NET 6.0 has chosen the name Chunk instead, but libraries that
were written before this typically followed Rx’s lead, calling their version of this
operator Buffer.

Ordering
In general, LINQ queries do not guarantee to produce items in any
particular order unless you explicitly define the order you require. You can
do this in a query expression with an orderby clause. As Example 10-32
shows, you specify the expression that defines how to order the items and a
direction—so this will produce a collection of courses ordered by ascending
publication date. As it happens, ascending is the default, so you can
leave off that qualifier without changing the meaning. As you’ve probably
guessed, you can specify descending to reverse the order.

Example 10-32. Query expression with orderby clause
var q = from course in Course.Catalog
 orderby course.PublicationDate ascending
 select course;

The compiler transforms the orderby clause in Example 10-32 into a call
to the OrderBy method, and it would use OrderByDescending if you
had specified a descending sort order. With source types that make a
distinction between ordered and unordered collections, these operators
return the ordered type (for example, IOrderedEnumerable<T> for
LINQ to Objects, and IOrderedQueryable<T> for
IQueryable<T>-based providers).

WARNING
With LINQ to Objects, these operators have to retrieve every element from their input
before they can produce any output elements. An ascending OrderBy can determine
which item to return first only once it has found the lowest item, and it won’t know for
certain which is the lowest until it has seen all of them. It still uses deferred evaluation
—it won’t do anything until you ask it for the first item. But as soon as you do ask it for
something, it has to do all the work at once. Some providers will have additional
knowledge about the data that can enable more efficient strategies. (For example, a
database may be able to use an index to return values in the order required.)

LINQ to Objects’ OrderBy and OrderByDescending operators each
have two overloads, only one of which is available from a query expression.
If you invoke the methods directly, you can supply an additional parameter
of type IComparer<TKey>, where TKey is the type of the expression by
which the items are being sorted. This is likely to be important if you sort
based on a string property, because there are several different orderings
for text, and you may need to choose one based on your application’s
locale, or you may want to specify a culture-invariant ordering to ensure
consistency across all environments.

The expression that determines the order in Example 10-32 is very simple
—it just retrieves the PublicationDate property from the source item.
You can write more complex expressions if you want to. If you’re using a
provider that translates a LINQ query into something else, there may be
limitations. If the query runs on the database, you may be able to refer to
other tables—the provider might be able to convert an expression such as
product.ProductCategory.Name into a suitable join. However,
you will not be able to run any old code in that expression, because it must
be something that the database can execute. But LINQ to Objects just
invokes the expression once for each object, so you really can put in there
whatever code you like.

You may want to sort by multiple criteria. You should not do this by writing
multiple orderby clauses. Example 10-33 makes this mistake.

Example 10-33. How not to apply multiple ordering criteria
var q = from course in Course.Catalog
 orderby course.PublicationDate ascending
 orderby course.Duration descending // BAD! Could discard
previous order
 select course;

This code orders the items by publication date and then by duration but
does so as two separate and unrelated steps. The second orderby clause
guarantees only that the results will be in the order specified in that clause
and does not guarantee to preserve anything about the order in which the
elements originated. If what you actually wanted was for the items to be in
order of publication date, and for any items with the same publication date
to be ordered by descending duration, you would need to write the query in
Example 10-34.

Example 10-34. Multiple ordering criteria in a query expression
var q = from course in Course.Catalog
 orderby course.PublicationDate ascending, course.Duration
descending
 select course;

LINQ defines separate operators for this multilevel ordering: ThenBy and
The nBy Des cen ding. Example 10-35 shows how to achieve the same
effect as the query expression in Example 10-34 by invoking the LINQ
operators directly. For LINQ providers whose types make a distinction
between ordered and unordered collections, the ThenBy and
ThenByDescending operators will be available only on the ordered
form, such as IOrderedQueryable<T> or
IOrderedEnumerable<T>. If you were to try to invoke ThenBy
directly on Course.Catalog, the compiler would report an error.

Example 10-35. Multiple ordering criteria with LINQ operators
var q = Course.Catalog
 .OrderBy(course => course.PublicationDate)
 .ThenByDescending(course => course.Duration);

You will find that some LINQ operators preserve some aspects of ordering
even if you do not ask them to. For example, LINQ to Objects will typically

produce items in the same order in which they appeared in the input unless
you write a query that causes it to change the order. But this is simply an
artifact of how LINQ to Objects works, and you should not rely on it in
general. In fact, even when you are using that particular LINQ provider, you
should check with the documentation to see whether the order you’re
getting is guaranteed or is just an accident of implementation. In most
cases, if you care about the order, you should write a query that makes that
explicit.

Containment Tests
LINQ defines various standard operators for discovering things about what
the collection contains. Some providers may be able to implement these
operators without needing to inspect every item. (For example, a database-
based provider might use a WHERE clause, and the database could be able to
use an index to evaluate that without needing to look at every element.)
However, there are no restrictions—you can use these operators however
you like, and it’s up to the provider to discover whether it can exploit a
shortcut.

NOTE
Unlike most LINQ operators, in the majority of providers these return neither a
collection nor an item from their input. They generally just return true or false, or
in some cases, a count. Rx is a notable exception: its implementations of these operators
wrap the bool or int in a single-element IObservable<T> that produces the
result. It does this to preserve the reactive nature of processing in Rx.

The simplest operator is Contains. You pass an item, and some providers
(including LINQ to Objects) provide an overload that also takes an
IEqualityComparer<T> so that you can customize how the operator
determines whether an item in the source is the same as the specified item.
Contains returns true if the source contains the specified item and
false if it does not. If you use the single-argument version with a

collection that implements ICollection<T> (which includes all
IList<T> and ISet<T> implementations), LINQ to Objects will detect
that, and its implementation of Contains just defers to the collection. If
you use a non-ICollection<T> collection, or you provide a custom
equality comparer, it will have to examine every item in the collection.

If, instead of looking for a particular value, you want to know whether a
collection contains any values that satisfy some particular criteria, you can
use the Any operator. This takes a predicate, and it returns true if the
predicate is true for at least one item in the source. If you want to know how
many items match some criteria, you can use the Count operator. This also
takes a predicate, and instead of returning a bool, it returns an int. If you
are working with very large collections, the range of int may be
insufficient, in which case you can use the LongCount operator, which
returns a 64-bit count. (This is likely to be overkill for most LINQ to
Objects applications, but it could matter when the collection lives in a
database.)

The Any, Count, and LongCount operators have overloads that do not
take any arguments. For Any, this tells you whether the source contains at
least one element, and for Count and LongCount, these overloads tell
you how many elements the source contains.

You should be wary of code such as if (q.Count() > 0). Calculating
the exact count may require the entire source query (q in this case) to be
evaluated, and in any case, it is likely to require more work than simply
answering the question, Is this empty? If q refers to a LINQ query, writing
if (q.Any()) is likely to be more efficient. That said, outside of LINQ,
this is not the case for list-like collections, where retrieving an element
count is cheap and may actually be more efficient than the Any operator.

There are some situations in which you might want to use a count only if
one can be calculated efficiently. (For example, a user interface might want
to show the total number of items available if this is easy to determine, but
could easily choose not to show it for cases where that would be too
expensive.) For these scenarios, .NET 6.0 added a new

TryGetNonEnumeratedCount method. This will return true if the
count can be determined without having to iterate through the whole
collection, and false if not. When it returns true, it passes the count
back through its single argument of type out int.

A close relative to the Any operator is the All operator. This one is not
overloaded—it takes a predicate, and it returns true if and only if the
source contains no items that do not match the predicate. I used an awkward
double negative in the preceding sentence for a reason: All returns true
when applied to an empty sequence, because an empty sequence certainly
doesn’t contain any elements that fail to match the predicate for the simple
reason that it doesn’t contain any elements at all.

This may seem like a curiously pig-headed form of logic. It’s reminiscent of
the child who, when asked, “Have you eaten your vegetables?” unhelpfully
replies, “I ate all the vegetables I put on my plate,” neglecting to mention
that he didn’t put any vegetables on his plate in the first place. It’s not
technically untrue, but it fails to provide the information the parent was
looking for. Nonetheless, the operators work this way for a reason: they
correspond to some standard mathematical logical operators. Any is the
existential quantifier, usually written as a backward E (∃) and pronounced
“there exists,” and All is the universal quantifier, usually written as an
upside-down A (∀) and pronounced “for all.” Mathematicians long ago
agreed on a convention for statements that apply the universal quantifier to
an empty set. For example, defining 𝕍 as the set of all vegetables, I can
assert that ∀{v : (v ∈ 𝕍) ∧ putOnPlateByMe(v)} eatenByMe(v), or, in
English, “For each vegetable that I put on my plate, it is true to say that I ate
that vegetable.” This statement is deemed to be true if the set of vegetables I
put on my plate is empty. (Perhaps mathematicians don’t like vegetables
either.) Rather pleasingly, the proper term for such a statement is a vacuous
truth.

ASYNCHRONOUS IMMEDIATE EVALUATION
Although most LINQ operators defer execution, as you’ve now seen
there are some exceptions. With most LINQ providers, the Contains,
Any, and All operators do not produce a wrapped result. (E.g., in
LINQ to Objects, these return a bool, not an
IEnumerable<bool>.) This sometimes means that these operators
need to do some slow work. For example, EF Core’s LINQ provider
will need to send a query to the database and wait for the response
before being able to return the bool result. The same goes for
ToArray and ToList, which produce fully populated collections,
instead of an IEnumerable<T> or IQueryable<T> that have the
potential to produce results in the future.

As Chapter 16 describes, it is common for slow operations like these to
implement the Task-based Asynchronous Pattern (TAP), enabling us to
use the await keyword described in Chapter 17. Some LINQ
providers therefore choose to offer asynchronous versions of these
operators. For example, EF Core offers SingleAsync, Con tai ns
Asy nc, AnyAsync, AllAsync, ToArrayAsync, and
ToListAsync, and equivalents for the other operators we’ll see that
perform immediate evaluation.

Specific Items and Subranges
It can be useful to write a query that produces just a single item. Perhaps
you’re looking for the first object in a list that meets certain criteria, or
maybe you want to fetch information in a database identified by a particular
key. LINQ defines several operators that can do this and some related ones
for working with a subrange of the items a query might return.

Use the Single operator when you have a query that you believe should
produce exactly one result. Example 10-36 shows just such a query—it

looks up a course by its category and number, and in my sample data, this
uniquely identifies a course.

Example 10-36. Applying the Single operator to a query
var q = from course in Course.Catalog
 where course.Category == "MAT" && course.Number == 101
 select course;

Course geometry = q.Single();

Because LINQ queries are built by chaining operators together, we can take
the query built by the query expression and add on another operator—the
Single operator, in this case. While most operators would return an object
representing another query (an IEnumerable<T> here, since we’re using
LINQ to Objects), Single is different. Like ToArray and ToList, the
Single operator evaluates the query immediately, but it then returns the
one and only object that the query produced. If the query fails to produce
exactly one object—perhaps it produces no items, or two—this will throw
an InvalidOperationException. (Since this is another of the
operators that produces a result immediately, some providers offer
SingleAsync as described in the sidebar “Asynchronous Immediate
Evaluation”.)

There’s an overload of the Single operator that takes a predicate. As
Example 10-37 shows, this allows us to express the same logic as the whole
of Example 10-36 more compactly. (As with the Where operator, all the
predicate-based operators in this section use Func<T, bool>, not
Predicate<T>.)

Example 10-37. The Single operator with predicate
Course geometry = Course.Catalog.Single(
 course => course.Category == "MAT" && course.Number == 101);

The Single operator is unforgiving: if your query does not return exactly
one item, it will throw an exception. There’s a slightly more flexible variant
called Sin gle Or Def ault, which allows a query to return either one
item or no items. If the query returns nothing, this method returns the
default value for the item type (i.e., null if it’s a reference type, 0 if it’s a

numeric type, etc.). Multiple matches still cause an exception. As with
Single, there are two overloads: one with no arguments for use on a
source that you believe contains no more than one object, and one that takes
a predicate lambda.

LINQ defines two related operators, First and FirstOrDefault, each
of which offers overloads taking no arguments or a predicate. For sequences
containing zero or one matching items, these behave in exactly the same
way as Single and Sin gle Or Def ault: they return the item if there is
one; if there isn’t, First will throw an exception, while
FirstOrDefault will return null or an equivalent value. However,
these operators respond differently when there are multiple results—instead
of throwing an exception, they just pick the first result and return that,
discarding the rest. This might be useful if you want to find the most
expensive item in a list—you could order a query by descending price and
then pick the first result. Example 10-38 uses a similar technique to pick the
longest course from my sample data.

Example 10-38. Using First to select the longest course
var q = from course in Course.Catalog
 orderby course.Duration descending
 select course;
Course longest = q.First();

If you have a query that doesn’t guarantee any particular order for its
results, these operators will pick one item arbitrarily.

TIP
Do not use First or FirstOrDefault unless you expect there to be multiple
matches and you want to process only one of them. Some developers use these when
they expect only a single match. The operators will work, of course, but the Single
and Sin gle Or Def ault operators more accurately express your expectations. They
will let you know when your expectations were misplaced, throwing an exception when
there are multiple matches. If your code embodies incorrect assumptions, it’s usually
best to know about it instead of plowing on regardless.

The existence of First and FirstOrDefault raises an obvious
question: Can I pick the last item? The answer is yes; there are also Last
and LastOrDefault operators, and again, each offers two overloads—
one taking no arguments and one taking a predicate.

.NET 6.0 adds a refinement to SingleOrDefault, FirstOrDefault,
and Las tOr Def ault. These get new overloads enabling you to supply a
value to return as the default, instead of the usual zero-like value. This
could be useful if you have a collection of int elements in which zero is a
valid value. Example 10-39 shows how to use the new
SingleOrDefault overload to get a value of −1 when the list is empty.
This makes it possible to distinguish between an empty list and a list
containing a single zero value. Of course, if all possible values for int are
valid in your application, this doesn’t help you, and you’d need to detect an
empty collection in some other way. But in cases where you can designate
some special value to represent not here (e.g., −1 in this case), these new
overloads are a helpful addition.

Example 10-39. SingleOrDefault with explicit default value
int valueOrNegative = numbers.SingleOrDefault(-1);

The next obvious question is: What if I want a particular element that’s
neither the first nor the last? Your wish is, in this particular instance,
LINQ’s command, because it offers ElementAt and
ElementAtOrDefault operators, both of which take just an index. This
provides a way to access elements of any IEnumerable<T> by index.
You can specify the index as an int. Alternatively, .NET 6.0 adds
overloads taking an Index, which, as you may recall from “Addressing
Elements with Index and Range Syntax”, enables the use of end-relative
positions. For example, ^2 denotes the second-from-last element. (Oddly,
ElementAtOrDefault didn’t get a new overload for specifying the
default value, unlike the three operators discussed in the preceding
paragraph.)

You need to be careful with ElementAt and ElementAtOrDefault
because they can be surprisingly expensive. If you ask for the 10,000th

element, these operators may need to request and discard the first 9,999
elements to get there. If you specify an end-relative position by writing, say,
source.ElementAt(^500), the operator may need to read every
single element to find out which is the last, and with that particular
example, it may also have to hang onto the last 500 elements it has seen
because until it gets to the end, it doesn’t know which element will be the
one it ultimately has to return.

As it happens, LINQ to Objects detects when the source object implements
IList<T>, in which case it uses the indexer to retrieve the element
directly instead of going the slow way around. But not all
IEnumerable<T> implementations support random access, so these
operators can be very slow. In particular, even if your source implements
IList<T>, once you’ve applied one or more LINQ operators to it, the
output of those operators will typically not support indexing. So it would be
particularly disastrous to use ElementAt in a loop of the kind shown in
Example 10-40.

Example 10-40. How not to use ElementAt
var mathsCourses = Course.Catalog.Where(c => c.Category == "MAT");
for (int i = 0; i < mathsCourses.Count(); ++i)
{
 // Never do this!
 Course c = mathsCourses.ElementAt(i);
 Console.WriteLine(c.Title);
}

Even though Course.Catalog is an array, I’ve filtered its contents with
the Where operator, which returns a query of type
IEnumerable<Course> that does not implement IList<Course>.
The first iteration won’t be too bad—I’ll be passing ElementAt an index
of 0, so it just returns the first match, and with my sample data, the very
first item Where inspects will match. But the second time around the loop,
we’re calling ElementAt again. The query that mathsCourses refers
to does not keep track of where we got to in the previous loop—it’s an
IEnumerable<T>, not an IEnumerator<T>—so this will start again.
ElementAt will ask that query for the first item, which it will promptly

discard, and then it will ask for the next item, and that becomes the return
value. So the Where query has now been executed twice—the first time,
ElementAt asked it for only one item, and then the second time it asked it
for two, so it has processed the first course twice now. The third time
around the loop (which happens to be the final time), we do it all again, but
this time, ElementAt will discard the first two matches and will return
the third, so now it has looked at the first course three times, the second one
twice, and the third and fourth courses once. (The third course in my sample
data is not in the MAT category, so the Where query will skip over this
when asked for the third item.) So, to retrieve three items, I’ve evaluated
the Where query three times, causing it to evaluate my filter lambda seven
times.

In fact, it’s worse than that, because the for loop will also invoke that
Count method each time, and with a nonindexable source such as the one
returned by Where, Count has to evaluate the entire sequence—the only
way the Where operator can tell you how many items match is to look at
all of them. So this code fully evaluates the query returned by Where three
times in addition to the three partial evaluations performed by
ElementAt. We get away with it here because the collection is small, but
if I had an array with 1,000 elements, all of which turned out to match the
filter, we’d be fully evaluating the Where query 1,000 times and
performing partial evaluations another 1,000 times. Each full evaluation
calls the filter predicate 1,000 times, and the partial evaluations here will do
so on average 500 times, so the code would end up executing the filter
1,500,000 times. Iterating through the Where query with the foreach
loop would evaluate the query just once, executing the filter expression
1,000 times, and would produce the same results.

So be careful with both Count and ElementAt. If you use them in a loop
that iterates over the collection on which you invoke them, the resulting
code will have O(n) complexity (i.e., the cost of running the code rises
proportionally to the number of items squared).

2

All of the operators I’ve just described return a single item from the source.
There are four more operators that also get selective about which items to
use but can return multiple items: Skip, Take, SkipLast, and
TakeLast. Each of these takes a single int argument. As the name
suggests, Skip discards the specified number of elements from the
beginning of the sequence and then returns everything else from its source.
Take returns the specified number of elements from the start of the
sequence and then discards the rest (so it is similar to TOP in SQL).
SkipLast and TakeLast do the same except they work at the end, e.g.,
you could use TakeLast to get the final 5 items from the source, or
SkipLast to omit the final 5 items.

.NET 6.0 adds an overload to Take that accepts a Range, enabling the use
of the range syntax described in “Addressing Elements with Index and
Range Syntax”. For example, source.Take(10..^10) skips the first
10 and also the last 10 items (so it is equivalent to
source.Skip(10).SkipLast(10)). Since the range syntax lets you
use either start- or end-relative indexes for both the start and end of the
range, we can express other combinations with this overload of Take. For
example, source.Take(10..20) has the same effect as
source.Skip(10).Take(10); source.Take(^10..^2) is
equivalent to source.TakeLast(10).SkipLast(2).

There are also predicate-driven versions, SkipWhile and TakeWhile.
SkipWhile will discard items from the sequence until it finds one that
matches the predicate, at which point it will return that and every item that
follows for the rest of the sequence (whether or not the remaining items
match the predicate). Conversely, TakeWhile returns items until it
encounters the first item that does not match the predicate, at which point it
discards that and the remainder of the sequence.

Although Skip, Take, SkipLast, TakeLast, SkipWhile, and
TakeWhile are all clearly order-sensitive, they are not restricted to just
the ordered types, such as IOr der ed Enu mer abl e<T>. They are also
defined for IEnumerable<T>, which is reasonable, because even though

there may be no particular order guaranteed, an IEnumerable<T>
always produces elements in some order. (The only way you can extract
items from an IEnumerable<T> is one after another, so there will
always be an order, even if it’s arbitrary. It might not be the same every time
you enumerate the items, but for any single evaluation, the items must come
out in some order.) Moreover, IOrderedEnumerable<T> is not widely
implemented outside of LINQ, so it’s quite common to have non-LINQ-
aware objects that produce items in a known order but that implement only
IEnumerable<T>. These operators are useful in these scenarios, so the
restriction is relaxed. Slightly more surprisingly, IQueryable<T> also
supports these operations, but that’s consistent with the fact that many
databases support TOP (roughly equivalent to Take) even on unordered
queries. As always, individual providers may choose not to support
individual operations, so in scenarios where there’s no reasonable
interpretation of these operators, they will just throw an exception.

Aggregation
The Sum and Average operators add together the values of all the source
items. Sum returns the total, and Average returns the total divided by the
number of items. LINQ providers that support these typically make them
available for collections of items of these numeric types: decimal,
double, float, int, and long. There are also overloads that work with
any item type in conjunction with a lambda that takes an item and returns
one of those numeric types. That allows us to write code such as Example
10-41, which works with a collection of Course objects and calculates the
average of a particular value extracted from the object: the course length in
hours.

Example 10-41. Average operator with projection
Console.WriteLine("Average course length in hours: {0}",
 Course.Catalog.Average(course => course.Duration.TotalHours));

LINQ also defines Min and Max operators. You can apply these to any type
of sequence, although it is not guaranteed to succeed—the particular

provider you’re using may report an error if it doesn’t know how to
compare the types you’ve used. For example, LINQ to Objects requires the
objects in the sequence to implement IComparable.

Min and Max both have overloads that accept a lambda that gets the value
to use from the source item. Example 10-42 uses this to find the date on
which the most recent course was published.

Example 10-42. Max with projection
DateOnly m = mathsCourses.Max(c => c.PublicationDate);

Notice that this does not return the course with the most recent publication
date; it returns that course’s publication date. If you want to select the
object for which a particular property has the maximum value, you can use
MaxBy. Example 10-43 will find the course with the highest
PublicationDate, but unlike Example 10-42, it returns the relevant
course, instead of the date. (As you might expect, there’s also a MinBy.)

Example 10-43. Max with projection for criteria but not for result
Course? mostRecentlyPublished = mathsCourses.MaxBy(c =>
c.PublicationDate);

You may have spotted the ? in that example, indicating that MaxBy might
return a null result. This happens with both Max and MaxBy in cases
where the input collection is empty and the output type is either a reference
type or a nullable form of one of the supported numeric types (e.g., int?
or double?). When the output is a non-nullable struct (e.g., DateOnly,
as with Example 10-42), these operators cannot return null and will throw
an InvalidOperationException instead. If you are working with a
reference type and you want an exception for an empty input like you
would get if the output were a value type, the only way to do that is to
check for a null result yourself and throw an exception. Example 10-44
shows one way to do this.

Example 10-44. Max with projection for criteria but not for result with
error on empty input
Course mostRecentlyPublished = mathsCourses.MaxBy(c =>
c.PublicationDate)
 ?? throw new InvalidOperationException("Collection must not be
empty");

LINQ to Objects defines specialized overloads of Min and Max for
sequences that return the same numeric types that Sum and Average deal
with (i.e., decimal, double, float, int, and long and their nullable
forms). It also defines similar specializations for the form that takes a
lambda. These overloads exist to improve performance by avoiding boxing.
The general-purpose form relies on IComparable, and getting an
interface type reference to a value always involves boxing that value. For
large collections, boxing every single value would put considerable extra
pressure on the GC.

LINQ defines an operator called Aggregate, which generalizes the
pattern that Min, Max, Sum, and Average all use, which is to produce a
single result with a process that involves taking every source item into
consideration. It’s possible to implement all four of these operators (and
their ...By counterparts) in terms of Aggregate. Example 10-45 uses
the Sum operator to calculate the total duration of all courses, and then
shows how to use the Aggregate operator to perform the exact same
calculation.

Example 10-45. Sum and equivalent with Aggregate
double t1 = Course.Catalog.Sum(course =>
course.Duration.TotalHours);
double t2 = Course.Catalog.Aggregate(
 0.0, (hours, course) => hours + course.Duration.TotalHours);

Aggregation works by building up a value that represents what we know
about all the items inspected so far, referred to as the accumulator. The type
we use depends on the knowledge we want to accumulate. Here, I’m just
adding all the numbers together, so I’ve used a double (because the
TimeSpan type’s TotalHours property is also a double).

Initially we have no knowledge, because we haven’t looked at any items
yet. We need to provide an accumulator value to represent this starting
point, so the Aggregate operator’s first argument is the seed, an initial
value for the accumulator. In Example 10-45, the accumulator is just a
running total, so the seed is 0.0.

The second argument is a lambda that describes how to update the
accumulator to incorporate information for a single item. Since my goal
here is simply to calculate the total time, I just add the duration of the
current course to the running total.

Once Aggregate has looked at every item, this particular overload
returns the accumulator directly. It will be the total number of hours across
all courses in this case. We can implement Max if we use a different
accumulation strategy. Instead of maintaining a running total, the value
representing everything we know so far about the data is simply the highest
value seen yet. Example 10-46 shows the rough equivalent of Example 10-
42. (It’s not exactly the same, because Example 10-46 makes no attempt to
detect an empty source. Max will throw an exception if this source is empty,
but this will just return the date 0/0/0000.)

Example 10-46. Implementing Max with Aggregate
DateOnly m = mathsCourses.Aggregate(
 new DateOnly(),
 (date, c) => date > c.PublicationDate ? date :
c.PublicationDate);

This illustrates that Aggregate does not impose any single meaning for
the value that accumulates knowledge—the way you use it depends on what
you’re doing. Some operations require an accumulator with a bit more
structure. Example 10-47 calculates the average course duration with
Aggregate.

Example 10-47. Implementing Average with Aggregate
double average = Course.Catalog.Aggregate(
 new { TotalHours = 0.0, Count = 0 },
 (totals, course) => new
 {
 TotalHours = totals.TotalHours +

course.Duration.TotalHours,
 Count = totals.Count + 1
 },
 totals => totals.Count > 0
 ? totals.TotalHours / totals.Count
 : throw new InvalidOperationException("Sequence was
empty"));

The average duration requires us to know two things: the total duration and
the number of items. So, in this example, my accumulator uses a type that
can contain two values, one to hold the total and one to hold the item count.
I’ve used an anonymous type because as already mentioned, that is
sometimes the only option in LINQ, and I want to show the most general
case. However, it’s worth mentioning that in this particular case, a tuple
might be better. It will work because this is LINQ to Objects, and since
lightweight tuples are value types whereas anonymous types are reference
types, a tuple would reduce the number of objects being allocated.

NOTE
Example 10-47 relies on the fact that when two separate methods in the same
component create instances of two structurally identical anonymous types, the compiler
generates a single type that is used for both. The seed produces an instance of an
anonymous type consisting of a double called TotalHours and an int called
Count. The accumulation lambda also returns an instance of an anonymous type with
the same member names and types in the same order. The C# compiler deems that these
will be the same type, which is important, because Aggregate requires the lambda to
accept and also return an instance of the accumulator type.

Example 10-47 uses a different overload than the earlier example. It takes
an extra lambda, which is used to extract the return value from the
accumulator—the accumulator builds up the information I need to produce
the result, but the accumulator itself is not the result in this example.

Of course, if all you want to do is calculate the sum, maximum, or average
values, you wouldn’t use Aggregate—you’d use the specialized
operators designed to do those jobs. Not only are they simpler, but they’re
often more efficient. (For example, a LINQ provider for a database might

be able to generate a query that uses the database’s built-in features to
calculate the minimum or maximum value.) I just wanted to show the
flexibility, using examples that are easily understood. But now that I’ve
done that, Example 10-48 shows a particularly concise example of
Aggregate that doesn’t correspond to any other built-in operator. This
takes a collection of rectangles and returns the bounding box that contains
all of those rectangles.

Example 10-48. Aggregating bounding boxes
public static Rect GetBounds(IEnumerable<Rect> rects) =>
 rects.Aggregate(Rect.Union);

The Rect structure in this example is from the System.Windows
namespace. This is part of WPF, and it’s a very simple data structure that
just contains four numbers—X, Y, Width, and Height—so you can use it
in non-WPF applications if you like. Example 10-48 uses the Rect type’s
static Union method, which takes two Rect arguments and returns a
single Rect that is the bounding box of the two inputs (i.e., the smallest
rectangle that contains both of the input rectangles).

I’m using the simplest overload of Aggregate here. It does the same
thing as the one I used in Example 10-45, but it doesn’t require me to
supply a seed—it just uses the first item in the list. Example 10-49 is
equivalent to Example 10-48 but makes the steps more explicit. I’ve
provided the first Rect in the sequence as an explicit seed value, using
Skip to aggregate over everything except that first element. I’ve also
written a lambda to invoke the method, instead of passing the method itself.
If you’re using this sort of lambda that just passes its arguments straight on
to an existing method with LINQ to Objects, you can just pass the method
name instead, and it will call the target method directly rather than going
through your lambda. (You can’t do that with expression-based providers,
because they require a lambda.)

Using the method directly is more succinct and marginally more efficient,
but it also makes for slightly obscure code, which is why I’ve spelled it out
in Example 10-49.

2

Example 10-49. More verbose and less obscure bounding box aggregation
public static Rect GetBounds(IEnumerable<Rect> rects)
{
 IEnumerable<Rect> theRest = rects.Skip(1);
 return theRest.Aggregate(rects.First(), (r1, r2) =>
Rect.Union(r1, r2));
}

These two examples work the same way. They start with the first rectangle
as the seed. For the next item in the list, Aggregate will call
Rect.Union, passing in the seed and the second rectangle. The result—
the bounding box of the first two rectangles—becomes the new
accumulator value. And that then gets passed to Union along with the third
rectangle, and so on. Example 10-50 shows what the effect of this
Aggregate operation would be if performed on a collection of four Rect
values. (I’ve represented the four values here as r1, r2, r3, and r4. To
pass them to Aggregate, they’d need to be inside a collection such as an
array.)

Example 10-50. The effect of Aggregate
Rect bounds = Rect.Union(Rect.Union(Rect.Union(r1, r2), r3), r4);

Aggregate is LINQ’s name for an operation some other languages call
reduce. You also sometimes see it called fold. LINQ went with the name
Aggregate for the same reason it calls its projection operator Select
instead of map (the more common name in functional programming
languages): LINQ’s terminology is more influenced by SQL than it is by
functional programming languages.

Set Operations
LINQ defines three operators that use some common set operations to
combine two sources. Intersect produces a result that contains only
those items that were in both of the input sources. Except includes only
those items from the first input source that were not in the second. The
output of Union contains items that were in either (or both) of the input
sources.

3

Although LINQ defines these set operations, most LINQ source types do
not correspond directly to the abstraction of a set. With a mathematical set,
any particular item either belongs to a set or it does not, with no innate
concept of order or of the number of times a particular item appears in a set.
IEnumerable<T> is not like that—it’s a sequence of items, so it’s
possible to have duplicates, and the same is true of IQueryable<T>.
This is not necessarily a problem, because some collections will happen
never to get into a situation where they contain duplicates, and in some
cases, the presence of duplicates won’t cause a problem. However, it can
sometimes be useful to take a collection that contains duplicates and
remove them. For this, LINQ defines the Distinct operator, which
removes duplicates. Example 10-51 contains a query that extracts the
category names from all the courses and then feeds that into the Distinct
operator to ensure that each unique category name appears just once.

Example 10-51. Removing duplicates with Distinct
var categories = Course.Catalog.Select(c => c.Category).Distinct();

All of these set operators are available in two forms, because you can
optionally pass any of them an IEqualityComparer<T>. This allows
you to customize how the operators decide whether two items are the same
thing.

.NET 6.0 adds IntersectBy, ExceptBy, UnionBy, and
DistinctBy operators. These serve the same basic purpose as
Intersect, Except, Union, and Distinct but with a different
mechanism for determining equivalence. You can supply a lambda that
takes an element from the source collection as input and produces any
output you want. Two items are considered to be the same if this lambda
produces the same result for both. (For example, you could write
courses.DistinctBy(c => c.Title), which would treat any two
courses as being the same if they have the same Title.) You could have
achieved the same effect without this by writing a custom IEq ual ity
Com par er <T>, but a projection is often simpler. (There are also overloads
of all four of these methods that accept an IEqualityComparer<T>.

This can be useful if your projection produces a string and you want to
specify the string comparison mechanism.)

Whole-Sequence, Order-Preserving Operations
LINQ defines certain operators whose output includes every item from the
source, and that preserve or reverse the order. Not all collections necessarily
have an order, so these operators will not always be supported. However,
LINQ to Objects supports all of them. The simplest is Reverse, which
reverses the order of the elements.

The Concat operator combines two sequences. It returns a sequence that
produces all of the elements from the first sequence (in whatever order that
sequence returns them), followed by all of the elements from the second
sequence (again, preserving the order). In cases where you need to add just
a single element to the end of the first sequence, you can use Append
instead. There is also Prepend, which adds a single item at the start. The
Repeat operator effectively concatenates the specified number of copies
of the source.

The DefaultIfEmpty operator returns all of the elements from its
source. However, if the source is empty, it returns a single element. There
are two overloads of this method: you can either specify the default value to
return when the source is empty or, if you pass no argument, it will use the
default, zero-like value of the element type.

The Zip operator can also combine two sequences, but instead of returning
one after the other, it works with pairs of elements. So the first item it
returns will be based on both the first item from the first sequence and the
first item from the second sequence. The second item in the zipped
sequence will be based on the second items from each of the sequences, and
so on. The name Zip is meant to bring to mind how a zipper in an article of
clothing brings two things together in perfect alignment. (It’s not an exact
analogy. When a zipper brings together the two parts, the teeth from the two
halves interlock in an alternating fashion. But the Zip operator does not

interleave its inputs like a physical zipper’s teeth. It brings items from the
two sources together in pairs.)

We need to tell Zip how to combine items. It takes a lambda with two
arguments, and it will pass item pairs from the two sources as those
arguments and produce whatever your lambda returns as output items.
Example 10-52 uses a selector that combines each pair of items using string
concatenation.

Example 10-52. Combining lists with Zip
string[] firstNames = { "Elisenda", "Jessica", "Liam" };
string[] lastNames = { "Gascon", "Hill", "Mooney" };
IEnumerable<string> fullNames = firstNames.Zip(lastNames,
 (first, last) => first + " " + last);
foreach (string name in fullNames)
{
 Console.WriteLine(name);
}

The two lists that this example zips together contain first names and last
names, respectively. The output looks like this:

Elisenda Gascon
Jessica Hill
Liam Mooney

If the input sources contain different numbers of items, Zip will stop once
it reaches the end of the shorter collection and will not attempt to retrieve
any further items from the longer collection. It does not treat mismatched
lengths as an error.

There are also overloads of Zip that do not require a lambda. These just
return a sequence of tuples. There are two versions: one that combines a
pair of sequences, producing 2-tuples, and another that takes three
sequences, combining them into a sequence of 3-tuples. (There is no
corresponding three-input lambda-based Zip.)

The SequenceEqual operator bears a resemblance to Zip in that it
works on two sequences and acts on pairs of items found at the same

position in the two sequences. But, instead of passing them to a lambda to
be combined, SequenceEqual just compares each pair. If this
comparison process finds that the two sources contain the same number of
items, and that for every pair, the two items are equal, then it returns true.
If the sources are of different lengths, or if even just one pair of items is not
equal, it returns false. SequenceEqual has two overloads, one that
accepts just the list with which to compare the source and another that also
takes an IEqualityComparer<T> to customize what you mean by
equal.

Grouping
Sometimes you will want to process all items that have something in
common as a group. Example 10-53 uses a query to group courses by
category, writing out a title for each category before listing all the courses in
that category.

Example 10-53. Grouping query expression
var subjectGroups = from course in Course.Catalog
 group course by course.Category;

foreach (var group in subjectGroups)
{
 Console.WriteLine("Category: " + group.Key);
 Console.WriteLine();

 foreach (var course in group)
 {
 Console.WriteLine(course.Title);
 }
 Console.WriteLine();
}

A group clause takes an expression that determines group membership—
in this case, any courses whose Category properties return the same
value will be deemed to be in the same group. A group clause produces a
collection in which each item implements a type representing a group.
Since I am using LINQ to Objects, and I am grouping by category string,
the type of the subjectGroup variable in Example 10-53 will be

IEnumerable<IGrouping<string, Course>>. This particular
example produces three group objects, depicted in Figure 10-1.

Each of the IGrouping<string, Course> items has a Key property,
and because the query groups items by the course’s Category property,
each key contains a string value from that property. There are three different
category names in the sample data in Example 10-17: MAT, BIO, and CSE,
so these are the Key values for the three groups.

The IGrouping<TKey, TItem> interface derives from
IEnumerable<TItem>, so each group object can be enumerated to find
the items it contains. So in Example 10-53, the outer foreach loop
iterates over the three groups returned by the query, and then the inner
foreach loop iterates over the Course objects in each of the groups.

Figure 10-1. Result of evaluating a grouping query

The query expression turns into the code in Example 10-54.

Example 10-54. Expanding a simple grouping query
var subjectGroups = Course.Catalog.GroupBy(course =>
course.Category);

Query expressions offer some variations on the theme of grouping. With a
slight modification to the original query, we can arrange for the items in
each group to be something other than the original Course objects. In

Example 10-55, I’ve changed the expression immediately after the group
keyword from just course to course.Title.

Example 10-55. Group query with item projection
var subjectGroups = from course in Course.Catalog
 group course.Title by course.Category;

This still has the same grouping expression, course.Category, so this
produces three groups as before, but now it’s of type
IGrouping<string, string>. If you were to iterate over the
contents of one of the groups, you’d find each group offers a sequence of
strings, containing the course names. As Example 10-56 shows, the
compiler expands this query into a different overload of the GroupBy
operator.

Example 10-56. Expanding a group query with an item projection
var subjectGroups = Course.Catalog
 .GroupBy(course => course.Category, course => course.Title);

Query expressions are required to have either a select or a group as
their final clause. However, if a query contains a group clause, that
doesn’t have to be the last clause. In Example 10-55, I modified how the
query represents each item within a group (i.e., the boxes on the right of
Figure 10-1), but I’m also free to customize the objects representing each
group (the items on the left). By default, I get the IGrouping<TKey,
TItem> objects (or the equivalent for whichever LINQ provider the query
is using), but I can change this. Example 10-57 uses the optional into
keyword in its group clause. This introduces a new range variable, which
iterates over the group objects, which I can go on to use in the rest of the
query. I could follow this with other clause types, such as orderby or
where, but in this case, I’ve chosen to use a select clause.

Example 10-57. Group query with group projection
var subjectGroups =
 from course in Course.Catalog
 group course by course.Category into category
 select $"Category '{category.Key}' contains {category.Count()}
courses";

The result of this query is an IEnumerable<string>, and if you
display all the strings it produces, you get this:

Category 'MAT' contains 3 courses
Category 'BIO' contains 2 courses
Category 'CSE' contains 1 courses

As Example 10-58 shows, this expands into a call to the same GroupBy
overload that Example 10-54 uses, and then uses the ordinary Select
operator for the final clause.

Example 10-58. Expanded group query with group projection
IEnumerable<string> subjectGroups = Course.Catalog
 .GroupBy(course => course.Category)
 .Select(category =>
 $"Category '{category.Key}' contains {category.Count()}
courses");

LINQ to Objects defines some more overloads for the GroupBy operator
that are not accessible from the query syntax. Example 10-59 shows an
overload that provides a slightly more direct equivalent to Example 10-57.

Example 10-59. GroupBy with key and group projections
IEnumerable<string> subjectGroups = Course.Catalog.GroupBy(
 course => course.Category,
 (category, courses) =>
 $"Category '{category}' contains {courses.Count()}
courses");

This overload takes two lambdas. The first is the expression by which items
are grouped. The second is used to produce each group object. Unlike the
previous examples, this does not use the IGrouping<TKey, TItem>
interface. Instead, the final lambda receives the key as one argument and
then a collection of the items in the group as the second. This is exactly the
same information that IGrouping<TKey, TItem> encapsulates, but
because this form of the operator can pass these as separate arguments, it
removes the need for the operator to create objects to represent the groups.

There’s yet another version of this operator shown in Example 10-60. It
combines the functionality of all the other flavors.

Example 10-60. GroupBy operator with key, item, and group projections
IEnumerable<string> subjectGroups = Course.Catalog.GroupBy(
 course => course.Category,
 course => course.Title,
 (category, titles) =>
 $"Category '{category}' contains {titles.Count()} courses:
" +
 string.Join(", ", titles));

This overload takes three lambdas. The first is the expression by which
items are grouped. The second determines how individual items in a group
are represented—this time I’ve chosen to extract the course title. The third
lambda is used to produce each group object, and as with Example 10-59,
this final lambda is passed the key as one argument, and its other argument
gets the group items, as transformed by the second lambda. So, rather than
the original Course items, this second argument will be an
IEnumerable<string> containing the course titles, because that’s
what the second lambda in this example requested. The result of this
GroupBy operator is once again a collection of strings, but now it looks
like this:

Category 'MAT' contains 3 courses: Elements of Geometry, Squaring
the Circle, Hy
perbolic Geometry
Category 'BIO' contains 2 courses: Recreational Organ
Transplantation, Introduct
ion to Human Anatomy and Physiology
Category 'CSE' contains 1 courses: Oversimplified Data Structures
for Demos

I’ve shown four versions of the GroupBy operator. All four take a lambda
that selects the key to use for grouping, and the simplest overload takes
nothing else. The others let you control the representation of individual
items in the group, or the representation of each group, or both. There are
four more versions of this operator. They offer all the same services as the
four I’ve shown already but also take an IEqualityComparer<T>,
which lets you customize the logic that decides whether two keys are
considered to be the same for grouping purposes.

Sometimes it is useful to group by more than one value. For example,
suppose you want to group courses by both category and publication year.
You could chain the operators, grouping first by category and then by year
within the category (or vice versa). But you might not want this level of
nesting—instead of groups of groups, you might want to group courses
under each unique combination of Category and publication year. The
way to do this is simply to put both values into the key, and you can do that
by using an anonymous type, as Example 10-61 shows.

Example 10-61. Composite group key
var bySubjectAndYear =
 from course in Course.Catalog
 group course by new { course.Category,
course.PublicationDate.Year };
foreach (var group in bySubjectAndYear)
{
 Console.WriteLine($"{group.Key.Category} ({group.Key.Year})");
 foreach (var course in group)
 {
 Console.WriteLine(course.Title);
 }
}

This takes advantage of the fact that anonymous types implement Equals
and GetHashCode for us. It works for all forms of the GroupBy
operator. With LINQ providers that don’t treat their lambdas as expressions
(e.g., LINQ to Objects), you could use a tuple instead, which would be
slightly more succinct while having the same effect.

There is one other operator that groups its outputs, called GroupJoin, but
it does so as part of a join operation, and we’ll look at the simpler joins
first.

Joins
LINQ defines a Join operator that enables a query over one source to use
related data from some other source, much as a database query can join
information from one table with data in another table. Suppose our
application stored a list of which students had signed up for which courses.

If you stored that information in a file, you wouldn’t want to copy the full
details for either the course or the student out into every line—you’d want
just enough information to identify a student and a particular course. In my
example data, courses are uniquely identified by the combination of the
category and the number. To track who’s signed up for what, we’d need
records containing three pieces of information: the course category, the
course number, and something to identify the student. The record type in
Example 10-62 shows how we might represent this association in memory.

Example 10-62. Record type associating a student with a course
public record CourseChoice(int StudentId, string Category, int
Number);

Once our application has loaded this information into memory, we may
want access to the Course objects, rather than just the information
identifying the course. We can get this with a join clause, as shown in
Example 10-63 (which also supplies some additional sample data using the
CourseChoice class so that the query has something to work with).

Example 10-63. Query with join clause
CourseChoice[] choices =
{
 new CourseChoice(StudentId: 1, Category: "MAT", Number: 101),
 new CourseChoice(StudentId: 1, Category: "MAT", Number: 102),
 new CourseChoice(StudentId: 1, Category: "MAT", Number: 207),
 new CourseChoice(StudentId: 2, Category: "MAT", Number: 101),
 new CourseChoice(StudentId: 2, Category: "BIO", Number: 201),
};

var studentsAndCourses = from choice in choices
 join course in Course.Catalog
 on new { choice.Category, choice.Number
}
 equals new { course.Category,
course.Number }
 select new { choice.StudentId, Course =
course };

foreach (var item in studentsAndCourses)
{
 Console.WriteLine(
 $"Student {item.StudentId} will attend

{item.Course.Title}");
}

This displays one line for each entry in the choices array. It shows the
title for each course, because even though that was not available in the input
collection, the join clause located the relevant item in the course catalog.
Example 10-64 shows how the compiler translates the query in Example
10-63.

Example 10-64. Using the Join operator directly
var studentsAndCourses = choices.Join(
 Course.Catalog,
 choice => new { choice.Category, choice.Number },
 course => new { course.Category, course.Number },
 (choice, course) => new { choice.StudentId, Course = course });

The Join operator’s job is to find an item in the second sequence that
corresponds to the item in the first. This correspondence is determined by
the first two lambdas; items from the two sources will be considered to
correspond to one another if the values returned by these two lambdas are
equal. This example uses an anonymous type and depends on the fact that
two structurally identical anonymously typed instances in the same
assembly share the same type. In other words, those two lambdas both
produce objects with the same type. The compiler generates an Equals
method for any anonymous type that compares each member in turn, so the
effect of this code is that two rows are considered to correspond if their
Category and Number properties are equal. (Once again, with
IQueryable<T>-based providers, we have to use anonymous types, not
tuples, because these lambdas will be turned into expression trees. But since
this example uses a non-expression-based provider, LINQ to Objects, you
could simplify this code slightly by using tuples instead.)

I’ve set up this example so that there can be only one match, but what
would happen if the course category and number did not uniquely identify a
course for some reason? If there are multiple matches for any single input
row, the Join operator will produce one output item for each match, so in
that case, we’d get more output items than there were entries in the

choices array. Conversely, if an item in the first source has no
corresponding item in the second collection, Join will not produce any
output for the item—it effectively ignores that input item.

LINQ offers an alternative join type that handles input rows with either zero
or multiple corresponding rows differently than the Join operator.
Example 10-65 shows the modified query expression. (The difference is the
addition of into courses on the end of the join clause, and the final
select clause refers to that instead of the course range variable.) This
produces output in a different form, so I’ve also modified the code that
writes out the results.

Example 10-65. A grouped join
var studentsAndCourses =
 from choice in choices
 join course in Course.Catalog
 on new { choice.Category, choice.Number }
 equals new { course.Category, course.Number }
 into courses
 select new { choice.StudentId, Courses = courses };

foreach (var item in studentsAndCourses)
{
 Console.WriteLine($"Student {item.StudentId} will attend " +
 string.Join(",", item.Courses.Select(course =>
course.Title)));
}

As Example 10-66 shows, this causes the compiler to generate a call to the
GroupJoin operator instead of Join.

Example 10-66. GroupJoin operator
var studentsAndCourses = choices.GroupJoin(
 Course.Catalog,
 choice => new { choice.Category, choice.Number },
 course => new { course.Category, course.Number },
 (choice, courses) => new { choice.StudentId, Courses = courses
});

This form of join produces one result for each item in the input collection
by invoking the final lambda. Its first argument is the input item, and its
second argument will be a collection of all the corresponding objects from

the second collection. (Compare this with Join, which invokes its final
lambda once for each match, passing the corresponding items one at a
time.) This provides a way to represent an input item that has no
corresponding items in the second collection: the operator can just pass an
empty collection.

Both Join and GroupJoin also have overloads that accept an
IEqualityComparer<T> so that you can define a custom meaning for
equality for the values returned by the first two lambdas.

Conversion
Sometimes you will need to convert a query of one type to some other type.
For example, you might have ended up with a collection where the type
argument specifies some base type (e.g., object), but you have good
reason to believe that the collection actually contains items of some more
specific type (e.g., Course). When dealing with individual objects, you
can just use the C# cast syntax to convert the reference to the type you
believe you’re dealing with. Unfortunately, this doesn’t work for types such
as IEnumerable<T> or IQueryable<T>.

Although covariance means that an IEnumerable<Course> is
implicitly convertible to an IEnumerable<object>, you cannot
convert in the other direction even with an explicit downcast. If you have a
reference of type IEnumerable<object>, attempting to cast that to
IEnumerable<Course> will succeed only if the object implements
IEnumerable<Course>. It’s quite possible to end up with a sequence
that consists entirely of Course objects but that does not implement
IEnumerable<Course>. Note that Example 10-67 creates just such a
sequence, and it will throw an exception when it tries to cast to
IEnumerable<Course>.

Example 10-67. How not to cast a sequence
IEnumerable<object> sequence = Course.Catalog.Select(c => (object)
c);
var courseSequence = (IEnumerable<Course>) sequence; //
InvalidCastException

This is a contrived example, of course. I forced the creation of an
IEnumerable<object> by casting the Select lambda’s return type
to object. However, it’s easy enough to end up in this situation for real, in
only slightly more complex circumstances. Fortunately, there’s an easy
solution. You can use the Cast<T> operator, shown in Example 10-68.

Example 10-68. How to cast a sequence
var courseSequence = sequence.Cast<Course>();

This returns a query that produces every item in its source in order, but it
casts each item to the specified target type as it does so. This means that
although the initial Cast<T> might succeed, it’s possible that you’ll get an
InvalidCastException some point later when you try to extract
values from the sequence. After all, in general, the only way the Cast<T>
operator can verify that the sequence you’ve given it really does only ever
produce values of type T is to extract all those values and attempt to cast
them. It can’t evaluate the whole sequence up front because you might have
supplied an infinite sequence. If the first billion items your sequence
produces will be of the right type, but after that you return one of an
incompatible type, the only way Cast<T> can discover this is to try
casting items one at a time.

TIP
Cast<T> and OfType<T> look similar, and developers sometimes use one when they
should have used the other (usually because they didn’t know both existed).
OfType<T> does almost the same thing as Cast<T>, but it silently filters out any
items of the wrong type instead of throwing an exception. If you expect and want to
ignore items of the wrong type, use OfType<T>. If you do not expect items of the
wrong type to be present at all, use Cast<T>, because if you turn out to be wrong, it
will let you know by throwing an exception, reducing the risk of allowing a potential
bug to remain hidden.

LINQ to Objects defines an AsEnumerable<T> operator. This just
returns the source without modification—it has no effect at runtime. Its

purpose is to force the use of LINQ to Objects even if you are dealing with
something that might have been handled by a different LINQ provider. For
example, suppose you have something that implements IQueryable<T>.
That interface derives from IEnumerable<T>, but the extension methods
that work with IQueryable<T> will take precedence over the LINQ to
Objects ones. If your intention is to execute a particular query on a
database, and then use further client-side processing of the results with
LINQ to Objects, you can use AsEnumerable<T> to draw a line that
says, “This is where we move things to the client side.”

Conversely, there’s also AsQueryable<T>. This is designed to be used in
scenarios where you have a variable of static type IEnumerable<T> that
you believe might contain a reference to an object that also implements
IQueryable<T>, and you want to ensure that any queries you create use
that instead of LINQ to Objects. If you use this operator on a source that
does not in fact implement IQueryable<T>, it returns a wrapper that
implements IQueryable<T> but uses LINQ to Objects under the covers.

Yet another operator for selecting a different flavor of LINQ is
AsParallel. This returns a ParallelQuery<T>, which lets you build
queries to be executed by Parallel LINQ, a LINQ provider that can execute
certain operations in parallel to improve performance when multiple CPU
cores are available.

There are some operators that convert the query to other types and also have
the effect of executing the query immediately rather than building a new
query chained off the back of the previous one. ToArray, ToList, and
ToHashSet return an array, list, or hash set, respectively, containing the
complete results of executing the input query. ToDictionary and
ToLookup do the same, but rather than producing a straightforward list of
the items, they both produce results that support associative lookup.
ToDictionary returns a Dictionary<TKey, TValue>, so it is
intended for scenarios where a key corresponds to exactly one value.
ToLookup is designed for scenarios where a key may be associated with

multiple values, so it returns a different type, ILookup<TKey,
TValue>.

I did not mention this lookup interface in Chapter 5 because it is specific to
LINQ. It is essentially the same as a read-only dictionary interface, except
the indexer returns an IEnumerable<TValue> instead of a single
TValue.

While the array and list conversions take no arguments, the dictionary and
lookup conversions need to be told what value to use as the key for each
source item. You tell them by passing a lambda, as Example 10-69 shows.
This uses the course’s Category property as the key.

Example 10-69. Creating a lookup
ILookup<string, Course> categoryLookup =
 Course.Catalog.ToLookup(course => course.Category);
foreach (Course c in categoryLookup["MAT"])
{
 Console.WriteLine(c.Title);
}

The ToDictionary operator offers an overload that takes the same
argument but returns a dictionary instead of a lookup. It would throw an
exception if you called it in the same way that I called ToLookup in
Example 10-69, because multiple course objects share categories, so they
would map to the same key. ToDictionary requires each object to have
a unique key. To produce a dictionary from the course catalog, you’d either
need to group the data by category first and have each dictionary entry refer
to an entire group or need a lambda that returned a composite key based on
both the course category and number, because that combination is unique to
a course.

Both operators also offer an overload that takes a pair of lambdas—one that
extracts the key and a second that chooses what to use as the corresponding
value (you are not obliged to use the source item as the value). Finally,
there are overloads that also take an IEqualityComparer<T>.

You’ve now seen all of the standard LINQ operators, but since that has
taken quite a few pages, you may find it useful to have a concise summary.

Table 10-1 lists the operators and describes briefly what each is for.

T
a
b
le
1
0
-
1
.
S
u
m
m
a
r
y
o
f
L
I
N
Q
o
p
e
r
a
t
o
r
s

Operator Purpose

Aggregate Combines all items through a user-supplied function to produce a single
result.

All Returns true if the predicate supplied is false for no items.

Any Returns true if the predicate supplied is true for at least one item.

Append Returns a sequence with all the items from its input sequence with one
item added to the end.

AsEnumerable Returns the sequence as an IEnumerable<T>. (Useful for forcing use
of LINQ to Objects.)

AsParallel Returns a ParallelQuery<T> for parallel query execution.

AsQueryable Ensures use of IQueryable<T> handling where available.

Average Calculates the arithmetic mean of the items.

Cast Casts each item in the sequence to the specified type.

Chunk Splits a sequence into equal-sized batches.

Concat Forms a sequence by concatenating two sequences.

Contains Returns true if the specified item is in the sequence.

Count, LongCount Return the number of items in the sequence.

DefaultIfEmpty Produces the source sequence’s elements, unless there are none, in which
case it produces a single element with a default value.

Distinct Removes duplicate values.

DistinctBy Removes values for which a projection produces duplicate values.

ElementAt Returns the element at the specified position (throwing an exception if out
of range).

ElementAtOr
Default

Returns the element at the specified position (producing the element type’s
default value if out of range).

Except Filters out items that are in the other collection provided.

First Returns the first item, throwing an exception if there are no items.

FirstOrDefault Returns the first item, or a default value if there are no items.

GroupBy Gathers items into groups.

GroupJoin Groups items in another sequence by how they relate to items in the input
sequence.

Intersect Filters out items that are not in the other collection provided.

IntersectBy Same as Intersect but using a projection for comparison.

Join Produces an item for each matching pair of items from the two input
sequences.

Last Returns the final item, throwing an exception if there are no items.

LastOrDefault Returns the final item, or a default value if there are no items.

Max Returns the highest value.

MaxBy Returns the item for which a projection produces the highest value.

Min Returns the lowest value.

MinBy Returns the item for which a projection produces the lowest value.

OfType Filters out items that are not of the specified type.

OrderBy Produces items in an ascending order.

Ord erBy
Des cen ding

Produces items in a descending order.

Prepend Returns a sequence starting with a specified single item, followed by all
the items from its input sequence.

Reverse Produces items in the opposite order than the input.

Select Projects each item through a function.

SelectMany Combines multiple collections into one.

SequenceEqual Returns true only if all items are equal to those in the other sequence
provided.

Single Returns the only item, throwing an exception if there are no items or more
than one item.

SingleOr Default Returns the only item, or a default value if there are no items; throws an
exception if there is more than one item.

Skip Filters out the specified number of items from the start.

SkipLast Filters out the specified number of items from the end.

SkipWhile Filters out items from the start for as long as the items match a predicate.

Sum Returns the result of adding all the items together.

Take Produces the specified number or range of items, discarding the rest.

TakeLast Produces the specified number of items from the end of the input
(discarding all items before that).

TakeWhile Produces items as long as they match a predicate, discarding the rest of the
sequence as soon as one fails to match.

ToArray Returns an array containing all of the items.

ToDictionary Returns a dictionary containing all of the items.

ToHashSet Returns a HashSet<T> containing all of the items.

ToList Returns a List<T> containing all of the items.

ToLookup Returns a multivalue associative lookup containing all of the items.

Union Produces all items that are in either or both of the inputs.

UnionBy Same as Union but using a projection for comparison.

Where Filters out items that do not match the predicate provided.

Zip Combines items at the same position from two or three inputs.

Sequence Generation
The Enumerable class defines the extension methods for
IEnumerable<T> that constitute LINQ to Objects. It also offers a few
additional (nonextension) static methods that can be used to create new
sequences. Enumerable.Range takes two int arguments and returns
an IEnumerable<int> that produces a sequentially increasing series of
numbers, starting from the value of the first argument and containing as
many numbers as the second argument. For example,
Enumerable.Range(15, 10) produces a sequence containing the
numbers 15 to 24 (inclusive).

Enumerable.Repeat<T> takes a value of type T and a count. It returns
a sequence that will produce that value the specified number of times.

Enumerable.Empty<T> returns an IEnumerable<T> that contains
no elements. This may not sound very useful, because there’s a much less
verbose alternative. You could write new T[0], which creates an array
that contains no elements. (Arrays of type T implement
IEnumerable<T>.) However, the advantage of
Enumerable.Empty<T> is that for any given T, it returns the same
instance every time. This means that if for any reason you end up needing
an empty sequence repeatedly in a loop that executes many iterations,
Enumerable.Empty<T> is more efficient, because it puts less pressure
on the GC.

Other LINQ Implementations
Most of the examples I’ve shown in this chapter have used LINQ to
Objects, except for a handful that have referred to EF Core. In this final
section, I will provide a quick description of some other LINQ-based
technologies. This is not a comprehensive list, because anyone can write a
LINQ provider.

Entity Framework Core
The database examples I have shown have used the LINQ provider that is
part of Entity Framework Core (EF Core). EF Core is a data access
technology that ships in a NuGet package,
Microsoft.EntityFrameworkCore. (EF Core’s predecessor, the
Entity Framework, is still built into .NET Framework but not in newer
versions of .NET.) EF Core can map between a database and an object
layer. It supports multiple database vendors.

EF Core relies on IQueryable<T>. For each persistent entity type in a
data model, the EF can provide an object that implements
IQueryable<T> and that can be used as the starting point for building

queries to retrieve entities of that type and of related types. Since
IQueryable<T> is not unique to the EF, you will be using the standard
set of extension methods provided by the Queryable class in the
System.Linq namespace, but that mechanism is designed to allow each
provider to plug in its own behavior.

Because IQueryable<T> defines the LINQ operators as methods that
accept Expression<T> arguments and not plain delegate types, any
expressions you write in either query expressions or as lambda arguments to
the underlying operator methods will turn into compiler-generated code that
creates a tree of objects representing the structure of the expression. The EF
relies on this to be able to generate database queries that fetch the data you
require. This means that you are obliged to use lambdas; unlike with LINQ
to Objects, you cannot use anonymous methods or delegates with an EF
query.

WARNING
Because IQueryable<T> derives from IEnumerable<T>, it’s possible to use
LINQ to Objects operators on any EF source. You can do this explicitly with the
AsEnumerable<T> operator, but it could also happen accidentally if you used an
overload that’s supported by LINQ to Objects and not IQueryable<T>. For example,
if you attempt to use a delegate instead of a lambda as, say, the predicate for the Where
operator, this will fall back to LINQ to Objects. The upshot here is that EF will end up
downloading the entire contents of the table and then evaluating the Where operator on
the client side. This is unlikely to be a good idea.

Parallel LINQ (PLINQ)
Parallel LINQ is similar to LINQ to Objects in that it is based on objects
and delegates rather than expression trees and query translation. But when
you start asking for results from a query, it will use multithreaded
evaluation where possible, using the thread pool to try to use the available
CPU resources efficiently. Chapter 16 will show multithreading in action.

LINQ to XML
LINQ to XML is not a LINQ provider. I’m mentioning it here because its
name makes it sound like one. It’s really an API for creating and parsing
XML documents. It’s called LINQ to XML because it was designed to make
it easy to execute LINQ queries against XML documents, but it achieves
this by presenting XML documents through a .NET object model. The
runtime libraries provide two separate APIs that do this: as well as LINQ to
XML, it also offers the XML Document Object Model (DOM). The DOM
is based on a platform-independent standard, and thus, it’s not a brilliant
match for .NET idioms and feels unnecessarily quirky compared with most
of the runtime libraries. LINQ to XML was designed purely for .NET, so it
integrates better with normal C# techniques. This includes working well
with LINQ, which it does by providing methods that extract features from
the document in terms of IEnumerable<T>. This enables it to defer to
LINQ to Objects to define and execute the queries.

IAsyncEnumerable<T>
As Chapter 5 described, .NET defines the IAsyncEnumerable<T>
interface, which is an asynchronous equivalent to IEnumerable<T>.
Chapter 17 will describe the language features that enable you to use this. A
full set of LINQ operators is available, although they are not built into the
.NET runtime libraries. They are available in a NuGet package called
System.Linq.Async.

Reactive Extensions
The Reactive Extensions for .NET (or Rx, as they’re often abbreviated) are
the subject of the next chapter, so I won’t say too much about them here,
but they are a good illustration of how LINQ operators can work on a
variety of types. Rx inverts the model shown in this chapter where we ask a
query for items once we’re good and ready. So, instead of writing a
foreach loop that iterates over a query, or calling one of the operators

that evaluates the query such as ToArray or SingleOrDefault, an Rx
source calls us when it’s ready to supply data.

Despite this inversion, there is a LINQ provider for Rx that supports most
of the standard LINQ operators.

Summary
In this chapter, I showed the query syntax that supports some of the most
commonly used LINQ features. This lets us write queries in C# that
resemble database queries but can query any LINQ provider, including
LINQ to Objects, which lets us run queries against our object models. I
showed the standard LINQ operators for querying, all of which are
available with LINQ to Objects, and most of which are available with
database providers. I also provided a quick roundup of some of the common
LINQ providers for .NET applications.

The last provider I mentioned was Rx. But before we look at Rx’s LINQ
provider, the next chapter will begin by looking at how Rx itself works.

1 As I write this, the tentative feature set for .NET 7.0 includes fixing this, so there’s some hope
that this might improve.

2 If you do so, be careful not to confuse it with another WPF type, Rectangle. That’s an
altogether more complex beast that supports animation, styling, layout, user input, databinding,
and various other WPF features. Do not attempt to use Rectangle outside of a WPF
application.

3 This is unrelated to the Rect.Union method used in the preceding example.

Chapter 11. Reactive
Extensions

The Reactive Extensions for .NET (usually shortened to Rx) are designed
for working with asynchronous and event-based sources of information. Rx
provides services that help you orchestrate and synchronize the way your
code reacts to data from these kinds of sources. We already saw how to
define and subscribe to events in Chapter 9, but Rx offers much more than
these basic features. It provides an abstraction for event sources that has a
steeper learning curve than events, but it comes with a powerful set of
operators that makes it far easier to combine and manage multiple streams
of events than is possible with the free-for-all that delegates and .NET
events provide. Microsoft has also made an associated set of libraries called
Reaqtor available that builds on the foundation of Rx to provide a
framework for reliable, stateful, distributed, scalable, high-performance
event processing in services.

Rx’s fundamental abstraction, IObservable<T>, represents a sequence
of items, and its operators are defined as extension methods for this
interface. This might sound a lot like LINQ to Objects, and there are
similarities—not only does IObservable<T> have a lot in common with
IEnumerable<T>, but Rx also supports almost all of the standard LINQ
operators. If you are familiar with LINQ to Objects, you will also feel at
home with Rx. The difference is that in Rx, sequences are less passive.
Unlike IEnumerable<T>, Rx sources do not wait to be asked for their
items, nor can the consumer of an Rx source demand to be given the next
item. Instead, Rx uses a push model in which the source notifies its
recipients when items are available.

For example, if you’re writing an application that deals with live financial
information, such as stock market price data, IObservable<T> is a
much more natural model than IEnumerable<T>. Because Rx

implements standard LINQ operators, you can write queries against a live
source—you could narrow down the stream of events with a where clause
or group them by stock symbol. Rx goes beyond standard LINQ, adding its
own operators that take into account the temporal nature of a live event
source. For example, you could write a query that provides data only for
stocks that are changing price more frequently than some minimum rate.

Rx’s push-oriented approach makes it a better match than
IEnumerable<T> for event-like sources. But why not just use events, or
even plain delegates? Rx addresses four shortcomings of those alternatives.
First, it defines a standard way for sources to report errors. Second, it is able
to deliver items in a well-defined order, even in multithreaded scenarios
involving numerous sources. Third, Rx provides a clear way to signal when
there are no more items. Fourth, because a traditional event is represented
by a special kind of member, not a normal object, there are significant limits
on what you can do with an event—you can’t pass a .NET event as an
argument to a method, store it in a field, or offer it in a property. You can do
these things with a delegate, but that’s not the same thing—delegates can
handle events but cannot represent a source of them. There’s no way to
write a method that subscribes to some .NET event that you pass as an
argument, because you can’t pass the actual event itself. Rx fixes this by
representing event sources as objects, instead of a special distinctive
element of the type system that doesn’t work like anything else.

We get all four of these features for free back in the world of
IEnumerable<T>, of course. A collection can throw an exception when
its contents are being enumerated, but with callbacks, it’s less obvious when
and where to deliver exceptions. IEnumerable<T> makes consumers
retrieve items one at a time, so the ordering is unambiguous, but with plain
events and delegates, nothing enforces that. And IEnumerable<T> tells
consumers when the end of the collection has been reached, but with a
simple callback, it’s not necessarily clear when you’ve had the last call.
IObservable<T> handles all of these eventualities, bringing the things
we can take for granted with IEnumerable<T> into the world of events.

By providing a coherent abstraction that addresses these problems, Rx is
able to bring all of the benefits of LINQ to event-driven scenarios. Rx does
not replace events; I wouldn’t have dedicated one-fifth of Chapter 9 to them
if it did. In fact, Rx can integrate with events. It can bridge between its own
abstractions and several others, not just ordinary events but also
IEnumerable<T> and various asynchronous programming models. Far
from deprecating events, Rx raises their capabilities to a new level. It’s
considerably harder to get your head around Rx than events, but it offers
much more power once you do.

Two interfaces form the heart of Rx. Sources that present items through this
model implement IObservable<T>. Subscribers are required to supply
an object that implements IObserver<T>. These two interfaces are built
into .NET. The other parts of Rx are in the System.Reactive NuGet
package.

Fundamental Interfaces
The two most important types in Rx are the IObservable<T> and
IObserver<T> interfaces. They are important enough to be in the
System namespace. Example 11-1 shows their definitions.

Example 11-1. IObservable<T> and IObserver<T>
public interface IObservable<out T>
{
 IDisposable Subscribe(IObserver<T> observer);
}

public interface IObserver<in T>
{
 void OnCompleted();
 void OnError(Exception error);
 void OnNext(T value);
}

The fundamental abstraction in Rx, IObservable<T>, is implemented
by event sources. Instead of using the event keyword, it models events as

a sequence of items. An IObservable<T> provides items to subscribers
as and when it’s ready to.

As you can see, the type argument for IObservable<T> is covariant,
meaning if you have a type Base that is the base type of another type
Derived, then just as you can pass a Derived to any method expecting a
Base, you can pass an IObservable<Derived> to anything expecting
an IObservable<Base>. It makes sense intuitively to see the out
keyword here, because like IEnumerable<T>, this is a source of
information—items come out of it. Conversely, items go into a subscriber’s
IObserver<T> implementation, so that has the in keyword, which
denotes contravariance—you can pass an IObserver<Base> to anything
expecting an IObserver<Derived>. (I described variance in Chapter
6.)

We can subscribe to a source by passing an implementation of
IObserver<T> to the Subscribe method. The source will invoke
OnNext when it wants to report events, and it can call OnCompleted to
indicate that there will be no further activity. If the source wants to report an
error, it can call OnError. Both OnCompleted and OnError indicate
the end of the stream—an observable should not call any further methods
on the observer after that.

WARNING
You will not necessarily get an exception immediately if you break this rule. In some
cases you will—if you use the NuGet System.Reactive library to help implement
and consume these interfaces, there are certain circumstances in which it can detect this
kind of mistake. But in general it is the responsibility of code calling these methods to
stick to the rule.

There’s a visual convention for representing Rx activity. It’s sometimes
called a marble diagram, because it consists mainly of small circles that
look a bit like marbles. Figure 11-1 uses this convention to represent two
sequences of events. The horizontal lines represent subscriptions to sources,

with the vertical bar on the left indicating the start of the subscription, and
the horizontal position indicating when something occurred (with elapsed
time increasing from left to right). The circles indicate calls to OnNext
(i.e., events being reported by the source). An arrow on the righthand end
indicates that the subscription was still active by the end of the time the
diagram represents. A vertical bar on the right indicates the end of the
subscription—either due to a call to OnError or OnCompleted or
because the subscriber unsubscribed.

Figure 11-1. Simple marble diagram

When you call Subscribe on an observable, it returns an object that
implements IDisposable, which provides a way to unsubscribe. If you
call Dispose, the observable will not deliver any more notifications to
your observer. This can be more convenient than the mechanism for
unsubscribing from an event; to unsubscribe from an event, you must pass
in an equivalent delegate to the one you used for subscription. If you’re
using anonymous methods, that can be surprisingly awkward, because often
the only way to do that is to keep hold of a reference to the original
delegate. With Rx, any subscription to a source is represented as an
IDisposable, making it easier to handle in a uniform way. In fact, you
often do not need to unsubscribe anyway—this is necessary only if you
want to stop receiving notifications before the source completes (making
this an example of something that is relatively unusual in .NET: optional
disposability).

IObserver<T>
As you’ll see, in practice we often don’t call a source’s Subscribe
method directly, nor do we usually need to implement IObserver<T>
ourselves. Instead, it’s common to use one of the delegate-based extension

methods that Rx provides and that attaches an Rx-supplied implementation.
However, those extension methods are not part of Rx’s fundamental types,
so for now I’ll show what you’d need to write if these interfaces are all
you’ve got. Example 11-2 shows a simple but complete observer.

Example 11-2. Simple IObserver<T> implementation
class MySubscriber<T> : IObserver<T>
{
 public void OnNext(T value) => Console.WriteLine("Received: " +
value);
 public void OnCompleted() => Console.WriteLine("Complete");
 public void OnError(Exception ex) => Console.WriteLine("Error:
" + ex);
}

Rx sources (i.e., implementations of IObservable<T>) are required to
make certain guarantees about how they call an observer’s methods. The
calls happen in a certain order: OnNext is called for each item that the
source provides, and I already mentioned that once either OnCompleted
or OnError is called, the observer knows that there will be no further calls
to any of the three methods. Either of those methods signals the end of the
sequence.

Also, calls are not allowed to overlap—when an observable source calls one
of our observer’s methods, it must wait for that method to return before
calling again. A multithreaded observable must take care to coordinate its
calls, and even in a single-threaded world, the possibility of recursion can
make it necessary for sources to detect and prevent re-entrant calls.

This makes life simple for the observer. Because Rx provides events as a
sequence, my code doesn’t need to deal with the possibility of concurrent
calls. It’s up to the source to call methods in the correct order. So, although
IObservable<T> may look like the simpler interface, having just one
method, it’s the more demanding one to implement. As you’ll see later, it’s
usually easiest to let the Rx libraries implement this for you, but it’s still
important to know how observable sources work, so I’ll implement it by
hand to begin with.

IObservable<T>
Rx makes a distinction between hot and cold observable sources. A hot
observable produces each value as and when something of interest happens,
and if no subscribers are attached at that moment, that value will be lost. A
hot observable typically represents something live, such as mouse input,
keypresses, or data reported by a sensor, which is why the values it
produces are independent of how many subscribers, if any, are attached. Hot
sources typically have broadcast-like behavior—they send each item to all
of their subscribers. These can be the more complex kind of source to
implement, so I’ll discuss cold sources first.

Implementing cold sources
Whereas hot sources report items as and when they want to, cold
observables work differently. They start pushing values when an observer
subscribes, and they provide values to each subscriber separately, rather
than broadcasting. This means that a subscriber won’t miss anything by
being too late, because the source starts providing items when you
subscribe. Example 11-3 shows a very simple cold source.

Example 11-3. A simple cold observable source
public class SimpleColdSource : IObservable<string>
{
 public IDisposable Subscribe(IObserver<string> observer)
 {
 observer.OnNext("Hello,");
 observer.OnNext("World!");
 observer.OnCompleted();
 return NullDisposable.Instance;
 }

 private class NullDisposable : IDisposable
 {
 public readonly static NullDisposable Instance = new();
 public void Dispose() { }
 }
}

The moment an observer subscribes, this source will provide two values,
the strings "Hello," and "World!", and will then indicate the end of

the sequence by calling OnCompleted. It does all that inside
Subscribe, so this doesn’t really look like a subscription—the sequence
is already over by the time Subscribe returns, so there’s nothing
meaningful to do to support unsubscription. That’s why this returns a trivial
implementation of IDisposable. (I’ve chosen an extremely simple
example so I can show the basics. Real sources will be more complex.)

To show this in action, we need to create an instance of
SimpleColdSource, and also an instance of my observer class from
Example 11-2, and use that to subscribe to the source, as Example 11-4
does.

Example 11-4. Attaching an observer to an observable
var source = new SimpleColdSource();
var sub = new MySubscriber<string>();
source.Subscribe(sub);

Predictably, this produces the following output:

Received: Hello,
Received: World!
Complete

In general, a cold observer will have access to some underlying source of
information, which it can push to a subscriber on demand. In Example 11-3,
that “source” was just two hardcoded values. Example 11-5 shows a slightly
more interesting cold observable, which reads the lines out of a file and
provides them to a subscriber.

Example 11-5. A cold observable representing a file’s contents
public class FilePusher : IObservable<string>
{
 private readonly string _path;
 public FilePusher(string path)
 {
 _path = path;
 }

 public IDisposable Subscribe(IObserver<string> observer)
 {

 using (var sr = new StreamReader(_path))
 {
 while (!sr.EndOfStream)
 {
 string? line = sr.ReadLine();
 if (line is not null)
 {
 observer.OnNext(line);
 }
 }
 }
 observer.OnCompleted();
 return NullDisposable.Instance;
 }

 private class NullDisposable : IDisposable
 {
 public static NullDisposable Instance = new();
 public void Dispose() { }
 }
}

As before, this does not represent a live source of events, and it leaps into
action only when something subscribes, but it’s a little more interesting than
Example 11-3. This calls into the observer as and when it retrieves each line
from a file, so although the point at which it starts doing its work is
determined by the subscriber, this source is in control of the rate at which it
provides values. Just like Example 11-3, this delivers all the items to the
observer on the caller’s thread inside the call to Subscribe, but it would
be a relatively small conceptual leap from Example 11-5 to one in which
the code reading from the file either ran on a separate thread or used
asynchronous techniques (such as those described in Chapter 17), thus
enabling Subscribe to return before the work is complete (at which point
you’d need to write a more interesting IDisposable implementation to
enable callers to unsubscribe). This would still be a cold source, because it
represents some underlying set of data that it can enumerate from the start
for the benefit of each individual subscriber.

Example 11-5 is not quite complete—it fails to handle errors that occur
while reading from the file. We need to catch these and call the observer’s
OnError method. Unfortunately, it’s not quite as simple as wrapping the

whole loop in a try block, because that would also catch exceptions that
emerged from the observer’s OnNext method. If that throws an exception,
we should allow it to carry on up the stack—we should handle only
exceptions that emerge from the places we expect in our code.
Unfortunately, this rather complicates the code. Example 11-6 puts all the
code that uses FileStream inside a try block but will allow any
exceptions thrown by the observer to propagate up the stack, because it’s
not up to us to handle those.

Example 11-6. Handling filesystem errors but not observer errors
public IDisposable Subscribe(IObserver<string> observer)
{
 StreamReader? sr = null;
 string? line = null;
 bool failed = false;

 try
 {
 while (true)
 {
 try
 {
 if (sr == null)
 {
 sr = new StreamReader(_path);
 }
 if (sr.EndOfStream)
 {
 break;
 }
 line = sr.ReadLine();
 }
 catch (IOException x)
 {
 observer.OnError(x);
 failed = true;
 break;
 }

 if (line is not null)
 {
 observer.OnNext(line);
 }
 else

 {
 break;
 }
 }
 }
 finally
 {
 if (sr != null)
 {
 sr.Dispose();
 }
 }
 if (!failed)
 {
 observer.OnCompleted();
 }
 return NullDisposable.Instance;
}

If I/O exceptions occur while reading from the file, this reports them to the
observer’s OnError method—so this source uses all three of the
IObserver<T> methods.

Implementing hot sources
Hot sources notify all current subscribers of values as they become
available. This means that any hot observable must keep track of which
observers are currently subscribed. Subscription and notification are
separated out with hot sources in a way that they usually aren’t with cold
ones.

Example 11-7 is an observable source that reports a single item for each
keypress, and it’s a particularly simple source as hot ones go. It’s single-
threaded, so it doesn’t need to do anything special to avoid overlapping
calls. It doesn’t report errors, so it never needs to call observers’ OnError
methods. And it never stops, so it doesn’t need to call OnCompleted
either. Even so, it’s quite involved. (Things will get much simpler once I
introduce the Rx library support—this example is relatively complex
because for now, I’m sticking with just the two fundamental interfaces.)

Example 11-7. IObservable<T> for monitoring keypresses
public class KeyWatcher : IObservable<char>
{
 private readonly List<Subscription> _subscriptions = new();

 public IDisposable Subscribe(IObserver<char> observer)
 {
 var sub = new Subscription(this, observer);
 _subscriptions.Add(sub);
 return sub;
 }

 public void Run()
 {
 while (true)
 {
 // Passing true here stops the console from showing the
character
 char c = Console.ReadKey(true).KeyChar;

 // ToArray duplicates the list, enabling us to iterate
over a
 // snapshot of our subscribers. This handles the case
where an
 // observer unsubscribes from inside its OnNext method.
 foreach (Subscription sub in _subscriptions.ToArray())
 {
 sub.Observer.OnNext(c);
 }
 }
 }

 private void RemoveSubscription(Subscription sub)
 {
 _subscriptions.Remove(sub);
 }

 private class Subscription : IDisposable
 {
 private KeyWatcher? _parent;
 public Subscription(KeyWatcher parent, IObserver<char>
observer)
 {
 _parent = parent;
 Observer = observer;
 }

 public IObserver<char> Observer { get; }

 public void Dispose()
 {
 if (_parent is not null)
 {
 _parent.RemoveSubscription(this);
 _parent = null;
 }
 }
 }
}

This defines a nested class called Subscription to keep track of each
observer that subscribes, and this also provides the implementation of
IDisposable that our Subscribe method is required to return. The
observable creates a new instance of this nested class and adds it to a list of
current subscribers during Subscribe, and then if Dispose is called, it
removes itself from that list.

As a general rule in .NET, you should Dispose any IDisposable
resources allocated on your behalf when you’ve finished using them.
However, in Rx, it is common not to dispose objects representing
subscriptions, so if you implement such an object, you should not count on
it being disposed. It’s typically unnecessary, because Rx can clean up for
you. Unlike with ordinary .NET events or delegates, observables can
unambiguously come to an end, at which point any resources allocated to
subscribers can be freed. (Some run indefinitely, but in that case,
subscriptions usually remain active for the life of the program.) Admittedly,
the examples I’ve shown so far don’t clean up automatically, because I’ve
provided my own implementations that are simple enough not to need to,
but the Rx libraries do if you use their source and subscriber
implementations. The only time you’d normally dispose of a subscription in
Rx is if you want to unsubscribe before the source completes.

NOTE
Subscribers are not obliged to ensure that the object returned by Subscribe
remains reachable. You can ignore it if you don’t need the ability to unsubscribe early,
and it won’t matter if the garbage collector frees the object, because none of the
IDisposable implementations that Rx supplies to represent subscriptions have
finalizers. (And although you don’t normally implement these yourself—I’m doing so
here only to illustrate how it works—if you did decide to write your own, take the same
approach: do not implement a finalizer on a class that represents a subscription.)

The KeyWatcher class in Example 11-7 has a Run method. That’s not a
standard Rx feature; it’s just a loop that sits and waits for keyboard input—
this observable won’t actually produce any notifications unless something
calls that method. Each time this loop receives a key, it calls the OnNext
method on every currently subscribed observer. Notice that I’m building a
copy of the subscriber list (by calling ToArray—that’s a simple way to get
a List<T> to duplicate its contents), because there’s every possibility that
a subscriber might choose to unsubscribe in the middle of a call to
OnNext. If I had passed the subscriber list directly to foreach, I would
get an exception in this scenario, because lists don’t allow items to be added
and removed if you’re in the middle of iterating through them.

WARNING
This example only guards against re-entrant calls on the same thread; handling
multithreaded unsubscription would be altogether more complex. In fact, even building
a copy is not sufficiently paranoid. I should really be checking that each observer in my
snapshot is still currently subscribed before calling its OnNext, because it’s possible
that one observer might choose to unsubscribe some other observer. This also makes no
attempt to deal with unsubscription from another thread. Later on, I’ll replace all of this
with a much more robust implementation from the Rx library.

In use, this hot source is very similar to my cold sources. We need to create
an instance of the KeyWatcher and also another instance of my observer
class (with a type argument of char this time, because this source produces

characters instead of strings). Because this source does not generate items
until its monitoring loop runs, I need to call Run to kick it off, as Example
11-8 does.

Example 11-8. Attaching an observer to an observable
var source = new KeyWatcher();
var sub = new MySubscriber<char>();
source.Subscribe(sub);
source.Run();

Running that code, the application will wait for keyboard input, and if you
press, say, the m key, the observer (Example 11-2) will display the message
Received: m. (And since my source never ends, the Run method will
never return.)

You might need to deal with a mixture of hot and cold observables. Also,
some cold sources have some hot characteristics. For example, you could
imagine a source that represented alert messages, and it might make sense
to implement that in such a way that it stored alerts, to make sure you didn’t
miss anything that happens in between creating the source and attaching a
subscriber. So it would be a cold source—any new subscriber would get all
the events so far—but once a subscriber has caught up, the ongoing
behavior would look more like a hot source, because any new events would
be broadcast to all current subscribers. As you’ll see, the Rx libraries
provide various ways to mix and adapt between the two types of sources.

While it’s useful to see what observers and observables need to do, it’s
more productive to let Rx take care of the grunt work, so now I’ll show how
you would write sources and subscribers if you were using the
System.Reactive NuGet library instead of just the two fundamental
interfaces.

Publishing and Subscribing with Delegates
If you use the System.Reactive NuGet package, you do not need to
implement either IObservable<T> or IObserver<T> directly. The
library provides several implementations. Some of these are adapters,

bridging between Rx and other representations of asynchronously generated
sequences. Some wrap existing observable streams. But the helpers aren’t
just for adapting existing things. They can also help if you want to write
code that originates new items or that acts as the final destination for items.
The simplest of these helpers provide delegate-based APIs for creating and
consuming observable streams.

Creating an Observable Source with Delegates
As you have seen in some of the preceding examples, although
IObservable<T> is a simple interface, sources that implement it may
have to do a fair amount of work to track subscribers. And we’ve not even
seen the whole story yet. As you’ll see in “Schedulers”, a source often
needs to take extra measures to ensure that it integrates well with Rx’s
threading mechanisms. Fortunately, the Rx libraries can do some of that
work for us. Example 11-9 shows how to use the Observable class’s
static Create method to implement a cold source. (Each call to
GetFilePusher will create a new source, so this is effectively a factory
method.)

Example 11-9. Delegate-based observable source
public static IObservable<string> GetFilePusher(string path)
{
 return Observable.Create<string>(observer =>
 {
 using (var sr = new StreamReader(path))
 {
 while (!sr.EndOfStream)
 {
 string? line = sr.ReadLine();
 if (line is not null)
 {
 observer.OnNext(line);
 }
 else
 {
 break;
 }
 }
 }

 observer.OnCompleted();
 return () => { };
 });
}

This serves the same purpose as Example 11-5—it provides an observable
source that supplies each line in a file in turn to subscribers. (As with
Example 11-5, I’ve left out error handling for clarity. In practice, you’d
need to report errors in the same way as Example 11-6.) The heart of the
code is the same, but I’ve been able to write just a single method instead of
a whole class, because Rx is now providing the IObserva ble <T>
implementation. Each time an observer subscribes to that observable, Rx
calls the callback I passed to Create. So all I have to do is write the code
that provides the items. As well as not needing the outer class implementing
IObservable<T>, I’ve also been able to omit the nested class that
implements IDisposable—the Create method allows us to return an
Action delegate instead of an object, and it will invoke that if the
subscriber chooses to unsubscribe. Since my method doesn’t return until
after it has finished producing items, there’s nothing useful I can do, so I’ve
just returned an empty method.

I’ve written rather less code than in Example 11-5, but as well as
simplifying my implementation, Observable.Create does two more
slightly subtle things for us that are not immediately apparent from the
code.

First, if a subscriber unsubscribes early, this code will now correctly stop
sending it items, even though I’ve written no code to handle that. When an
observer subscribes to a source of this kind, Rx does not pass the
IObserver<T> directly to our callback. The observer argument in the
nested method in Example 11-9 refers to an Rx-supplied wrapper. If the
underlying observer unsubscribes, that wrapper automatically stops
forwarding notifications. My loop will carry on running through the file
even after the subscriber stops listening, which is wasteful, but at least the
subscriber doesn’t get items after it has asked me to stop. (You may be
wondering how the subscriber even gets a chance to unsubscribe, given that

my code doesn’t return until it has finished. It could do this in its OnNext
method.)

You can use Rx in conjunction with the C# asynchronous language features
(specifically, the async and await keywords) to implement a version of
Example 11-9 that not only handles unsubscription more efficiently but also
reads from the file asynchronously, meaning subscription does not need to
block. This is significantly more efficient, and yet the code is almost
identical. I won’t be introducing the asynchronous language features until
Chapter 17, so this might not make complete sense yet, but if you’re
curious, Example 11-10 shows how it looks. The modified lines are in bold.
(Again, this is the version without error handling. Asynchronous methods
can handle exceptions in much the same way as synchronous ones, so you
could manage errors with the same approach as Example 11-6.)

Example 11-10. An asynchronous source
public static IObservable<string> GetFilePusher(string path)
{
 return Observable.Create<string>(async (observer, cancel) =>
 {
 using (var sr = new StreamReader(path))
 {
 while (!sr.EndOfStream &&
!cancel.IsCancellationRequested)
 {
 string? line = await sr.ReadLineAsync();
 if (line is not null)
 {
 observer.OnNext(line);
 }
 else
 {
 break;
 }
 }
 }
 observer.OnCompleted();
 });
}

The second thing Observable.Create does for us under the covers is
that in certain circumstances, it will use Rx’s scheduler system to call our

code via a work queue instead of invoking it directly. This avoids possible
deadlocks in cases where you’ve chained multiple observables together. I
will be describing schedulers later in this chapter.

This technique is good for cold sources such as Example 11-9. Hot sources
work differently, broadcasting live events to all subscribers, and
Observable.Create does not cater to them directly because it invokes
the delegate you pass once for each subscriber. However, the Rx libraries
can still help.

Rx provides a Publish extension method for any IObservable<T>,
defined by the Observable class in the System.Reactive.Linq
namespace. This method is designed to wrap a source whose subscription
method (i.e., the delegate you pass to Observa ble .Create) supports
being run only once but to which you want to attach multiple subscribers—
it handles the multicast logic for you. Strictly speaking, a source that
supports only a single subscription is degenerate, but as long as you hide it
behind Publish, it doesn’t matter, and you can use this as a way to
implement a hot source. Example 11-11 shows how to create a source that
provides the same functionality as the KeyWatcher in Example 11-7. I’ve
also hooked up two subscribers, just to illustrate the point that this supports
multiple subscribers.

Example 11-11. Delegate-based hot source
IObservable<char> singularHotSource = Observable.Create(
 (Func<IObserver<char>, IDisposable>) (obs =>
 {
 while (true)
 {
 obs.OnNext(Console.ReadKey(true).KeyChar);
 }
 }));

IConnectableObservable<char> keySource =
singularHotSource.Publish();

keySource.Subscribe(new MySubscriber<char>());
keySource.Subscribe(new MySubscriber<char>());

keySource.Connect();

The Publish method does not call Subscribe on the source
immediately. Nor does it do so when you first attach a subscriber to the
source it returns. I have to tell the published source when I want it to start.
Notice that Publish returns an IConnectableObservable<T>.
This derives from IObservable<T> and adds a single extra method,
Connect. This interface represents a source that doesn’t start until it’s told
to, and it’s designed to let you hook up all the subscribers you need before
you set it running. Calling Connect on the source returned by Publish
causes it to subscribe to my original source, invoking the subscription
callback I passed to Observable.Create and running my loop. This
causes the Connect method to have the same effect as calling Run on my
original Example 11-7.

Connect returns an IDisposable. This provides a way to disconnect at
some later point—that is, to unsubscribe from the underlying source. (If you
don’t call this, the connectable observable returned by Publish will
remain subscribed to your source even if you Dispose each of the
individual downstream subscriptions.) In this particular example, the call to
Connect will never return, because the code I passed to
Observable.Create also never returns. Most observable sources don’t
do this. Typically, they avoid it by using either asynchronous or scheduler-
based techniques, which I will show later in this chapter.

The combination of the delegate-based Observable.Create and the
multicasting offered by Publish has enabled me to throw away
everything in Example 11-7 except for the loop that actually generates
items, and even that has become simpler. Being able to remove about 80%
of the code isn’t the whole story, either. This will work better—Publish
lets Rx handle my subscribers, which will deal correctly with the awkward
situations in which subscribers unsubscribe while being notified.

Of course, the Rx libraries don’t just help with implementing sources. They
can simplify subscribers too.

Subscribing to an Observable Source with Delegates
Just as you don’t have to implement IObservable<T>, it’s also not
necessary to provide an implementation of IObserver<T>. You won’t
always care about all three methods—the KeyWatcher observable in
Example 11-7 never even calls the OnCompleted or OnError methods,
because it runs indefinitely and has no error detection. Even when you do
need to provide all three methods, you won’t necessarily want to write a
whole separate type to provide them. So the Rx libraries provide extension
methods to simplify subscription, defined by the
ObservableExtensions class in the System namespace. Most C#
source files include a using System; directive, or are in a project with
an implicit global using directive for System, so the extensions it offers
will usually be available as long as your project has a reference to the
System .Reac tive NuGet package. There are several overloads for the
Subscribe method available for any IObservable<T>. Example 11-
12 uses one of them.

Example 11-12. Subscribing without implementing IObserver<T>
var source = new KeyWatcher();
source.Subscribe(value => Console.WriteLine("Received: " + value));
source.Run();

This example has the same effect as Example 11-8. However, by using this
approach, we no longer need to write a whole class implementing
IObserver<T> like Example 11-2. With this Subscribe extension
method, Rx provides the IObserver<T> implementation for us, and we
provide methods only for the notifications we want.

The Subscribe overload used by Example 11-12 takes an Action<T>,
where T is the item type of the IObservable<T>, which in this case is
char. My source doesn’t provide error notifications, nor does it use
OnCompleted to indicate the end of the items, but plenty of sources do,
so there are three overloads of Subscribe to handle that. One takes an
extra delegate of type Action<Exception> to handle errors. Another
takes a second delegate of type Action (i.e., one that takes no arguments)

to handle the completion notification. The third overload takes three
delegates—the same per-item callback that they all take, and then an
exception handler and a completion handler.

NOTE
If you do not provide an exception handler when using delegate-based subscription, but
the source calls OnError, the IObserver<T> Rx supplies throws the exception to
keep the error from going unnoticed. Example 11-5 calls OnError in the catch block
where it handles I/O exceptions, and if you subscribed using the technique in Example
11-12, you’d find that the call to OnError throws the IOException right back out
again—the same exception is then thrown twice in a row, once by the StreamReader
and then again by the Rx-supplied IObserver<T> implementation. Since we’d
already be in the catch block in Example 11-5 by this time (and not the try block),
this second throw would cause the exception to emerge from the Subscribe method,
either to be handled farther up the stack or crashing the application.

There’s one more overload of the Subscribe extension method, taking no
arguments. This subscribes to a source and then does nothing with the items
it receives. (It will throw any errors back to the source, just like the other
overloads that don’t take an error callback.) This would be useful if you
have a source that does something important as a side effect of subscription,
although it’s probably best to avoid designs where that’s necessary.

Sequence Builders
Rx defines several methods that create new sequences from scratch, without
requiring either custom types or callbacks. These are designed for certain
simple scenarios such as single-element sequences, empty sequences, or
particular patterns. These are all static methods defined by the
Observable class.

Empty
The Observable.Empty<T> method is similar to the
Enumerable.Empty<T> method from LINQ to Objects that I showed in
Chapter 10: it produces an empty sequence. (The difference, of course, is
that it implements IObservable<T>, not IEnumera ble <T>.) As with
the LINQ to Objects method, this is useful when you’re working with APIs
that demand an observable source and you have no items to provide.

Any observer that subscribes to an Observable.Empty<T> sequence
will have its OnCompleted method called immediately.

Never
The Observable.Never<T> method produces a sequence that never
does anything—it produces no items, and unlike an empty sequence, it
never even completes. (The Rx team considered calling this
Infinite<T> to emphasize the fact that as well as never producing
anything, it also never ends.) There is no counterpart in LINQ to Objects. If
you wanted to write an IEnumerable<T> equivalent of Never, it would
be one that blocked indefinitely when you first tried to retrieve an item. In
the pull-based world of LINQ to Objects, this would not be at all useful—it
would cause the calling thread to freeze for the lifetime of the process. (An
IAsyncEnumerable<T> equivalent would return a
ValueTask<bool> that never completes from the first call to
MoveNextAsync. This does not need to block a thread, but you still end
up with a logical operation in progress that never completes.) But in Rx’s
reactive world, sources don’t block progress just because they are in a state
where they’re not currently producing items, so Never is a less disastrous
idea. It can be helpful with some of the operators I’ll show later that can use
an IObservable<T> to represent duration. Never can represent an
activity you want to run indefinitely.

Return
The Observable.Return<T> method takes a single argument and
returns an observable sequence that immediately produces that one value
and then completes. Just as Empty is useful when something requires a
sequence and you have no items, this is useful when something requires a
sequence and you have exactly one item. This is a cold source—you can
subscribe to it any number of times, and each subscriber will receive the
same value. There is no exact equivalent in LINQ to Objects, although the
Rx team provides a library called the Interactive Extensions for .NET (or Ix
for short, available in the System.Interactive NuGet package) that
provides IEnumerable<T> versions of this and several of the other
operators described in this chapter that are in Rx but not LINQ to Objects.

Throw
The Observable.Throw<T> method takes a single argument of type
Exception and returns an observable sequence that passes that exception
to OnError immediately for any subscriber. Like Return, this is also a
cold source that can be subscribed to any number of times, and it will do the
same thing to each subscriber.

Range
The Observable.Range method generates a sequence of numbers. (It
always returns an IObservable<int>, which is why it does not take a
type argument.) Like the Enumerable.Range method, it takes a starting
number and a count. This is a cold source that will produce the entire range
for each subscriber.

Repeat
The Observable.Repeat<T> method takes an input and produces a
sequence that repeatedly produces that input over and over again. The input
can be a single value, but it can also be another observable sequence, in

which case it will forward items until that input completes and will then
resubscribe to produce the whole sequence repeatedly. (That means that this
will only genuinely repeat the data if you pass it a cold observable.)

If you pass no other arguments, the resulting sequence will produce values
indefinitely—the only way to stop it is to unsubscribe. You can also pass a
count, saying how many times you would like the input to repeat.

Generate
The Observable.Generate<TState, TResult> method can
produce more complex sequences than the other methods I’ve just
described. You provide Generate with an object or value representing the
generator’s initial state. This can be any type you like—it’s one of the
method’s generic type arguments. You must also supply three functions: one
that inspects the current state to decide whether the sequence is complete
yet, one that advances the state in preparation for producing the next item,
and one that determines the value to produce for the current state. Example
11-13 uses this to create a source that produces random numbers until the
sum total of all the numbers produced exceeds 10,000.

Example 11-13. Generating items
IObservable<int> src = Observable.Generate(
 (Current: 0, Total: 0, Random: new Random()),
 state => state.Total <= 10000,
 state =>
 {
 int value = state.Random.Next(1000);
 return (value, state.Total + value, state.Random);
 },
 state => state.Current);

This always produces 0 as the first item, illustrating that Generate calls
the function that determines the current value (the final lambda in Example
11-13) before making the first call to the function that iterates the state.

You could achieve the same effect as this example by using
Observable.Create and a loop. However, Generate inverts the
flow of control: instead of your code sitting in a loop telling Rx when to

produce the next item, Rx asks your functions for the next item. This gives
Rx more flexibility over scheduling of the work. For example, it enables
Generate to offer overloads that bring timing into the picture. Example
11-14 produces items in a similar way but passes an extra function as the
final argument that tells Rx to delay the delivery of each item by a random
amount.

Example 11-14. Generating timed items
IObservable<int> src = Observable.Generate(
 (Current: 0, Total: 0, Random: new Random()),
 state => state.Total < 10000,
 state =>
 {
 int value = state.Random.Next(1000);
 return (value, state.Total + value, state.Random);
 },
 state => state.Current,
 state => TimeSpan.FromMilliseconds(state.Random.Next(1000)));

For this to work, Rx needs to be able to schedule work to happen at some
point in the future. I’ll explain how this works in “Schedulers”.

LINQ Queries
One of the greatest benefits of using Rx is that it has a LINQ
implementation, enabling you to write queries to process asynchronous
streams of items such as events. Example 11-15 illustrates this. It begins by
producing an observable source representing MouseMove events from a UI
element. I’ll talk about this technique in more detail in “Adaptation”, but
for now it’s enough to know that Rx can wrap any .NET event as an
observable source. Each event produces an item that provides two
properties containing the values normally passed to event handlers as
arguments (i.e., the sender and the event arguments).

Example 11-15. Filtering items with a LINQ query
IObservable<EventPattern<MouseEventArgs>> mouseMoves =
 Observable.FromEventPattern<MouseEventArgs>(
 background, nameof(background.MouseMove));

IObservable<Point> dragPositions =
 from move in mouseMoves
 where Mouse.Captured == background
 select move.EventArgs.GetPosition(background);

dragPositions.Subscribe(point => { line.Points.Add(point); });

The where clause in the LINQ query filters the events so that we process
only those events that were raised while a specific UI element
(background) has captured the mouse. This particular example is based
on WPF, but in general, Windows desktop applications that want to support
dragging capture the mouse when the mouse button is pressed and release it
afterward. This ensures that the capturing element receives mouse move
events for as long as the drag is in progress, even if the mouse moves over
other UI elements. Typically, UI elements receive mouse move events when
the mouse is over them even if they have not captured the mouse. So I need
that where clause in Example 11-15 to ignore those events, leaving only
mouse movements that occur while a drag is in progress. So, for the code in
Example 11-15 to work, you’d need to attach event handlers such as those
in Example 11-16 to the relevant element’s MouseDown and MouseUp
events.

Example 11-16. Capturing the mouse
private void OnBackgroundMouseDown(object sender,
MouseButtonEventArgs e)
{
 background.CaptureMouse();
}

private void OnBackgroundMouseUp(object sender,
MouseButtonEventArgs e)
{
 if (Mouse.Captured == background)
 {
 background.ReleaseMouseCapture();
 }
}

The select clause in Example 11-15 works in Rx just like it does in
LINQ to Objects, or with any other LINQ provider. It allows us to extract
information from the source items to use as the output. In this case,

mouseMoves is an observable sequence of
EventPattern<MouseEventArgs> objects, but what I really want is
an observable sequence of mouse locations. So the select clause in
Example 11-15 asks for the position relative to a particular UI element.

The upshot of this query is that dragPositions refers to an observable
sequence of Point values, which will report each change of mouse
position that occurs while a particular UI element in my application has
captured the mouse. This is a hot source, because it represents something
that’s happening live: mouse input. The LINQ filtering and projection
operators do not change the nature of the source, so if you apply them to a
hot source, the resulting query will also be hot, and if the source is cold, the
filtered result will be too.

WARNING
Operators do not detect the hotness of the source. The Where and Select operators
just pass this aspect straight through. Each time you subscribe to the final query
produced by the Select operator, it will subscribe to its input. In this case, the input
was the observable returned by the Where operator, which will in turn subscribe to the
source produced by adapting the mouse move events. If you subscribe a second time,
you’ll get a second chain of subscriptions. The hot event source will broadcast every
event to both chains, so each item will go through the filtering and projection process
twice. So be aware that attaching multiple subscribers to a complex query of a hot
source will work but may incur unnecessary expense. If you need to do this, it may be
better to call Publish on the query, which as you’ve seen, can make a single
subscription to its input and then multicast each item to all its subscribers.

The final line of Example 11-15 subscribes to the filtered and projected
source and adds each Point value it produces to the Points collection of
another UI element called line. That’s a Polyline element, not shown
here, and the upshot of this is that you can scrawl on the application’s
window with the mouse. (If you’ve been doing Windows development for
long enough, you may remember the Scribble examples—the effect here is
much the same.)

1

Rx provides most of the standard query operators described in Chapter 10.
Most of these work in Rx exactly as they do with other LINQ
implementations. However, some work in ways that may seem slightly
surprising at first glance, as I will describe in the next few sections.

Grouping Operators
The standard grouping operator, GroupBy, produces a sequence of
sequences. With LINQ to Objects, it returns
IEnumerable<IGrouping<TKey, TSource>>, and as you saw in
Chapter 10, IGrouping<TKey, TSource> itself derives from
IEnumera ble <TSource>. The GroupJoin is similar in concept:
although it returns a plain IEnumerable<T>, that T is the result of a
projection function that is passed a sequence as input. So, in either case,
you get what is logically a sequence of sequences.

In the world of Rx, grouping produces an observable sequence of
observable sequences. This is perfectly consistent but can seem a little
surprising because Rx introduces a temporal aspect: the observable source
that represents all the groups produces a new item (a new observable
source) at the instant it discovers each new group. Example 11-17 illustrates
this by watching for changes in the filesystem and then forming them into
groups based on the folder in which each occurred. For each group, we get
an IGroupedObservable<TKey, TSource>, which is the Rx
equivalent of IGrouping<TKey, TSource>.

Example 11-17. Grouping events
string path =
Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
var w = new FileSystemWatcher(path);
IObservable<EventPattern<FileSystemEventArgs>> changes =
 Observable.FromEventPattern<FileSystemEventHandler,
FileSystemEventArgs>(
 h => w.Changed += h, h => w.Changed -= h);
w.IncludeSubdirectories = true;
w.EnableRaisingEvents = true;

IObservable<IGroupedObservable<string, string>> folders =

2

 from change in changes
 group Path.GetFileName(change.EventArgs.FullPath)
 by Path.GetDirectoryName(change.EventArgs.FullPath);

folders.Subscribe(f =>
{
 Console.WriteLine("New folder ({0})", f.Key);
 f.Subscribe(file =>
 Console.WriteLine("File changed in folder {0}, {1}", f.Key,
file));
});

The lambda that subscribes to the grouping source, folders, subscribes to
each group that the source produces. The number of folders from which
events could occur is endless, as new ones could be added while the
program is running. So the folders observable will produce a new
observable source each time it detects a change in a folder it hasn’t seen
before, as Figure 11-2 shows.

Notice that the production of a new group doesn’t mean that any previous
groups are now complete, which is different than how we typically consume
groups in LINQ to Objects. When you run a grouping query on an
IEnumerable<T>, as it produces each group you can enumerate the
contents entirely before moving on to the next one. But you can’t do that
with Rx, because each group is represented as an observable, and
observables aren’t finished until they tell you they’re complete—instead,
each group subscription remains active. In Example 11-17, it’s entirely
possible that a folder for which a group had already started will be dormant
for a long time while activity occurs in other folders, only for it to start up
again later. And more generally, Rx’s grouping operators have to be
prepared for that to happen with any source.

Figure 11-2. Splitting an IObservable<T> into groups

Join Operators
Rx provides the standard Join and GroupJoin operators. However, they
work a bit differently than how LINQ to Objects or most database LINQ
providers handle joins. In those worlds, items from two input sets are
typically joined based on having some value in common.

In a database, a very common example when joining two tables would be to
connect rows where a foreign key column in a row from one table has the
same value as a primary key column in a row from the other table.
However, Rx does not base joins on values. Instead, items are joined if they
are contemporaneous—if their durations overlap, then they are joined.

But hang on a minute. What exactly is an item’s duration? Rx deals in
instantaneous events; producing an item, reporting an error, and finishing a
stream are all things that happen at a particular moment. So the join

operators use a convention: for each source item, you can provide a
function that returns an IObservable<T>.

The duration for that source item starts when the item is produced and
finishes when the corresponding IObservable<T> first reacts (i.e., it
either completes or generates an item or an error). Figure 11-3 illustrates
this idea. At the top is an observable source, beneath which is a series of
sources that define each item’s duration. At the bottom, I’ve shown the
duration that the per-item observables establish for their source items.

Figure 11-3. Defining duration with an IObservable<T> for each source item

Although you can use a different IObservable<T> for each source item,
as Figure 11-3 shows, you don’t have to—it’s valid to use the same source
every time. For example, if you apply the group operator to an
IObservable<T> representing a stream of MouseDown events, and you
then use another IObservable<T> representing a stream of MouseUp
events to define the duration of each item, this would cause Rx to consider
each MouseDown event’s “duration” to last until the next MouseUp event.
Figure 11-4 depicts this arrangement, and you can see that the effective
duration of each MouseDown event, shown at the bottom, is delineated by
a pair of MouseDown and MouseUp events.

Figure 11-4. Defining duration with a pair of event streams

A source can even define its own duration. For example, if you provide an
observable source representing MouseDown events, you might want each
item’s duration to end when the next item begins. This would mean that the
items had contiguous durations—after the first item arrives, there is always
exactly one current item, and it is the last one that occurred. Figure 11-5
illustrates this.

Figure 11-5. Adjacent item duration

Item durations are allowed to overlap. If you wanted to, you could supply a
duration-defining IObservable<T> that indicated that an input item’s
duration finishes some time after the next item begins.

Now that we know how Rx decides what constitutes an item’s duration for
the purposes of a join, how does it use that information? Remember, join
operators combine two inputs. (The duration-defining sources do not count
as an input. They provide additional information about one of the inputs.)
Rx considers a pair of items from the two input streams to be related if their
durations overlap. The way it presents related items in the output depends
on whether you use the Join or the GroupJoin operator. The Join
operator’s output is a stream containing one item for each pair of related
items. (You provide a projection function that will be passed each pair, and
it’s up to you what to do with them. This function gets to decide the output
item type for the joined stream.) Figure 11-6 shows two input streams based

on the events MouseDown and MouseMove (with durations defined by
MouseUp and MouseMove, respectively). These are similar to the sources
in Figures 11-4 and 11-5, but I’ve added letters and numbers to make it
easier to refer to each of the items in these streams. At the bottom of the
diagram is the observable the Join operator would produce for these two
streams.

Figure 11-6. Join operator

As you can see, any place where the durations of two items from the input
streams overlap, we get an output item combining the two inputs. If the
overlapping items started at different times (which will normally be the
case), the output item is produced whenever the later of the two inputs
started. The MouseDown event A starts before the MouseMove event 1,
so the resulting output, A1, occurs where the overlap begins (i.e., when
MouseMove event 1 occurs). But event 3 occurs before event B, so the
joined output B3 occurs when B starts.

Event 5’s duration does not overlap with any MouseDown items’
durations, so we do not see any items for that in the output stream.
Conversely, it would be possible for a MouseMove event to appear in
multiple output items (just like each MouseDown event does). If there had

been no 3 event, event 2 would have a duration that started inside A and
finished inside B, so as well as the A2 shown in Figure 11-6, there would be
a B2 event at the same time as B starts.

Example 11-18 shows code that performs the join illustrated in Figure 11-6,
using a query expression. As you saw in Chapter 10, the compiler turns
query expressions into a series of method calls, and Example 11-19 shows
the method-based equivalent of the query in Example 11-18.

Example 11-18. Query expression with join
IObservable<EventPattern<MouseEventArgs>> downs =
 Observable.FromEventPattern<MouseEventArgs>(
 background, nameof(background.MouseDown));
IObservable<EventPattern<MouseEventArgs>> ups =
 Observable.FromEventPattern<MouseEventArgs>(
 background, nameof(background.MouseUp));
IObservable<EventPattern<MouseEventArgs>> allMoves =
 Observable.FromEventPattern<MouseEventArgs>(
 background, nameof(background.MouseMove));

IObservable<Point> dragPositions =
 from down in downs
 join move in allMoves
 on ups equals allMoves
 select move.EventArgs.GetPosition(background);

Example 11-19. Join in code
IObservable<Point> dragPositions = downs.Join(
 allMoves,
 down => ups,
 move => allMoves,
 (down, move) => move.EventArgs.GetPosition(background));

We can use the dragPositions observable source produced by either of
these examples to replace the one in Example 11-15. We no longer need to
filter based on whether the background element has captured the mouse,
because Rx is now providing us only move events whose duration overlaps
with the duration of a mouse down event. Any moves that happen in
between mouse presses will either be ignored or, if they are the last move to
occur before a mouse down, we’ll receive that position at the moment the
mouse button is pressed.

GroupJoin combines items in a similar way, but instead of producing a
single observable output, it produces an observable of observables. For the
present example, that would mean that its output would produce a new
observable source for each MouseDown input. This would consist of all the
pairs containing that input, and it would have the same duration as that
input. Figure 11-7 shows this operator in action with the same input events
as Figure 11-6. I’ve put vertical bars on the ends of the output sequences to
clarify when they will call their observers’ OnComplete methods. The
start and finish of these observables align exactly with the duration of the
corresponding input, so there is often a significant gap between when they
produce their final output item and when they complete.

Figure 11-7. GroupJoin operator

In general, with LINQ, the GroupJoin operator is able to produce empty
groups, so unlike the Join operator, there will be one output for each item
from the first input even if there are no corresponding items from the other
stream. The Rx GroupJoin works the same way, adding in a temporal
aspect. Each output group starts at the same moment the corresponding

input event happens (MouseDown, in this example) and ends when that
event is deemed to have finished (at the next MouseUp here); if there were
no moves in that time, that observable will generate no items. Since move
event durations are contiguous here, that could happen only before
receiving the first move. But in joins where the second input’s items have
noncontiguous durations, empty groups are more likely.

In the context of my example application that allows the user to scribble in
a window with the mouse, this grouped output is useful, because it presents
each individual drag as a separate object. This means I could create a new
line for each drag, rather than adding points onto the same increasingly long
line. With the code in Example 11-15, each new drag operation will draw a
line from wherever the previous drag finished to the new location, making it
impossible to draw separate shapes. But grouped output makes separation
easy. Example 11-20 subscribes to the grouped output, and for each new
group (which represents a new drag operation), it creates a new Polyline
to render the scribble and then subscribes to the items in the group to
populate that individual line.

Example 11-20. Adding a new line for each drag operation
var dragPointSets = from mouseDown in downs
 join move in allMoves
 on ups equals allMoves into m
 select m.Select(e =>
e.EventArgs.GetPosition(background));

dragPointSets.Subscribe(dragPoints =>
{
 var currentLine = new Polyline { Stroke = Brushes.Black,
StrokeThickness = 2 };
 background.Children.Add(currentLine);

 dragPoints.Subscribe(point =>
 {
 currentLine.Points.Add(point);
 });
});

Just to be clear, all of this works in real time even with a join operator—
these are all hot sources. The IObservable<IObservable<Point>>

returned by GroupJoin in Example 11-20 will produce a new group the
instant the mouse button is pressed. The IObservable<Point> from
that group will produce a new Point immediately for each MouseMove
event. The upshot is that the user sees the line appear and grow instantly
when dragging the mouse.

SelectMany Operator
As you saw in Chapter 10, the SelectMany operator effectively flattens a
collection of collections into a single one. This operator gets used when a
query expression has multiple from clauses, and with LINQ to Objects, its
operation is similar to having nested foreach loops. With Rx, it still has
this flattening effect—it lets you take an observable source where each item
it produces is also an observable source (or can be used to generate one),
and the result of the SelectMany operator will be a single observable
sequence that contains all of the items from all of the child sources.
However, as with grouping, things may be less orderly than in LINQ to
Objects. The push-driven nature of Rx, with its potential for asynchronous
operation, makes it possible for all of the observable sources involved to be
pushing new items at once, including the original source that is used as a
source of nested sources. (The operator still ensures that only one event will
be delivered at a time—when it calls on OnNext, it waits for that to return
before making another call. The potential for chaos only goes as far as
mixing up the order in which events are delivered.)

When you use LINQ to Objects to iterate through a jagged array, everything
happens in a straightforward order. It will retrieve the first nested array and
then iterate through all the elements in that array before moving to the next
nested array and iterating through that, and so on. But this orderly flattening
occurs only because with IEnumerable<T>, the consumer of items is in
control of when to retrieve which items. With Rx, subscribers receive items
when sources provide them.

Despite the free-for-all, the behavior is straightforward enough: the output
stream produced by SelectMany just provides items as and when the

sources provide them.

Aggregation and Other Single-Value Operators
Several of the standard LINQ operators reduce an entire sequence of values
to a single value. These include the aggregation operators, such as Min,
Sum, and Aggregate; the quantifiers Any and All; and the Count
operator. It also includes selective operators, such as ElementAt. These
are available in Rx, but unlike most LINQ implementations, the Rx
implementations do not return plain single values. They all return an
IObservable<T>, just like operators that produce sequences as outputs.

NOTE
The First, Last, FirstOrDefault, LastOrDefault, Single, and
SingleOrDefault operators should all work the same way, but for historical
reasons, they do not. Introduced in v1 of Rx, they returned single values that were not
wrapped in an IObserva ble <T>, which meant they would block until the source
provided what they needed. This doesn’t fit well with a push-based model and risks
introducing deadlock, so these are now deprecated, and there are new asynchronous
versions that work the same way as the other single-value operators in Rx. These all just
append Async to the original operators’ names (e.g., FirstAsync, LastAsync,
etc.).

Each of these operators still produces a single value, but they all present
that value as an observable source. The reason is that unlike LINQ to
Objects, Rx cannot enumerate its input to calculate the aggregate value or to
find the value being selected. The source is in control, so the Rx versions of
these operators have to wait for the source to provide its values—like all
operators, the single-value operators have to be reactive, not proactive.
Operators that need to see every value, such as Average, cannot produce
their result until the source says it has finished. Even an operator that
doesn’t need to wait until the very end of the input, such as FirstAsync
or ElementAt, still cannot do anything until the source decides to provide

the value the operator is waiting for. As soon as a single-value operator is
able to provide a value, it does so and then completes.

The ToArray, ToList, ToDictionary, and ToLookup operators
work in a similar way. Although these all produce the entire contents of the
source, they do so as a single output object, which is wrapped as a single-
item observable source.

If you really want to sit and wait for the value of any of these items, you
can use the Wait operator, a nonstandard operator specific to Rx available
on any IObserva ble <T>. This blocking operator waits for the source to
complete and then returns the final element, so the “sit and wait” behavior
of the deprecated First, Last, etc., operators is still available; it’s just no
longer the default. Alternatively, you can use C#’s asynchronous language
features—you can give the await keyword an observable source.
Logically, it does the same thing as Wait, but it does so with an efficient
nonblocking asynchronous wait of the kind described in Chapter 17.

Concat Operator
Rx’s Concat operator shares the same concept as other LINQ
implementations: it combines two input sequences to produce a sequence
that will produce every item in its first input, followed by every item in its
second input. (In fact, Rx goes further than some LINQ providers and can
accept a collection of inputs and will concatenate them all.) This is useful
only if the first stream eventually completes—that’s true in LINQ to
Objects too, of course, but infinite sources are more common in Rx. Also,
be aware that this operator does not subscribe to the second stream until the
first has finished. This is because cold streams typically start producing
items when you subscribe, and the Concat operator does not want to have
to buffer the second source’s items while it waits for the first to complete.
This means that Concat may produce nondeterministic results when used
with hot sources. (If you want an observable source that contains all the
items from two hot sources, use Merge, which I’ll describe shortly.)

Rx is not satisfied with merely providing standard LINQ operators. It
defines many more of its own operators.

Rx Query Operators
One of Rx’s main goals is to simplify working with multiple potentially
independent observable sources that produce items asynchronously. Rx’s
designers sometimes refer to “orchestration and synchronization,” meaning
that your system may have many things going on at once but that you need
to achieve some kind of coherency in how your application reacts to events.
Many of Rx’s operators are designed with this goal in mind.

NOTE
Not everything in this section is driven by the unique requirements of Rx. A few of Rx’s
nonstandard operators (e.g., Scan) would make perfect sense in other LINQ providers.
And versions of many of these are available for IEnumerable<T> in the Interactive
Extensions for .NET (Ix), which, as mentioned earlier, are to be found in the
System.Interactive NuGet package.

Rx has such a large repertoire of operators that to do them all justice would
roughly quadruple the size of this chapter, which is already on the long side.
Since this is not a book about Rx, and because some of the operators are
very specialized, I will just pick some of the most useful. I recommend
browsing through the Rx documentation or the source to discover the full
and remarkably comprehensive set of operators it provides.

Merge
The Merge operator combines all of the elements from two or more
observable sequences into a single observable sequence. I can use this to fix
a problem that occurs in Examples 11-15, 11-18, and 11-20. These all
process mouse input, and if you’ve done much Windows UI programming,
you know that you will not necessarily get a mouse move notification

https://github.com/dotnet/reactive

corresponding to the points at which the mouse button was pressed and
released. The notifications for these button events include mouse location
information, so Windows sees no need to send a separate mouse move
message providing these locations, because it would just be sending you the
same information twice. This is perfectly logical, and also rather annoying.
These start and end locations are not in the observable source that
represents mouse positions in those examples. I can fix that by merging in
the positions from all three events. Example 11-21 shows how to fix
Example 11-15.

Example 11-21. Merging observables
IObservable<EventPattern<MouseEventArgs>> downs =
 Observable.FromEventPattern<MouseEventArgs>(
 background, nameof(background.MouseDown));
IObservable<EventPattern<MouseEventArgs>> ups =
 Observable.FromEventPattern<MouseEventArgs>(
 background, nameof(background.MouseUp));
IObservable<EventPattern<MouseEventArgs>> allMoves =
 Observable.FromEventPattern<MouseEventArgs>(
 background, nameof(background.MouseMove));

IObservable<EventPattern<MouseEventArgs>> dragMoves =
 from move in allMoves
 where Mouse.Captured == background
 select move;

IObservable<EventPattern<MouseEventArgs>> allDragPositionEvents =
 Observable.Merge(downs, ups, dragMoves);

IObservable<Point> dragPositions =
 from move in allDragPositionEvents
 select move.EventArgs.GetPosition(background);

I’ve created three observables to represent the three relevant events:
MouseDown, MouseUp, and MouseMove. Since all three of these need to
share the same projection (the select clause), but only one needs to filter
events, I’ve restructured things a bit. Only mouse moves need filtering, so
I’ve written a separate query for that. I’ve then used the
Observable.Merge method to combine all three event streams into
one.

3

NOTE
Merge is available both as an extension method and a nonextension static method.
If you use the extension methods available on a single observable, the only Merge
overloads available combine it with a single other source (optionally specifying a
scheduler). In this case, I had three sources, which is why I used the nonextension
method form. However, if you have an expression that is either an enumerable of
observable sources or an observable source of observable sources, you’ll find that there
are also Merge extension methods for these. So I could have written new[] {
downs, ups, dragMoves }.Merge().

My allDragPositionEvents variable refers to a single observable
stream that will report all the mouse moves I need. Finally, I run this
through a projection to extract the mouse position for each item. Again, the
result is a hot stream. As before, it will produce a position any time the
mouse moves while the background element has captured the mouse, but
it will also produce a position each time either the MouseDown or
MouseUp event occurs. I could subscribe to this with the same call shown
in the final line of Example 11-15 to keep my UI up to date, and this time, I
wouldn’t be missing the start and end positions.

In the example I’ve just shown, the sources are all endless, but that will not
always be the case. What should a merged observable do when one of its
inputs stops? If one stops due to an error, that error will be passed on by the
merged observable, at which point it will be complete—an observable is not
allowed to continue producing items after reporting an error. However,
although an input can unilaterally terminate the output with an error, if
inputs complete normally, the merged observable doesn’t complete until all
of its inputs are complete.

Windowing Operators
Rx defines two operators, Buffer and Window, that both produce an
observable output where each item is based on multiple adjacent items from
the source. (The name Window has nothing to do with UIs, by the way.)
Figure 11-8 shows three ways in which you could use the Buffer

operator. I’ve numbered the circles representing items in the input, and
below this are blobs representing the items that will emerge from the
observable source produced by Buffer, with lines and numbers indicating
which input items are associated with each output item. Window works in a
very similar way, as you’ll see shortly.

Figure 11-8. Sliding windows with the Buffer operator

In the first case, I’ve passed arguments of (2, 2), indicating that I want
each output item to correspond to two input items and that I want to start a
new buffer on every second input item. That may sound like two different
ways of saying the same thing until you look at the second example in
Figure 11-8, in which arguments of (3, 2) indicate that each output item
corresponds to three items from the input, but I still want the buffers to
begin on every other input. This means that each window—the set of items
from the input used to build an output item—overlaps with its neighbors.
This will happen whenever the second argument, the skip, is smaller than

the window. The first output item’s window contains the first, second, and
third input. The second output’s window contains the third, fourth, and fifth,
so the third item appears in both.

The final example in the figure shows a window size of three, but this time
I’ve asked for a skip size of one—so in this case, the window moves along
by only one input item at a time, but it incorporates three items from the
source each time. I could also specify a skip that is larger than the window,
in which case the input items that fell between windows would simply be
ignored.

The Buffer and Window operators tend to introduce a lag. In the second
and third cases, the window size of three means that the input observable
needs to produce its third value before the whole window can be provided
for the output item. With Buffer, this always means a delay of the size of
the window, but as you’ll see, with the Window operator, each window can
get under way before it is full.

NOTE
Buffer offers an overload that takes a single number, which has the same effect as
passing the same number twice. (E.g., instead of Buffer(2, 2), you could write just
Buffer(2).) This is logically equivalent to LINQ to Objects’ Chunk operator. As
discussed in Chapter 10, the main reason Rx didn’t use the same name is that Rx
invented Buffer about a decade before LINQ to Objects added Chunk.

The difference between the Buffer and Window operators is the way in
which they present the windowed items. Buffer is the most
straightforward. It provides an IObservable<IList<T>>, where T is
the input item type. In other words, if you subscribe to the output of
Buffer, for each window produced, your subscriber will be passed a list
containing all the items in the window. Example 11-22 uses this to produce
a smoothed-out version of the mouse locations from Example 11-15.

Example 11-22. Smoothing input with Buffer
IObservable<Point> smoothed = from points in
dragPositions.Buffer(5, 2)
 let x = points.Average(p => p.X)
 let y = points.Average(p => p.Y)
 select new Point(x, y);

The first line of this query states that I want to see groups of five
consecutive mouse locations, and I want one group for every other input.
The rest of the query calculates the average mouse position within the
window and produces that as the output item. Figure 11-9 shows the effect.
The top line is the result of using the raw mouse positions. The line
immediately beneath it uses the smoothed points generated by Example 11-
22 from the same input. As you can see, the top line is rather ragged, but the
bottom line has smoothed out a lot of the lumps.

Figure 11-9. Smoothing in action

Example 11-22 uses a mixture of LINQ to Objects and Rx’s LINQ
implementation. The query expression itself uses Rx, but the range variable,
points, is of type IList<Point> (because Buffer returns an
IObservable<IList<Point>> in this example). So the nested
queries that invoke the Average operator on points will get the LINQ
to Objects implementation.

If the Buffer operator’s input is hot, it will produce a hot observable as a
result. So you could subscribe to the observable in the smoothed variable
in Example 11-22 with similar code to the final line of Example 11-15, and
it would show the smoothed line in real time as you drag the mouse. As
discussed, there will be a slight lag, of course—the code specifies a skip of
two, so it will update the screen only for every other mouse event.
Averaging over the last five points will also tend to increase the gap

between the mouse pointer and the end of the line. With these parameters,
the discrepancy is small enough not to be too distracting, but with more
aggressive smoothing, it could get annoying.

The Window operator is very similar to the Buffer operator, but instead
of presenting each window as an IList<T>, it provides an
IObservable<T>. If you used Window on dragPositions in
Example 11-22, the result would be IObservable<IObserva ble
<Point>>. Figure 11-10 shows how the Window operator would work in
the last of the scenarios illustrated in Figure 11-8, and as you can see, it can
start each window sooner. It doesn’t have to wait until all of the items in the
window are available; instead of providing a fully populated list containing
the window, each output item is an IObservable<T> that will produce
the window’s items as and when they become available. Each observable
produced by Window completes immediately after supplying the final item
(i.e., at the same instant at which Buffer would have provided the whole
window). So, if your processing depends on having the whole window,
Window can’t get it to you any faster, because it’s ultimately governed by
the rate at which input items arrive, but it will start to provide values earlier.

One potentially surprising feature of the observables produced by Window
in this example is their start times. Whereas they end immediately after
producing their final item, they do not start immediately before producing
their first. The observable representing the very first window starts right
away—you will receive that observable as soon as you subscribe to the
observable of observables the operator returns. So the first window will be
available immediately, even if the Window operator’s input hasn’t done
anything yet. Then each new window starts as soon as all the input items it
needs to skip have been received. In this example, I’m using a skip count of
one, so the second window starts after the input has produced one item, the
third after two have been produced, and so on.

As you’ll see later in this section, and also in “Timed Operations”, Window
and Buffer support some other ways to define when each window starts
and stops. The general pattern is that as soon as the Window operator gets

to a point where a new item from the source would go into a new window,
the operator creates that window, anticipating the window’s first item rather
than waiting for it (see Figure 11-10).

Figure 11-10. Window operator

NOTE
If the input completes, all currently open windows will also complete. This means that
it’s possible to see empty windows. (In fact, with a skip size of one, you’re guaranteed
to get one empty window if the source completes.) In Figure 11-10, one window right at
the bottom has started but has not yet produced any items. If the input were to complete
without producing any more items, the three observable sources still in progress would
also complete, including that final one that hasn’t yet produced anything.

Because Window delivers items into windows as soon as the source
provides them, it might enable you to get started with processing sooner
than you can with Buffer, perhaps improving overall responsiveness. The
downside of Window is that it tends to be more complex—your subscribers
will start receiving output values before all the items for the corresponding
input window are available. Whereas Buffer provides you with a list that
you can inspect at your leisure, with Window, you’ll need to continue
working in Rx’s world of sequences that produce items only when they’re
good and ready. To perform the same smoothing as Example 11-22 with
Window requires the code in Example 11-23.

Example 11-23. Smoothing with Window
IObservable<Point> smoothed =
 from points in dragPositions.Window(5, 2)
 from totals in points.Aggregate(
 new { X = 0.0, Y = 0.0, Count = 0 },
 (acc, point) => new
 { X = acc.X + point.X, Y = acc.Y + point.Y, Count =
acc.Count + 1 })
 where totals.Count > 0
 select new Point(totals.X / totals.Count, totals.Y /
totals.Count);

This is a little more complicated because I’ve been unable to use the
Average operator, due to the need to cope with the possibility of empty
windows. (Strictly speaking, that doesn’t matter in the case where I have
one Polyline that keeps getting longer and longer. But if I group the
points by drag operation, as Example 11-20 does, each individual
observable source of points will complete at the end of the drag, forcing me
to handle any empty windows.) The Average operator produces an error if
you provide it with an empty sequence, so I’ve used the Aggregate
operator instead, which lets me add a where clause to filter out empty
windows instead of crashing. But that’s not the only aspect that is more
complex.

As I mentioned earlier, all of Rx’s aggregation operators—Aggregate,
Min, Max, and so on—work differently than with most LINQ providers.
LINQ requires these operators to reduce the stream down to a single value,

so they normally return a single value. For example, if I were to call the
LINQ to Objects version of Aggregate with the arguments shown in
Example 11-23, it would return a single value of the anonymous type I’m
using for my accumulator. But in Rx, the return type is
IObservable<T> (where T is that accumulator type in this case). It still
produces a single value, but it presents that value through an observable
source. Unlike LINQ to Objects, which can enumerate its input to calculate,
say, an average, the Rx operator has to wait for the source to provide its
values, so it can’t produce an aggregate of those values until the source says
it has finished.

Because the Aggregate operator returns an IObservable<T>, I’ve
had to use a second from clause. This passes that source to the
SelectMany operator, which extracts all values and makes them appear
in the final stream—in this case, there is just one value (per window), so
SelectMany is effectively unwrapping the averaged point from its single-
item stream.

The code in Example 11-23 is a little more complex than Example 11-22,
and I think it’s considerably harder to understand how it works. Worse, it
doesn’t even offer any benefit. The Aggregate operator will begin its
work as soon as inputs become available, but the code cannot produce the
final result—the average—until it has seen every point in the window. If
I’m going to have to wait until the end of the window before I can update
the UI, I may as well stick with Buffer. So, in this particular case,
Window was a lot more work for no benefit. However, if the work being
done on the items in the window was less trivial, or if the volumes of data
involved were so large that you didn’t want to buffer the entire window
before starting to process it, the extra complexity could be worth the benefit
of being able to start the aggregation process without having to wait for the
whole input window to become available.

Demarcating windows with observables
The Window and Buffer operators provide some other ways of defining
when windows should start and finish. Just as the join operators can specify

duration with an observable, you can supply a function that returns a
duration-defining observable for each window. Example 11-24 uses this to
break keyboard input into words. The keySource variable in this example
is the one from Example 11-11. It’s an observable sequence that produces
an item for each keypress.

Example 11-24. Breaking text into words with windows
IObservable<IObservable<char>> wordWindows = keySource.Window(
 () => keySource.FirstAsync(char.IsWhiteSpace));

IObservable<string> words = from wordWindow in wordWindows
 from chars in wordWindow.ToArray()
 select new string(chars).Trim();

words.Subscribe(word => Console.WriteLine("Word: " + word));

The Window operator will immediately create a new window in this
example, and it will also invoke the lambda I’ve supplied to find out when
that window should end. It will keep it open until the observable source my
lambda returns either produces a value or completes. When that happens,
Window will immediately open the next window, invoking my lambda
again to get another observable to determine the length of the second
window, and so on. The lambda here produces the next whitespace
character from the keyboard, so the window will close on the next space. In
other words, this breaks the input sequence into a series of windows where
each window contains zero or more nonwhitespace characters followed by
one whitespace character.

The observable sequence the Window operator returns presents each
window as an IObservable<char>. The second statement in Example
11-24 is a query that converts each window to a string. (This will produce
empty strings if the input contains multiple adjacent whitespace characters.
That’s consistent with the behavior of the string type’s Split method,
which performs the pull-oriented equivalent of this partitioning. If you
don’t like it, you can always filter out the blanks with a where clause.)

Because Example 11-24 uses Window, it will start making characters for
each word available as soon as the user types them. But because my query

calls ToArray on the window, it will end up waiting until the window
completes before producing anything. This means Buffer would be
equally effective. It would also be simpler. As Example 11-25 shows, I
don’t need a second from clause to collect the completed window if I use
Buffer, because it provides me with windows only once they are
complete.

Example 11-25. Word breaking with Buffer
IObservable<IList<char>> wordWindows = keySource.Buffer(
 () => keySource.FirstAsync(char.IsWhiteSpace));

IObservable<string> words = from wordWindow in wordWindows
 select new
string(wordWindow.ToArray()).Trim();

The Scan Operator
The Scan operator is very similar to the standard Aggregate operator,
with one difference. Instead of producing a single result after its source
completes, it produces a sequence containing each accumulator value in
turn. To illustrate this, I will first introduce a record type that will act as a
very simple model for a stock trade. This type, shown in Example 11-26,
also defines a static method that provides a randomly generated stream of
trades for test purposes.

Example 11-26. Simple stock trade with test stream
public record Trade(string StockName, decimal UnitPrice, int
Number)
{
 public static IObservable<Trade> TestStream()
 {
 return Observable.Create<Trade>(obs =>
 {
 string[] names = { "MSFT", "GOOGL", "AAPL" };
 var r = new Random(0);
 for (int i = 0; i < 100; ++i)
 {
 var t = new Trade(
 StockName: names[r.Next(names.Length)],
 UnitPrice: r.Next(1, 100),
 Number: r.Next(10, 1000));

 obs.OnNext(t);
 }
 obs.OnCompleted();
 return Disposable.Empty;
 });
 }
}

Example 11-27 shows the normal Aggregate operator being used to
calculate the total number of stocks traded, by adding up the Number
property of every trade. (You’d normally just use the Sum operator, of
course, but I’m showing this for comparison with Scan.)

Example 11-27. Summing with Aggregate
IObservable<Trade> trades = Trade.TestStream();

IObservable<long> tradeVolume = trades.Aggregate(
 0L, (total, trade) => total + trade.Number);
tradeVolume.Subscribe(Console.WriteLine);

This displays a single number, because the observable produced by
Aggregate provides only a single value. Example 11-28 shows almost
exactly the same code but using Scan instead.

Example 11-28. Running total with Scan
IObservable<Trade> trades = Trade.TestStream();

IObservable<long> tradeVolume = trades.Scan(
 0L, (total, trade) => total + trade.Number);
tradeVolume.Subscribe(Console.WriteLine);

Instead of producing a single output value, this produces one output item
for each input, which is the running total for all items the source has
produced so far. Scan is particularly useful if you need aggregation-like
behavior in an endless stream, such as one based on an event source.
Aggregate is no use in that scenario because it will not produce anything
if its input never completes.

The Amb Operator
Rx defines an operator with the somewhat cryptic name of Amb. (See the
next sidebar, “Why Amb?”) This takes any number of observable sequences
and waits to see which one does something first. (The documentation talks
about which of the inputs “reacts” first. This means that it calls any of the
three IObserver<T> methods.) Whichever input jumps into action first
effectively becomes the Amb operator’s output—it forwards everything the
chosen stream does, immediately unsubscribing from the other streams. (If
any of them manage to produce elements after the first stream does, but
before the operator has had time to unsubscribe, those elements will be
ignored.)

WHY AMB?
The Amb operator’s name is short for ambiguous. This seems like a
violation of Microsoft’s own class library design guidelines, which
forbid abbreviations unless the shortened form is more widely used than
the full name and likely to be understood even by nonexperts. This
operator’s name is well established—it was introduced in 1963 in a
paper by John McCarthy (inventor of the LISP programming language).
However, it’s not all that widely used, so the name fails the test of being
instantly understandable by nonexperts.

However, the expanded name isn’t really any more transparent. If
you’re not already familiar with the operator, the name Ambiguous
wouldn’t be much more help in trying to guess what it does than just
Amb. If you are familiar with it, you will already know that it’s called
Amb. So there is no obvious downside to using the abbreviation, and
there’s a benefit for people who already know it.

Another reason the Rx team used this name was to pay homage to John
McCarthy, whose work was profoundly influential for computing in
general, and for the LINQ and Rx projects in particular. (McCarthy’s
work had a direct impact on many of the features discussed in this
chapter and Chapter 10.)

You might use this operator to optimize a system’s response time by
sending a request to multiple machines in a server pool and using the result
from whichever responds first. (There are dangers with this technique, of
course, not least of which is that it could increase the overall load on your
system so much that the effect is to slow everything down, not speed
anything up. However, there are some scenarios in which careful
application of this technique can be successful.)

DistinctUntilChanged
The final operator I’m going to describe in this section is very simple but
rather useful. The DistinctUntilChanged operator removes adjacent
duplicates. Suppose you have an observable source that produces items on a
regular basis but tends to produce the same value multiple times in a row.
You might need to take action only when a different value emerges.
DistinctUntilChanged is for exactly this scenario—when its input
produces an item, it will be passed on only if it was different from the
previous item (or if it was the first item).

I’ve not yet shown all of the Rx operators I want to introduce. However, the
remaining ones, which I’ll discuss in “Timed Operations”, are all time
sensitive. And before I can show those, I need to describe how Rx handles
timing.

Schedulers
Rx performs certain work through schedulers. A scheduler is an object that
provides three services. The first is to decide when to execute a particular
piece of work. For example, when an observer subscribes to a cold source,
should the source’s items be delivered to the subscriber immediately, or
should that work be deferred? The second service is to run work in a
particular context. A scheduler might decide always to execute work on a
particular thread, for example. The third job is to keep track of time. Some
Rx operations are time dependent; to ensure predictable behavior and to
enable testing, schedulers provide a virtualized model for time, so Rx code
does not have to depend on the current time of day reported by .NET’s
DateTimeOffset class.

The scheduler’s first two roles are sometimes interdependent. For example,
Rx supplies a few schedulers for use in UI applications. There’s a
CoreDispatcherScheduler for Windows Store apps,
DispatcherScheduler for WPF applications, Control Sched uler
for Windows Forms programs, and a more generic one called

SynchronizationContextScheduler, which will work in all .NET
UI frameworks, albeit with slightly less control over the details than the
framework-specific ones. All of these have a common characteristic: they
ensure that work executes in a suitable context for accessing UI objects,
which typically means running the work on a particular thread. If code that
schedules work is running on some other thread, the scheduler may have no
choice but to defer the work, because it will not be able to run it until the UI
framework is ready. This might mean waiting for a particular thread to
finish whatever it is doing. In this case, running the work in the right
context necessarily also has an impact on when the work is executed.

This isn’t always the case, though. Rx provides two schedulers that use the
current thread. One of them, ImmediateScheduler, is extremely
simple: it runs work the instant it is scheduled. When you give this
scheduler some work, it won’t return until the work is complete. The other,
CurrentThreadScheduler, maintains a work queue, which gives it
some flexibility with ordering. For example, if some work is scheduled in
the middle of executing some other piece of work, it can allow the work
item in progress to finish before starting on the next. If no work items are
queued or in progress, CurrentThreadScheduler runs work
immediately, just like Immediate Sched uler. When a work item it has
invoked completes, the Current Th read Sched uler inspects the queue
and will invoke the next item if it’s not empty. So it attempts to complete all
work items as quickly as possible, but unlike ImmediateScheduler, it
will not start to process a new work item before the previous one has
finished.

Specifying Schedulers
Rx operations often do not go through schedulers. Many observable sources
invoke their subscribers’ methods directly. Sources that can generate a large
number of items in quick succession are typically an exception. For
example, the Range and Repeat methods for creating sequences use a
scheduler to govern the rate at which they provide items to new subscribers.
You can pass in an explicit scheduler or let them pick a default one. You can

also get a scheduler involved explicitly even when using sources that don’t
accept one as an argument.

ObserveOn
A common way to specify a scheduler is with one of the ObserveOn
extension methods defined by various static classes in the
System.Reactive.Linq namespace. This is useful if you want to
handle events in a specific context (such as the UI thread) even though they
may originate from somewhere else.

You can invoke ObserveOn on any IObservable<T>, passing in an
IScheduler, and it returns another IObservable<T>. If you
subscribe to the observable that returns, your observer’s OnNext,
OnCompleted, and OnError methods will all be invoked through the
scheduler you specified. Example 11-29 uses this to ensure that it’s safe to
update the UI in the item handler callback.

Example 11-29. ObserveOn specific scheduler
IObservable<Trade> trades = GetTradeStream();
IObservable<Trade> tradesInUiContext =
 trades.ObserveOn(DispatcherScheduler.Current);
tradesInUiContext.Subscribe(t =>
{
 tradeInfoTextBox.AppendText(
 $"{t.StockName}: {t.Number} at {t.UnitPrice}\r\n");
});

In this example, I used the DispatcherScheduler class’s static
Current property, which returns a scheduler that executes work via the
current thread’s Dispatcher. (Dispatcher is the class that manages
the UI message loop in WPF applications.) Rx’s
DispatcherObservable class defines various extension methods
providing WPF-specific overloads, and instead of passing in a scheduler, I
can call ObserveOn passing just a Dispatcher object. I could use this
in the codebehind for a UI element with code such as that in Example 11-
30.

4

Example 11-30. ObserveOn WPF Dispatcher
IObservable<Trade> tradesInUiContext =
trades.ObserveOn(this.Dispatcher);

The advantage of this overload is that I don’t need to be on the UI thread at
the point at which I call ObserveOn. The Current property used in
Example 11-29 works only if you are on the thread for the dispatcher you
require. If I’m already on that thread, there’s an even simpler way to set this
up. I can use the ObserveOnDispatcher extension method, which
obtains a DispatcherScheduler for the current thread’s dispatcher, as
shown in Example 11-31.

Example 11-31. Observing on the current dispatcher
IObservable<Trade> tradesInUiContext =
trades.ObserveOnDispatcher();

SubscribeOn
Most of the various ObserveOn extension methods have corresponding
SubscribeOn methods. (There’s also SubscribeOnDispatcher, the
counterpart of ObserveOn Dis patcher.) Instead of arranging for each
call to an observer’s methods to be made through the scheduler,
SubscribeOn performs the call to the source observable’s Subscribe
method through the scheduler. And if you unsubscribe by calling
Dispose, that will also be delivered through the scheduler. This can be
important for cold sources, because many perform significant work in their
Subscribe method, some even delivering all of their items immediately.

NOTE
In general, there’s no guarantee of any correspondence between the context in which
you subscribe to a source and the context in which the items it produces will be
delivered to a subscriber. Some sources will notify you from their subscription context,
but many won’t. If you need to receive notifications in a particular context, then unless
the source provides some way to specify a scheduler, use ObserveOn.

Passing schedulers explicitly
Some operations accept a scheduler as an argument. You will tend to find
this in operations that can generate many items. The
Observable.Range method that generates a sequence of numbers
optionally takes a scheduler as a final argument to control the context from
which these numbers are generated. This also applies to the APIs for
adapting other sources, such as IEnumerable<T> to observable sources,
as described in “Adaptation”.

Another scenario in which you can usually provide a scheduler is when
using an observable that combines inputs. Earlier, you saw how the Merge
operator combines the output of multiple sequences. You can provide a
scheduler to tell the operator to subscribe to the sources from a specific
context.

Finally, timed operations all depend on a scheduler. I will show some of
these in “Timed Operations”.

Built-in Schedulers
I’ve already described the four UI-oriented schedulers,
DispatcherScheduler (for WPF), CoreDispatcherScheduler
(for Windows Store apps), ControlScheduler (for Windows Forms),
and SynchronizationContextScheduler, and also the two
schedulers for running work on the current thread,
CurrentThreadScheduler and ImmediateScheduler. But there
are some others worth being aware of.

EventLoopScheduler runs all work items on a specific thread. It can
create a new thread for you, or you can provide it with a callback method
that it will invoke when it wants you to create the thread. You might use this
in a UI application to process incoming data. It lets you move work off the
UI thread to keep the application responsive but ensures that all processing
happens on a single thread, which can simplify concurrency issues.

NewThreadScheduler creates a new thread for each top-level work
item it processes. (If that work item spawns further work items, those will
run on the same thread, rather than creating new ones.) This is appropriate
only if you need to do a lot of work for each item, because threads have
relatively high startup and teardown costs in Windows. You are normally
better off using a thread pool if you need concurrent processing of work
items.

TaskPoolScheduler uses the Task Parallel Library’s (TPL) thread
pool. The TPL, described in Chapter 16, provides an efficient pool of
threads that can reuse a single thread for multiple work items, amortizing
the startup costs of creating the thread.

ThreadPoolScheduler uses the CLR’s thread pool to run work. This
is similar in concept to the TPL thread pool, but it’s a somewhat older piece
of technology. (The TPL was introduced in .NET 4.0, but the CLR thread
pool has existed since v1.0.) This is a bit less efficient in certain scenarios.
Rx introduced this scheduler because early versions of Rx supported old
versions of .NET that didn’t have the TPL. It retains it for backward-
compatibility reasons.

HistoricalScheduler is useful when you want to test time-sensitive
code without needing to execute your tests in real time. All schedulers will
provide a time-keeping service, but the HistoricalScheduler lets
you decide the exact rate at which you want the scheduler to behave as
though time is elapsing. So, if you need to test what happens if you wait 30
seconds, you can just tell the HistoricalScheduler to act as though
30 seconds have passed, without having to actually wait.

Subjects
Rx defines various subjects, classes that implement both IObserver<T>
and IObservable<T>. These can sometimes be useful if you need Rx to
provide a robust implementation of either of these interfaces, but the usual
Observable.Create or Subscribe methods are not convenient. For

example, perhaps you need to provide an observable source, and there are
several different places in your code from which you want to provide values
for that source to produce. This is awkward to fit into the Create
method’s subscription callback model and can be easier to handle with a
subject. Some of the subject types provide additional behavior, but I’ll start
with the simplest, Subject<T>.

Subject<T>
The Subject<T> class’s IObserver<T> implementation just relays
calls to all observers that have subscribed using its IObservable<T>
interface. So, if you subscribe one or more observables to a Subject<T>
and then call OnNext, the subject will call OnNext on each of its
subscribers. It’s the same for the other methods, OnCompleted and
OnError. This multicast relay is very similar to the facility provided by
the Publish operator I used in Example 11-11, so this provides an
alternative way for me to remove all of the code for tracking subscribers
from my KeyWatcher source, resulting in the code shown in Example 11-
32. This is much simpler than the original in Example 11-7, although not
quite as simple as the delegate-based version in Example 11-11.

Example 11-32. Implementing IObservable<T> with a Subject<T>
public class KeyWatcher : IObservable<char>
{
 private readonly Subject<char> _subject = new();

 public IDisposable Subscribe(IObserver<char> observer)
 {
 return _subject.Subscribe(observer);
 }

 public void Run()
 {
 while (true)
 {
 _subject.OnNext(Console.ReadKey(true).KeyChar);
 }
 }
}

5

This defers to a Subject<char> in its Subscribe method, so
everything that tries to subscribe to this KeyWatcher will end up being
subscribed to that subject instead. My loop can then just call the subject’s
OnNext method, and it’ll take care of broadcasting that to all the
subscribers.

In fact, I can simplify things further by exposing the observable as a
separate property, rather than making my entire type observable, as
Example 11-33 shows. Not only does this make the code slightly simpler,
but it also means my KeyWatcher could now provide multiple sources if
it wanted to.

Example 11-33. Providing an IObservable<T> as a property
public class KeyWatcher
{
 private readonly Subject<char> _subject = new();

 public IObservable<char> Keys => _subject;

 public void Run()
 {
 while (true)
 {
 _subject.OnNext(Console.ReadKey(true).KeyChar);
 }
 }
}

This is still not quite as simple as the combination of
Observable.Create and the Publish operator that I used in
Example 11-11, but it does offer two advantages. First, it’s now easier to see
when the loop that generates keypress notifications runs. I was in control of
that in Example 11-11, but for anyone not totally familiar with how
Publish works, it would not be obvious how this was being achieved. I
find Example 11-33 a little less cryptic. Second, if I wanted to, I could use
this subject from anywhere inside my KeyWatcher class, whereas in
Example 11-11, the only place from which I could easily provide an item
was inside the callback function invoked by Observable.Create. As it
happens, in this example I don’t need this flexibility, but in scenarios where

you do, a Subject<T> is likely to be a better choice than the callback
approach.

BehaviorSubject<T>
BehaviorSubject<T> looks almost exactly like a Subject<T>
except for one thing: when any observer first subscribes, it is guaranteed to
receive a value straightaway as long you have not completed the subject by
calling OnComplete. (If you have already completed the subject, it’ll just
call OnComplete immediately on any further subscribers.) It remembers
the last item it passed on and hands that out to new subscribers. When you
construct a BehaviorSubject<T>, you have to supply an initial value
that it will provide to new subscribers until the first call to OnNext.

One way to think of this subject is as Rx’s version of a variable. It’s
something that has a value that you can retrieve at any time, and its value
can also change over time. But being reactive, you subscribe to it to retrieve
its value, and your observer will be notified of any further changes until you
unsubscribe.

This subject has a mix of hot and cold characteristics. It will instantly
provide a value to any subscriber, making it seem like a cold source, but
once that’s happened, it then broadcasts new values to all subscribers, more
like a hot source does. There’s another subject with a similar mix, but that
takes the cold side a bit further.

ReplaySubject<T>
ReplaySubject<T> can record every value it receives from whichever
source you subscribe it to. (Or, if you invoke its methods directly, it
remembers every value you provide through OnNext.) Each new
subscriber to this subject will receive every item that the
ReplaySubject<T> has seen so far. So this is much more like an
ordinary cold subject—instead of just getting the most recent value as you
would from a BehaviorSubject<T>, you get a complete set of items.

However, once the ReplaySubject<T> has provided a particular
subscriber with all of the items it has recorded, it then transitions into more
hot-like behavior for that subscriber, because it will continue to provide
new incoming items.

So, in the long run, every subscriber to a ReplaySubject<T> will by
default see every item that the ReplaySubject<T> receives from its
source, regardless of how early or late that subscriber subscribed to the
subject.

In its default configuration, a ReplaySubject<T> will consume ever
more memory for as long as it is subscribed to a source. There’s no way to
tell it that it will have no more new subscribers and that it’s now OK for it
to discard old items that it has already distributed to all of its existing
subscribers. You should therefore not leave it subscribed indefinitely to an
endless source. However, you can limit the amount that a
ReplaySubject<T> buffers. It offers various constructor overloads,
some of which let you specify either an upper limit on the number of items
to replay or an upper limit on the time for which it will hold onto items.
Obviously, if you do this, new subscribers can no longer depend on getting
all of the items previously received.

AsyncSubject<T>
AsyncSubject<T> remembers just one value from its source, but unlike
Behavior Sub ject<T>, which remembers the most recent value,
AsyncSubject<T> waits for its source to complete. It will then produce
the final item as its output. If the source completes without providing any
values, the AsyncSubject<T> will do the same to its subscribers.

If you subscribe to an AsyncSubject<T> before its source has
completed, the AsyncSubject<T> will do nothing with your observer
until the source completes. But once the source has completed, the
AsyncSubject<T> acts as a cold source that provides a single value,
unless the source completed without providing a value, in which case this
subject will complete all new subscribers immediately.

Adaptation
Interesting and powerful though Rx is, it would not be much use if it existed
in a vacuum. If you are working with asynchronous notifications, it’s
possible that they will be supplied by an API that does not support Rx.
Although IObservable<T> and IObserver<T> have been around for
a long time (since .NET 4.0, which was released in 2010), not every API
that could support these interfaces does. Also, because Rx’s fundamental
abstraction is a sequence of items, there’s a good chance that at some point
you might need to convert between Rx’s push-oriented
IObservable<T> and the pull-oriented equivalents IEnumerable<T>
and IAsyncEnumerable<T>. Rx provides ways to adapt these and other
kinds of sources into IObservable<T>, and in some cases, it can adapt
in either direction.

IEnumerable<T> and IAsyncEnumerable<T>
Any IEnumerable<T> can easily be brought into the world of Rx thanks
to the ToObservable extension methods. These are defined by the
Observable static class in the System.Reactive.Linq namespace.
Example 11-34 shows the simplest form, which takes no arguments.

Example 11-34. Converting an IEnumerable<T> to an
IObservable<T>
public static void ShowAll(IEnumerable<string> source)
{
 IObservable<string> observableSource = source.ToObservable();
 observableSource.Subscribe(Console.WriteLine);
}

The ToObservable method itself does not enumerate its input—it just
returns a wrapper that implements IObservable<T>. This wrapper is a
cold source, and each time you subscribe an observer to it, only then does it
iterate through the input, passing each item to the observer’s OnNext
method and calling OnCompleted at the end. If the source throws an
exception, this adapter will call OnError. Example 11-35 shows how

ToObservable might work if it weren’t for the fact that it needs to use a
scheduler.

Example 11-35. How ToObservable might look without scheduler
support
public static IObservable<T> MyToObservable<T>(this IEnumerable<T>
input)
{
 return Observable.Create((IObserver<T> observer) =>
 {
 bool inObserver = false;
 try
 {
 foreach (T item in input)
 {
 inObserver = true;
 observer.OnNext(item);
 inObserver = false;
 }
 inObserver = true;
 observer.OnCompleted();
 }
 catch (Exception x)
 {
 if (inObserver)
 {
 throw;
 }
 observer.OnError(x);
 }
 return () => { };
 });
}

This is not how it really works, because Example 11-35 cannot use a
scheduler. (A full implementation would have been much harder to read,
defeating the purpose of the example, which was to show the basic idea
behind ToObservable.) The real method uses a scheduler to manage the
iteration process, enabling subscription to occur asynchronously if required.
It also supports stopping the work if the observer’s subscription is canceled
early. There’s an overload that takes a single argument of type
IScheduler, which lets you tell it to use a particular scheduler; if you
don’t provide one, it’ll use CurrentThreadScheduler.

When it comes to going in the other direction—that is, when you have an
IObservable<T>, but you would like to treat it as an
IEnumerable<T>—you can call the ToEnumerable extension
methods, also provided by the Observable class. Example 11-36 wraps
an IObservable<string> as an IEnumerable<string> so that it
can iterate over the items in the source using an ordinary foreach loop.

Example 11-36. Using an IObservable<T> as an IEnumerable<T>
public static void ShowAll(IObservable<string> source)
{
 foreach (string s in source.ToEnumerable())
 {
 Console.WriteLine(s);
 }
}

The wrapper subscribes to the source on your behalf. If the source provides
items faster than you can iterate over them, the wrapper will store the items
in a queue so you can retrieve them at your leisure. If the source does not
provide items as fast as you can retrieve them, the wrapper will just wait
until items become available.

The IAsyncEnumerable<T> interface provides the same model as
IEnumerable<T> but in a way that enables efficient asynchronous
operation using the techniques discussed in Chapter 17. Rx offers a
ToObservable extension method for this and also a
ToAsyncEnumerable method extension method for
IObservable<T>. These both come from the AsyncEnumerable
class, and to use that you will need a reference to a separate NuGet package
called System.Linq.Async.

.NET Events
Rx can wrap a .NET event as an IObservable<T> using the
Observable class’s static FromEventPattern method. Earlier, in
Example 11-17, I used a FileSystemWatcher, a class from the
System.IO namespace that raises various events when files are added,

deleted, renamed, or otherwise modified in a particular folder. Example 11-
37 reproduces the first part of that example, which I glossed over last time.
This code uses the Observable.FromEventPattern static method to
produce an observable source representing the watcher’s Created event.
(If you want to handle a static event, you can pass a Type object as the first
argument instead. Chapter 13 describes the Type class.)

Example 11-37. Wrapping an event in an IObservable<T>
string path =
Environment.GetFolderPath(Environment.SpecialFolder.MyPictures);
var watcher = new FileSystemWatcher(path);
watcher.EnableRaisingEvents = true;

IObservable<EventPattern<FileSystemEventArgs>> changes =
 Observable.FromEventPattern<FileSystemEventArgs>(
 watcher, nameof(watcher.Created));
changes.Subscribe(evt =>
Console.WriteLine(evt.EventArgs.FullPath));

On the face of it, this seems significantly more complicated than just
subscribing to the event in the normal way shown in Chapter 9, and with no
obvious advantage. And in this particular example, that would have been
better. However, one benefit of using Rx is that if you were writing a UI
application, you could use ObserveOn with a suitable scheduler to ensure
that your handler was always invoked on the right thread, regardless of
which thread raised the event. Of course, another benefit—and the usual
reason for doing this—is that you can use any of Rx’s query operators to
process the events. (That’s why the original Example 11-17 did this.)

The element type of the observable source that Example 11-37 produces is
Event Pat tern<FileSystemEventArgs>. The generic
EventPattern<T> is a type defined by Rx specifically for representing
the raising of an event, where the event’s delegate type conforms to the
standard pattern described in Chapter 9 (i.e., it takes two arguments, the
first being of type object, representing the object that raised the event,
and the second being some type derived from EventArgs, containing
information about the event). EventPattern<T> has two properties,
Sender and EventArgs, corresponding to the two arguments that an

event handler would receive. In effect, this is an object that represents what
would normally be a method call to an event handler.

A surprising feature of Example 11-37 is that the second argument to
FromEvent Pat tern is a string containing the name of the event. Rx
resolves this to the real event member at runtime. This is less than ideal for
a couple of reasons. First, it means that if you type the name in wrong, the
compiler won’t notice (although using the nameof operator mitigates this).
Second, it means the compiler can’t help you with types—if you handle a
.NET event directly with a lambda, the compiler can infer the argument
types from the event definition, but here, because we’re passing the event
name as a string, the compiler doesn’t know which event I’m using (or even
that I’m using an event at all), so I’ve had to specify the generic type
argument for the method explicitly. And again, if I get that wrong, the
compiler won’t know—it’ll be checked at runtime instead.

This string-based approach arises from a shortcoming of events: you can’t
pass an event as an argument. In fact, events are very limited members. You
can’t do anything with an event from outside of the class that defines it
other than adding or removing handlers. This is one of the ways in which
Rx improves on events—once you’re in the world of Rx, event sources and
subscribers are both represented as objects (implementing
IObservable<T> and IObserver<T>, respectively), making it
straightforward to pass them into methods as arguments. But that doesn’t
help us at the point where we’re dealing with an event that’s not yet in Rx’s
world.

Rx does provide an overload that doesn’t require you to use a string—you
can pass in delegates that add and remove the handlers for Rx, as Example
11-38 shows.

Example 11-38. Delegate-based event wrapping
IObservable<EventPattern<FileSystemEventArgs>> changes =
 Observable.FromEventPattern<FileSystemEventHandler,
FileSystemEventArgs>(
 h => watcher.Created += h, h => watcher.Created -= h);

This is somewhat more verbose, because it requires a generic type argument
specifying the handler delegate type as well as the event argument type. The
string-based version discovers the handler type for itself at runtime, but
because the normal reason for using the approach in Example 11-38 is to
get compile-time type checking, the compiler needs to know what types
you’re using, and the lambdas in that example don’t provide quite enough
information for the compiler to infer all the type arguments automatically.

As well as wrapping an event as an observable source, it’s possible to go in
the other direction. Rx defines an operator for
IObservable<EventPattern<T>> called ToEventPattern<T>.
(Note that this is not available for any old observable source—it has to be
an observable sequence of EventPattern<T>.) If you call this, it returns
an object that implements IEventPatternSource<T>. This defines a
single event called OnNext, of type EventHandler<T>, which allows
you to hook up an event handler in the ordinary .NET way to an observable
source.

Asynchronous APIs
.NET supports various asynchronous patterns, which I’ll be describing in
detail in Chapters 16 and 17. The first to be introduced in .NET was the
Asynchronous Programming Model (APM). However, this pattern is not
supported directly by the new C# asynchronous language features, so most
.NET APIs now use the TPL, and for older APIs the TPL offers adapters
that can provide a task-based wrapper for an APM-based API. Rx can
represent any TPL task as an observable source.

The basic model for all of .NET’s asynchronous patterns is that you start
some work that will eventually complete, optionally producing a result. So
it may seem odd to translate this into Rx, where the fundamental abstraction
is a sequence of items, not a single result. In fact, one useful way to
understand the difference between Rx and the TPL is that
IObservable<T> is analogous to IEnumerable<T>, while Task<T>
is analogous to a property of type T. Whereas with IEnumerable<T>

and properties, the caller decides when to fetch information from the
source, with IObservable<T> and Task<T>, the source provides the
information when it’s ready. The choice of which party decides when to
provide information is separate from the question of whether the
information is singular or a sequence of items. So a mapping between
singular asynchronous APIs and IObservable<T> seems a little
mismatched. But then we can cross similar boundaries in the
nonasynchronous world—as you saw in Chapter 10, LINQ defines various
standard operators that produce a single item from a sequence, such as
First or Last. Rx supports those operators, but it additionally supports
going in the other direction: bringing singular asynchronous sources into a
stream-like world. The upshot is an IObservable<T> source that
produces just a single item (or reports an error if the operation fails). The
analogy in the nonasynchronous world would be taking a single value and
wrapping it in an array so that you can pass it to an API that requires an
IEnumerable<T>.

Example 11-39 uses this facility to produce an IObservable<string>
that will either produce a single value containing the text downloaded from
a particular URL or report a failure should the download fail.

Example 11-39. Wrapping a Task<T> as an IObservable<T>
public static IObservable<string> GetWebPageAsObservable(
 Uri pageUrl, IHttpClientFactory cf)
{
 HttpClient web = cf.CreateClient();
 Task<string> getPageTask = web.GetStringAsync(pageUrl);
 return getPageTask.ToObservable();
}

The ToObservable method used in this example is an extension method
defined for Task by Rx. For this to be available, you’ll need the
System.Reactive.Thread ing .Tasks namespace to be in scope.

One potentially unsatisfactory feature of Example 11-39 is that it will
attempt the download only once, no matter how many observers subscribe
to the source. Depending on your requirements, that might be fine, but in
some scenarios, it might make sense to attempt to download a fresh copy

every time. If you want that, a better approach would be to use the
Observable.FromAsync method, because you pass that a lambda that
it invokes each time a new observer subscribes. Your lambda returns a task
that will then be wrapped as an observable source. Example 11-40 uses this
to start a new download for each subscriber.

Example 11-40. Creating a new task for each subscriber
public static IObservable<string> GetWebPageAsObservable(
 Uri pageUrl, IHttpClientFactory cf)
{
 return Observable.FromAsync(() =>
 {
 HttpClient web = cf.CreateClient();
 return web.GetStringAsync(pageUrl);
 });
}

This might be suboptimal if you have many subscribers. On the other hand,
it’s more efficient when nothing attempts to subscribe at all. Example 11-39
starts the asynchronous work immediately without even waiting for any
subscribers. That may be a good thing—if the stream will definitely have
subscribers, kicking off slow work without waiting for the first subscriber
will reduce your overall latency. However, if you are writing a class in a
library that presents multiple observable sources, which might not all be
used, deferring work until the first subscription might be better.

Timed Operations
Because Rx can work with live streams of information, you may need to
handle items in a time-sensitive way. For example, the rate at which items
arrive might be important, or you may wish to group items based on when
they were provided. In this final section, I’ll describe some of the time-
based operators that Rx offers.

Interval
The Observable.Interval method returns a sequence that regularly
produces values at the interval specified by an argument of type
TimeSpan. Example 11-41 creates and subscribes to a source that will
produce one value every second.

Example 11-41. Regular items with Interval
IObservable<long> src =
Observable.Interval(TimeSpan.FromSeconds(1));
src.Subscribe(i => Console.WriteLine($"Event {i} at
{DateTime.Now:T}"));

The items produced by Interval are of type long. It produces values of
zero, one, two, etc.

Interval handles each subscriber independently (i.e., it is a cold source).
To demonstrate this, add the code in Example 11-42 after that in Example
11-41 to wait for a short while and then create a second subscription.

Example 11-42. A second subscriber to an Interval source
Thread.Sleep(2500);
src.Subscribe(i => Console.WriteLine(
 $"Event {i} at {DateTime.Now:T} (2nd subscriber)"));

The second subscriber subscribes two and a half seconds after the first one,
so this will produce the following output:

Event 0 at 09:46:58
Event 1 at 09:46:59
Event 2 at 09:47:00
Event 0 at 09:47:00 (2nd subscriber)
Event 3 at 09:47:01
Event 1 at 09:47:01 (2nd subscriber)
Event 4 at 09:47:02
Event 2 at 09:47:02 (2nd subscriber)
Event 5 at 09:47:03
Event 3 at 09:47:03 (2nd subscriber)

You can see that the second subscriber’s values start from zero, and that’s
because it gets its own sequence. If you want a single set of these timed

items to feed into multiple subscribers, you can use the Publish operator
described earlier.

You could use an Interval source in conjunction with a group join as a
way to break items into chunks based on when they arrive. (This is not the
only way—there are overloads of Buffer and Window that can do the
same.) Example 11-43 combines a timer with an observable sequence
representing the words the user types. (That second sequence is in the
words variable, which comes from Example 11-25.)

Example 11-43. Calculating words per minute
IObservable<long> ticks =
Observable.Interval(TimeSpan.FromSeconds(6));
IObservable<int> wordGroupCounts = from tick in ticks
 join word in words
 on ticks equals words into
wordsInTick
 from count in
wordsInTick.Count()
 select count * 10;

wordGroupCounts.Subscribe(c => Console.WriteLine($"Words per
minute: {c}"));

Having grouped the words into boundaries based on events from the
Interval source, this query goes on to count the number of items in each
group. Since the groups are evenly spaced in time, this can be used to
calculate the approximate rate at which the user is typing words. I’m
forming a group once every 6 seconds, so we can multiply the number of
words in the group by 10 to estimate the words per minute.

The results are not entirely accurate, because Rx will join two items if their
durations overlap. That will cause words to be counted multiple times here.
The final word at the end of one interval will also be the first word at the
start of the next interval. In this case, the measurements are pretty
approximate, so I’m not too worried, but you would need to bear in mind
how overlaps affect this sort of operation if you wanted more precise
results. Window or Buffer may offer a better solution.

Timer
The Observable.Timer method can create a sequence that produces
exactly one item. It waits for the duration specified with a TimeSpan
argument before producing that item. It looks very similar to
Observable.Interval, because not only does it take the same
argument, but it even returns a sequence of the same type:
IObservable<long>. So I can subscribe to this kind of source in
almost exactly the same way as with an interval sequence, as Example 11-
44 shows.

Example 11-44. Single item with Timer
IObservable<long> src = Observable.Timer(TimeSpan.FromSeconds(1));
src.Subscribe(i => Console.WriteLine($"Event {i} at
{DateTime.Now:T}"));

The effect is the same as an Interval that stops after producing its first
item, so you will always get a value of zero. There are also overloads that
accept an extra TimeSpan, which will repeatedly produce the value just
like Interval. In fact, Interval uses Timer internally—it’s just a
wrapper offering a simpler API.

Timestamp
In the preceding two sections, I used DateTime.Now when writing out
messages to indicate when the sources produced items. One potential
problem with this is that it tells us the time at which our handler processed
the message, which will not always be an accurate reflection of when the
message was received. For example, if you have used ObserveOn to
ensure that your handler always runs on the UI thread, there may be a
significant delay in between the item being produced and your code getting
to handle it, because the UI thread may be busy doing other things. You can
mitigate this with the Timestamp operator, available on any
IObservable<T>. Example 11-45 uses this as an alternative way to
show the time at which an Interval produces its items.

Example 11-45. Timestamped items
IObservable<Timestamped<long>> src =
 Observable.Interval(TimeSpan.FromSeconds(1)).Timestamp();
src.Subscribe(i => Console.WriteLine(
 $"Event {i.Value} at {i.Timestamp.ToLocalTime():T}"));

If the source observable’s item type is some type T, this operator will
produce an observable of Timestamped<T> items. This defines a Value
property, containing the original value from the source observable, and a
Timestamp property, indicating when the value went through the
Timestamp operator.

NOTE
The Timestamp property is a DateTimeOffset, and it picks a time zone offset of
zero (i.e., it is in UTC). This provides a stable basis for timing by removing any
possibility of moving in or out of daylight saving time while your program runs.
However, if you want to show the timestamp to an end user, you may want to adjust it,
which is why Example 11-45 calls ToLocalTime on it.

You should apply this operator directly to the observable you want to
timestamp, rather than leaving it later on in the chain. Writing
src.ObserveOn(sched) .Time stamp() would defeat the purpose,
because you would be timing the items after they had been dispatched by
the scheduler passed to ObserveOn. You would want to write
src.Timestamp().ObserveOn(sched) to ensure that you acquire a
timestamp before feeding the items into a processing chain that might
introduce delay.

TimeInterval
Whereas Timestamp records the current time at which items are
produced, its relative counterpart TimeInterval records the time
between successive items. Example 11-46 uses this on an observable

sequence produced by Observable.Interval, so we’d expect the
items to be reasonably evenly spaced.

Example 11-46. Measuring the gaps
IObservable<long> ticks =
Observable.Interval(TimeSpan.FromSeconds(0.75));
IObservable<TimeInterval<long>> timed = ticks.TimeInterval();
timed.Subscribe(x => Console.WriteLine(
 $"Event {x.Value} took {x.Interval.TotalSeconds:F3}"));

While the Timestamped<T> items produced by the Timestamp
operator provide a Timestamp property, the TimeInterval<T> items
produced by the TimeInterval operator define an Interval property.
This is a TimeSpan instead of a DateTimeOffset. I’ve chosen to show
the number of seconds between each item to three decimal places. Here’s
some of what I see when I run it on my computer:

Event 0 took 0.760
Event 1 took 0.757
Event 2 took 0.743
Event 3 took 0.751
Event 4 took 0.749
Event 5 took 0.750

This shows intervals that are as much as 10 ms away from what I asked for,
but that’s fairly typical. Windows is not a real-time operating system.

Throttle
The Throttle operator lets you limit the rate at which you process items.
You pass a TimeSpan that specifies the minimum time interval you want
between any two items. If the underlying source produces items faster than
this, Throttle will just discard them. If the source is slower than the
specified rate, Throttle just passes everything straight through.

Surprisingly (or at least, I found this surprising), once the source exceeds
the specified rate, Throttle drops everything until the rate drops back
down below the specified level. So, if you specify a rate of 10 items a

second, and the source produces 100 per second, it won’t simply return
every 10th item—it’ll return nothing until the source slows down.

Sample
The Sample operator produces items from its input at the interval
specified by its TimeSpan argument, regardless of the rate at which the
input observable is generating items. If the underlying source produces
items faster than the chosen rate, Sample drops items to limit the rate.
However, if the source is running slower, the Sample operator will just
repeat the last value to ensure a constant supply of notifications.

Timeout
The Timeout operator passes everything through from its source
observable unless the source leaves too large a gap between either the
subscription time and the first item or between two subsequent calls to the
observer. You specify the minimum acceptable gap with a TimeSpan
argument. If no activity occurs within that time, the Timeout operator
completes by reporting a TimeoutException to OnError.

Windowing Operators
I described the Buffer and Window operators earlier, but I didn’t show
their time-based overloads. As well as being able to specify a window size
and skip count, or to mark window boundaries with an ancillary observable
source, you can also specify time-based windows.

If you pass just a TimeSpan, both operators will break the input into
adjacent windows at the specified interval. This provides a considerably
simpler way to estimate the words per minute than Example 11-43.
Example 11-47 shows how to achieve the same effect with the Buffer
operator using a timed window.

Example 11-47. Timed windows with Buffer
IObservable<int> wordGroupCounts =
 from wordGroup in words.Buffer(TimeSpan.FromSeconds(6))
 select wordGroup.Count * 10;
wordGroupCounts.Subscribe(c => Console.WriteLine("Words per minute:
" + c));

There are also overloads accepting both a TimeSpan and an int,
enabling you to close the current window (thus starting the next window)
either when the specified interval elapses or when the number of items
exceeds a threshold. In addition, there are overloads accepting two
TimeSpan arguments. These support the time-based equivalent of the
combination of a window size and a skip count. The first TimeSpan
argument specifies the window duration, while the second specifies the
interval at which to start new windows. This means the windows do not
need to be strictly adjacent—you can have gaps between them, or they can
overlap. Example 11-48 uses this to provide more frequent estimates of the
word rate while still using a six-second window.

Example 11-48. Overlapping timed windows
IObservable<int> wordGroupCounts =
 from wordGroup in words.Buffer(TimeSpan.FromSeconds(6),
 TimeSpan.FromSeconds(1))
 select wordGroup.Count * 10;

Unlike the join-based chunking I showed in Example 11-43, Window and
Buffer do not double-count items because they are not based on a
concept of overlapping durations. They treat item arrivals as instantaneous
events, which are either inside or outside of any given window. So the
examples I’ve just shown will provide a slightly more accurate measure of
rate.

Delay
The Delay operator allows you to time-shift an observable source. You can
pass a TimeSpan, in which case the operator will delay everything by the
specified amount, or you can pass a DateTimeOffset, indicating a
specific time at which you would like it to start replaying its input.

Alternatively, you can pass an observable, and whenever that observable
first produces something or completes, the Delay operator will start
producing the values it has stored.

Regardless of how the time-shift duration is determined, in all cases the
Delay operator attempts to maintain the same spacing between inputs. So,
if the underlying source produces an item immediately, then another item
after three seconds, and then a third item after a minute, the observable
produced by Delay will produce items separated by the same time
intervals.

Obviously, if your source starts producing items at a ferocious rate—two
million items in a second, perhaps—there’s a limit to the fidelity with which
Delay can reproduce the exact timing of the items, but it will do its best.
The limits on accuracy are not fixed. They will be determined by the nature
of the scheduler you’re using and the available CPU capacity on the
machine. For example, if you use one of the UI-based schedulers, it will be
limited by the availability of the UI thread and the rate at which that can
dispatch work. (As with all time-based operators, Delay will pick a default
scheduler for you, but it provides overloads that let you pass one.)

DelaySubscription
The DelaySubscription operator offers a similar set of overloads to
the Delay operator, but the way it tries to effect a delay is different. When
you subscribe to an observable source produced by Delay, it will
immediately subscribe to the underlying source and start buffering items,
forwarding each item only when the required delay has elapsed. The
strategy employed by DelaySubscription is simply to delay the
subscription to the underlying source and then forward each item
immediately.

For cold sources, DelaySubscription will typically do what you need,
because delaying the start of work for a cold source will typically time-shift
the entire process. But for a hot source, DelaySubscription will cause

you to miss any events that occurred during the delay, and after that, you’ll
start getting events with no time shift.

The Delay operator is more dependable—by time-shifting each item
individually, it works for both hot and cold sources. However, it has to do
more work—it needs to buffer everything it receives for the delay duration.
For busy sources or long delays, this could consume a lot of memory. And
the attempt to reproduce the original timings with a time shift is
considerably more complicated than just passing items straight on. So, in
scenarios where it is viable, DelaySubscription is more efficient.

Reaqtor—Rx as a Service
In May of 2021, Microsoft open sourced Reaqtor, a set of components that
makes it possible to host long-running Rx queries in a service. Microsoft
has been using this internally to provide event-driven functionality in a
variety of its online services, including the Bing search engine and the
online versions of Office. It enables features such as setting up alerts that
tell you when you’ll need to leave to get to an appointment on time given
current traffic conditions, for example. It has a proven track record of being
able to maintain millions of active queries. The code for the core libraries
that make this possible is hosted at the Reaqtor source repository, and you
can find documentation and supporting information.

Reaqtor takes the programming model of Rx—observable sequences,
subjects, and operators—and exploits .NET’s expression tree features
described in Chapter 9 to enable queries to be stored or sent across the
network. It also provides versions of standard LINQ operators that are able
to persist their state, enabling queries with stateful operators (e.g.,
Aggregate, DistinctUntilChanged, or anything else that needs to
remember something about what it has already seen) to survive beyond the
lifetime of any single process. This enables an application to define a LINQ
query to some observable source of data and set up a subscription to that
query that will be hosted in a server pool, persisting with an arbitrarily long
lifetime. Reaqtor is designed to offer the same kind of durability as a

https://github.com/reaqtive/reaqtor
https://reaqtive.net/

database, so some of Microsoft’s applications have Rx queries that have
been running uninterrupted for several years.

The relationship between Rx and Reaqtor is not unlike the relationship
between LINQ to Objects and Entity Framework (EF) Core. As you saw in
Chapter 10, LINQ to Objects is built on IEnumerable<T>, and it works
entirely in-memory, with no persistence or cross-process capability. EF
Core takes the same basic concepts and offers most of the same operators,
but by building on the expression-tree-based IQueryable<T>, EF Core
is able to send representations of an application’s queries over to a database
server so that they can be executed remotely—EF Core brings LINQ into a
world of durable persistence and distributed execution. Similarly, whereas
Rx is built on IObservable<T> and runs entirely in-memory, Reaqtor
uses an expression-tree-based interface IQbservable<T>. (Note the Q
instead of an O, denoting its similarity in concept to IQueryable<T>.)
IQbservable<T> looks very similar to IObservable<T> and offers
all of the same operators, but because it works in the world of expression
trees, it is possible for Reaqtor to convert queries into a form that can be
sent over the network to a server farm, which can then reconstitute runnable
versions of those queries hosted inside the server farm. It exploits the
serializability to store the queries, enabling them to be migrated from one
machine to another within the server farm, providing persistence and
durability in the face of individual server failures. Reaqtor brings Rx into a
world of durable persistence and distributed execution.

At the time of writing this, there isn’t an off-the-shelf hosted version of
Reaqtor freely available, so it takes quite a lot of work to build something
real from the Reaqtor libraries. But I’ve built a couple of applications on
top of this with my employer, so I can say with confidence that it is
certainly possible.

Summary
As you’ve now seen, the Reactive Extensions for .NET provide a lot of
functionality. The concept underpinning Rx is a well-defined abstraction for

sequences of items where the source decides when to provide each item,
and a related abstraction representing a subscriber to such a sequence. By
representing both concepts as objects, event sources and subscribers both
become first-class entities, meaning you can pass them as arguments, store
them in fields, and generally do anything with them that you can do with
any other data type in .NET. While you can do all of that with a delegate
too, .NET events are not first class. Moreover, Rx provides a clearly defined
mechanism for notifying a subscriber of errors, something that neither
delegates nor events handle well. As well as defining a first-class
representation for event sources, Rx defines a comprehensive LINQ
implementation, which is why Rx is sometimes described as LINQ to
Events. In fact, it goes well beyond the set of standard LINQ operators,
adding numerous operators that exploit and help to manage the live and
potentially time-sensitive world that event-driven systems occupy. Rx also
provides various services for bridging between its basic abstractions and
those of other worlds, including standard .NET events,
IEnumerable<T>, and various asynchronous models.

1 You can download the full WPF example to which this snippet belongs as part of the
examples for this book.

2 It is missing the OrderBy and ThenBy operators, because these make little sense in a push-
based world. They cannot produce any items until they have seen all of their input items.

3 Like some developers.

4 The overloads are spread across multiple classes because some of these extension methods are
technology specific. WPF gets ObserveOn overloads that work directly with its
Dispatcher class instead of IScheduler, for example.

5 In fact, Publish uses Subject<T> internally in the current version of Rx.

Chapter 12. Assemblies

So far in this book, I’ve used the term component to describe either a library
or an executable. It’s now time to look more closely at exactly what that
means. In .NET the unit of deployment for a software component is called
an assembly, and it is typically a .dll or .exe file. Assemblies are an
important aspect of the type system, because each type is identified not just
by its name and namespace but also by its containing assembly. Assemblies
provide a kind of encapsulation that operates at a larger scale than
individual types, thanks to the internal accessibility specifier, which
works at the assembly level.

The runtime provides an assembly loader, which automatically finds and
loads the assemblies a program needs. To ensure that the loader can find the
right components, assemblies have structured names that include version
information, and they can optionally contain a globally unique element to
prevent ambiguity.

Most of the C# project types in Visual Studio’s “Create a new project”
dialog produce a single assembly as their main output, as do most of the
project templates available from the command line with dotnet new.
When you build a project, it will often put additional files in the output
folder too, such as copies of any assemblies that your code relies on that are
not built into the .NET runtime, and other files needed by your application.
(For example, a website project will typically need to produce CSS and
script files in addition to server-side code.) But there will usually be a
particular assembly that is the build target of your project, containing all of
the types your project defines along with the code those types contain.

Anatomy of an Assembly
Assemblies use the Win32 Portable Executable (PE) file format, the same
format that executables (EXEs) and dynamic link libraries (DLLs) have
always used in modern versions of Windows. It is “portable” in the sense
that the same basic file format is used across different CPU architectures.
Non-.NET PE files are generally architecture-specific, but .NET assemblies
often aren’t. Even if you’re running .NET on Linux or macOS, it’ll still use
this Windows-based format—most .NET assemblies run on all supported
operating systems, so we use the same file format everywhere.

The C# compiler produces an assembly as its output, with an extension of
either .dll or .exe. Tools that understand the PE file format will recognize a
.NET assembly as a valid, but rather dull, PE file. The CLR essentially uses
PE files as containers for a .NET-specific data format, so to classic Win32
tools, a C# DLL will not appear to export any APIs. Remember that C#
compiles to a binary intermediate language (IL), which is not directly
executable. The normal Windows mechanisms for loading and running the
code in an executable or DLL won’t work with IL, because that can run
only with the help of the CLR. Similarly, .NET defines its own format for
encoding metadata and does not use the PE format’s native capability for
exporting entry points or importing the services of other DLLs.

NOTE
The ahead-of-time (AoT) compilation tools in the .NET SDK can add native executable
code to your assemblies later in the build process, but with Ready to Run assemblies (as
the output of these AoT tools are called), even the embedded native code is loaded and
executed under the control of the CLR and is directly accessible only to managed code.

In most cases, you won’t build .NET assemblies with an extension of .exe.
Even project types that produce directly runnable outputs (such as console
or WPF applications) produce a .dll as their primary output. They also
generate an executable file too, but it’s not a .NET assembly. It’s just a
bootstrapper that starts the runtime and then loads and executes your

1

application’s main assembly. By default, the type of bootstrapper you get
depends on what OS you build on—for example, if you build on Windows,
you’ll get a Windows .exe bootstrapper, whereas on Linux it will be an
executable in the ELF format. (The exception to this is when you target the
.NET Framework. Since that supports only Windows, it doesn’t need
different bootstrappers for different operating systems, so these projects
produce a .NET assembly with an extension of .exe that incorporates the
bootstrapper.)

.NET Metadata
As well as containing the compiled IL, an assembly contains metadata,
which provides a full description of all of the types it defines, whether
public or private. The CLR needs to have complete knowledge of all the
types your code uses to be able to make sense of the IL and turn it into
running code—the binary format for IL frequently refers to the containing
assembly’s metadata and is meaningless without it. The reflection API,
which is the subject of Chapter 13, makes the information in this metadata
available to your code.

Resources
You can embed binary resources in a DLL alongside the code and metadata.
Client-side applications might do this with bitmaps, for example. To embed
a file, you can add it to a project, select it in Solution Explorer, and then use
the Properties panel to set its Build Action to Embedded Resource. This
embeds a copy of the entire file into the component. To extract the resource
at runtime, you use the Assembly class’s
GetManifestResourceStream method, which is part of the
reflection API described in Chapter 13. However, in practice, you wouldn’t
normally use this facility directly—most applications use embedded
resources through a localizable mechanism that I’ll describe later in this
chapter.

2

So, in summary, an assembly contains a comprehensive set of metadata
describing all the types it defines; it holds all of the IL for those types’
methods, and it can optionally embed any number of binary streams. This is
typically all packaged up into a single PE file. However, that is not always
the whole story.

Multifile Assemblies
The old (but still supported) Windows-only .NET Framework allows an
assembly to span multiple files. You can split the code and metadata across
multiple modules, and it is also possible for some binary streams that are
logically embedded in an assembly to be put in separate files. This feature is
rarely used, and neither .NET Core nor its successors (including the current
version of .NET) support it. However, it’s necessary to know about it
because some of its consequences persist. In particular, parts of the design
of the reflection API (Chapter 13) make no sense unless you know about
this feature.

With a multifile assembly, there’s always one main file that represents the
assembly. This will be a PE file, and it contains a particular element of the
metadata called the assembly manifest. This is not to be confused with the
Win32-style manifest that most executables contain. The assembly manifest
is just a description of what’s in the assembly, including a list of any
external modules or other external files; in a multimodule assembly, the
manifest describes which types are defined in which files. When writing
code that uses the types in an assembly directly, you generally didn’t need
to care whether it was split across multiple modules, because the runtime
would inspect the manifest and automatically load whichever modules were
needed. Multiple modules were typically only an issue for code that
inspected the structure of a component using reflection.

Other PE Features
Although C# does not use the classic Win32 mechanisms for representing
code or exporting APIs in EXEs and DLLs, there are still a couple of old-

school features of the PE format that assemblies can use.

Win32-style resources
.NET defines its own mechanism for embedding binary resources, and a
localization API built on top of that, so for the most part it makes no use of
the PE file format’s intrinsic support for embedding resources. There’s
nothing stopping you from putting classic Win32-style resources into a
.NET component—the C# compiler offers various command-line switches
that do this. However, there’s no .NET API for accessing these resources at
runtime from within your application, which is why you’d normally use
.NET’s own resource system. But there are some exceptions.

Windows expects to find certain resources in executables. For example, it
defines a way to embed version information as an unmanaged resource. C#
assemblies normally do this, but you don’t need to define a version resource
explicitly. The compiler can generate one for you, as I show in “Version”.
This ensures that if an end user looks at your assembly’s properties in
Windows File Explorer, they will be able to see the version number. (By
convention, .NET assemblies typically contain this Win32-style version
information whether they target just Windows or can run on any platform.)

Windows .exe files typically contain two additional Win32 resources. You
may want to define a custom icon for your application to control how it
appears on the task bar or in Windows File Explorer. This requires you to
embed the icon in the Win32 way, because File Explorer doesn’t know how
to extract .NET resources. You can do this by adding an
<ApplicationIcon> property to your .csproj file. If you’re using
Visual Studio, it provides a way to set this through the project’s properties
pages. Also, if you’re writing a classic Windows desktop application or
console application (whether written with .NET or not), it should supply an
application manifest. Without this, Windows will presume that your
application was written before 2006 and will modify or disable certain
features for backward compatibility. The manifest also needs to be present
if you are writing a desktop application and you want it to pass certain
Microsoft certification requirements. This kind of manifest has to be

3

embedded as a Win32 resource. The .NET SDK will add a manifest with
default settings by default, but if you need to customize it (e.g., because
you’re writing a console application that will need to run with elevated
privileges), you can specify a manifest with an
<ApplicationManifest> property in your .csproj file (or again, with
the project properties pages in Visual Studio).

Remember that with .NET and .NET Core, the main assembly is a .dll, even
for Windows desktop applications, and when you target Windows, the build
process produces a separate .exe that launches the .NET runtime and then
loads that assembly. As far as Windows is concerned, this bootstrapper is
your application, so the icon and manifest resources will end up in this
bootstrapping assembly. But if you target the .NET Framework, there will
be no separate bootstrapper, so these resources end up in the main assembly.

Console versus GUI
Windows makes a distinction between console applications and Windows
applications. To be precise, the PE format requires a .exe file to specify a
subsystem, and back in the old days of Windows NT, this enabled the use of
multiple operating system personalities—early versions included a POSIX
subsystem, for example. So these days, PE files target one of just three
subsystems, and one of those is for kernel-mode device drivers. The two
user-mode options used today select between Windows graphical user
interface (GUI) and Windows console applications. The principal difference
is that Windows will show a console window when running the latter (or if
you run it from a command prompt, it will just use the existing console
window), but a Windows GUI application does not get a console window.

You can select between these subsystems with an <OutputType>
property in your project file set to Exe or WinExe, or in Visual Studio you
can use the “Output type” drop-down list in the project properties. (The
output type defaults to Library, or “Class Library” in Visual Studio’s UI.
This builds a DLL, but since the subsystem is determined when a process
launches, it makes no difference whether a DLL targets the Windows
Console or Windows GUI subsystem. The Library setting always targets

the former.) If you target the .NET Framework, this subsystem setting
applies to the .exe file that is built as your application’s main assembly, and
with newer versions of .NET, it will apply to the bootstrapper .exe. (As it
happens, it will also apply to the main assembly .dll that the bootstrapper
loads, but this has no effect because the subsystem is determined by the .exe
for which the process is launched.)

Type Identity
As a C# developer, your first point of contact with assemblies will usually
be the fact that they form part of a type’s identity. When you write a class, it
will end up in an assembly. When you use a type from the runtime libraries
or from some other library, your project will need a reference to the
assembly that contains the type before you can use it.

This is not always obvious when using system types. The build system
automatically adds references to various runtime library assemblies, so
most of the time, you will not need to add a reference before you can use a
runtime library type, and since you do not normally refer to a type’s
assembly explicitly in the source code, it’s not immediately obvious that the
assembly is a mandatory part of what it takes to pinpoint a type. But despite
not being explicit in the code, the assembly has to be part of a type’s
identity, because there’s nothing stopping you or anyone else from defining
new types that have the same name as existing types. For example, you
could define a class called System.String in your project. This is a bad
idea, and the compiler will warn you that this introduces ambiguity, but it
won’t stop you. And even though your class will have the exact same fully
qualified name as the built-in string type, the compiler and the runtime can
still distinguish between these types.

Whenever you use a type, either explicitly by name (e.g., in a variable or
parameter declaration) or implicitly through an expression, the C# compiler
knows exactly what type you’re referring to, meaning it knows which
assembly defined the type. So it is able to distinguish between the
System.String intrinsic to .NET and a System.String unhelpfully

defined in your own component. The C# scoping rules mean that an explicit
reference to System.String identifies the one that you defined in your
own project, because local types effectively hide ones of the same name in
external assemblies. If you use the string keyword, that always refers to
the built-in type. You’ll also be using the built-in type when you use a string
literal, or if you call an API that returns a string. Example 12-1 illustrates
this—it defines its own System.String and then uses a generic method
that displays the type and assembly name for the static type of whatever
argument you pass it. (This uses the reflection API, which is described in
Chapter 13.)

Example 12-1. What type is a piece of string?
using System;

// Never do this!
namespace System
{
 public class String
 {
 }
}

class Program
{
 static void Main(string[] args)
 {
 System.String? s = null;
 ShowStaticTypeNameAndAssembly(s);
 string? s2 = null;
 ShowStaticTypeNameAndAssembly(s2);
 ShowStaticTypeNameAndAssembly("String literal");

ShowStaticTypeNameAndAssembly(Environment.OSVersion.VersionString);
 }

 static void ShowStaticTypeNameAndAssembly<T>(T item)
 {
 Type t = typeof(T);
 Console.WriteLine(
 $"Type: {t.FullName}. Assembly
{t.Assembly.FullName}.");
 }
}

The Main method in this example tries each of the ways of working with
strings I just described, and it writes out the following:

Type: System.String. Assembly TypeIdentity, Version=1.0.0.0,
Culture=neutral,
 PublicKeyToken=null.
Type: System.String. Assembly System.Private.CoreLib,
Version=6.0.0.0,
 Culture=neutral, PublicKeyToken=7cec85d7bea7798e.
Type: System.String. Assembly System.Private.CoreLib,
Version=6.0.0.0,
 Culture=neutral, PublicKeyToken=7cec85d7bea7798e.
Type: System.String. Assembly System.Private.CoreLib,
Version=6.0.0.0,
 Culture=neutral, PublicKeyToken=7cec85d7bea7798e.

The explicit use of System.String ended up with my type, and the rest
all used the system-defined string type. This demonstrates that the C#
compiler can cope with multiple types with the same name. This also shows
that IL is able to make that distinction. IL’s binary format ensures that every
reference to a type identifies the containing assembly. But just because you
can create and use multiple identically named types doesn’t mean you
should. Because you do not usually name the containing assembly explicitly
in C#, it’s a particularly bad idea to introduce pointless collisions by
defining, say, your own System.String class. (As it happens, in a pinch
you can resolve this sort of collision if you really need to—see the sidebar
“Extern Aliases” for details—but it’s better to avoid it.)

By the way, if you run Example 12-1 on .NET Framework, you’ll see
mscorlib in place of System.Private.CoreLib. .NET Core
changed which assemblies many runtime library types live in. You might be
wondering how this can work with .NET Standard, which enables you to
write a single DLL that can run on .NET Framework, .NET Core, and .NET.
How could a .NET Standard component correctly identify a type that lives
in different assemblies on different targets? The answer is that .NET has a
type forwarding feature in which references to types in one assembly can be
redirected to some other assembly at runtime. (A type forwarder is just an
assembly-level attribute that describes where the real type definition can be

found. Attributes are the subject of Chapter 14.) .NET Standard components
reference neither mscorlib nor System.Private.CoreLib—they
are built as though runtime library types are defined in an assembly called
netstandard. Each .NET runtime supplies a netstandard
implementation that forwards to the appropriate types at runtime. In fact,
even code built directly for .NET Core or .NET often ends up using type
forwarding. If you inspect the compiled output, you’ll find that it expects
most runtime library types to be defined in an assembly called System
.Runtime, and it’s only through type forwarding that these end up using
types in System.Private.CoreLib.

EXTERN ALIASES
When multiple types with the same name are in scope, C# normally
uses the one from the nearest scope, which is why a locally defined
System.String can hide the built-in type of the same name. It’s
unwise to introduce this sort of name clash in the first place, but
occasionally you can end up with this problem when external libraries
that you depend on have made bad naming decisions. If that’s where
you are, C# offers a mechanism that lets you specify the assembly you
want. You can define an extern alias.

In Chapter 1, I showed type aliases defined with the using keyword
that make it easier to refer to types that have the same simple name but
different namespaces. An extern alias makes it possible to distinguish
between types with the same fully qualified name in different
assemblies.

To define an extern alias, you need to add an Aliases element inside
the relevant element in your .csproj file. Depending on whether the
target component is a NuGet package, another project, or a plain DLL,
that will be a PackageReference, ProjectReference, or
Reference element, respectively. As a child of that element, add an
Aliases element containing the name (or a comma-separated list of
names) to use, e.g., <Aliases>A1</Aliases>. If you’re using
Visual Studio, it can do this for you: expand the Dependencies list in
Solution Explorer and then expand either the Packages, Projects, or
Assemblies section and select a reference. You can then set the alias for
that reference in the Properties panel. If you define an alias of A1 for
one assembly and A2 for another, you can then declare that you want to
use these aliases by putting the following at the top of a C# file:

extern alias A1;
extern alias A2;

With these in place, you can qualify type names with A1:: or A2::
followed by the fully qualified name. This tells the compiler that you
want to use types defined by the assembly (or assemblies) associated
with that alias, even if some other type of the same name would
otherwise have been in scope.

If it’s a bad idea to have multiple types with the same name, why does .NET
make it possible in the first place? In fact, supporting name collisions was
not the goal; it’s just a side effect of the fact that .NET makes the assembly
part of the type. The assembly needs to be part of the type definition so that
the CLR can know which assembly to load for you at runtime when you
first use some feature of that type.

Loading Assemblies
You may have been alarmed earlier when I said that the build system
automatically adds references to all the runtime library components
available on your target framework. Perhaps you wondered how you might
go about removing some of these in the name of efficiency. As far as
runtime overhead is concerned, you do not need to worry. The C# compiler
effectively ignores any references to built-in assemblies that your project
never uses, so there’s no danger of loading DLLs that you don’t need. (It is,
however, worth removing references to unused components that are not
built into .NET to avoid copying unneeded DLLs when you deploy the app
—there’s no sense in making deployments larger than they need to be. But
unused references to DLLs that are already installed as part of .NET cost
you nothing.)

Even if C# didn’t strip out unused references at compile time, there would
still be no risk of unnecessary loading of unused DLLs. The CLR does not
attempt to load assemblies until your application first needs them. Most
applications do not exercise every possible code path each time they
execute, so it’s fairly common for significant portions of the code in your
application not to run. Your program may even finish its work having left

entire classes unused—perhaps classes that get involved only when an
unusual error condition arises. If the only place you use a particular
assembly is inside a method of such a class, that assembly won’t get loaded.

The CLR has some discretion for deciding exactly what it means to “use” a
particular assembly. If a method contains any code that refers to a particular
type (e.g., it declares a variable of that type or it contains expressions that
use the type implicitly), then the CLR may consider that type to be used
when that method first runs even if you don’t get to the part that really uses
it. Consider Example 12-2.

Example 12-2. Type loading and conditional execution
static IComparer<string> GetComparer(bool useStandardOrdering)
{
 if (useStandardOrdering)
 {
 return StringComparer.CurrentCulture;
 }
 else
 {
 return new MyCustomComparer();
 }
}

Depending on its argument, this function either returns an object provided
by the runtime libraries’ StringComparer or constructs a new object of
type MyCustom Com parer. The StringComparer type is defined in
the same assembly as core types such as int and string, so that will
have been loaded when our program started. But suppose the other type,
MyCustomComparer, was defined in a separate assembly from my
application, called ComparerLib. Obviously, if this GetComparer
method is called with an argument of false, the CLR will need to load
ComparerLib if it hasn’t already. But what’s slightly more surprising is
that it will probably load ComparerLib the first time this method is
called even if the argument is true. To be able to JIT compile this
GetComparer method, the CLR will need access to the
MyCustomComparer type definition—for one thing it will need to check
that the type really has a zero-argument constructor. (Obviously Example

12-2 wouldn’t compile in that case, but it’s possible that code was compiled
against a different version of ComparerLib than is present at runtime.)
The JIT compiler’s operation is an implementation detail, so it’s not fully
documented and could change from one version to the next, but it seems to
operate one method at a time. So simply invoking this method is likely to be
enough to trigger the loading of the ComparerLib assembly.

This raises the question of how .NET finds assemblies. If assemblies can be
loaded implicitly as a result of running a method, we don’t necessarily have
a chance to tell the runtime where to find them. So .NET has a mechanism
for this.

Assembly Resolution
When the runtime needs to load an assembly, it goes through a process
called assembly resolution. In some cases you will tell .NET to load a
particular assembly (e.g., when you first run an application), but the
majority are loaded implicitly. The exact mechanism depends on a couple of
factors: whether you target .NET/.NET Core or the older .NET Framework,
and, if the former, whether your application is self-contained.

.NET (and its predecessor, .NET Core) supports two deployment options for
applications: self-contained and framework-dependent. When you publish a
self-contained application, it includes a complete copy of the runtime and
the runtime libraries. Example 12-3 shows the command line for building
an application this way—if you run this from the folder containing a .csproj
file, it will compile the project and then produce a publish folder containing
your compiled code and a complete copy of a suitable version of .NET.
(The version will depend on your project’s configured target framework.
Generally, your project file will specify a major and minor version, e.g.,
net6.0, and then the SDK will copy the latest patch version that is
installed on your machine. The available versions will be determined by
what versions of the .NET SDK you have installed.) The -r switch
indicates the platform and processor architecture to build for. The CLR for
Linux is necessarily somewhat different from the one for Windows, and the

macOS one is different again. Moreover, for each of the supported
operating systems there are versions of .NET available for more than one
CPU architecture. (64-bit Intel and 64-bit ARM is supported for all three.
Windows and Linux additionally get .NET runtimes targeting 32-bit Intel
architecture CPUs and 32-bit ARM CPUs.) The parts of the .NET runtime
that contain native runnable binary code are different in each case, so when
you ask for a self-contained deployment, the build system needs to know
which one to copy. The -r switch specifies this with something called a
Runtime Identifier (RID). Example 12-3 selects the runtime for Windows
running on 64-bit Intel architecture CPUs. (It is possible for RIDs to be
more detailed to indicate that your application has minimum version
requirements. For example, the first part can be win10 instead of just win;
for macOS we could use osx-x64, but we can be more specific, e.g.,
osx.10.15-x64.)

Example 12-3. Publishing a self-contained application
dotnet publish -c Release -r win-x64 --self-contained true

When you build this way, assembly resolution is pretty straightforward
because everything—your application’s own assemblies, any external
libraries you depend on, all of the system assemblies built into .NET, and
the CLR itself—ends up in one folder. (At the time of writing, that amounts
to a little over 68 MB for a simple “Hello, World!” console application for
this target architecture on .NET 6.0.)

There are two main advantages to self-contained deployment. First, there is
no need to install .NET on target machines—the application can just run
directly because it contains its own copy of .NET. Second, you know
exactly what version of .NET and which versions of all DLLs you are
running against. Microsoft goes to great lengths to ensure backward
compatibility with new releases, but breaking changes can sometimes occur,
and a self-contained deployment can be one way out if you find that your
application stops working after an update to .NET. With self-contained
deployment, unless the application directs the CLR to look elsewhere,
everything will load from the application folder, including all assemblies
built into .NET.

But what if you don’t want to put an entire copy of .NET into your build
output? The default build behavior for applications is to create a
framework-dependent executable. (There’s a variation on this called
framework-dependent deployment, which is almost the same thing, except it
omits the bootstrapper executable. To run a framework-dependent
deployment, you will need to use the dotnet command-line tool to launch
the runtime, which will then run your application. This has the advantage of
being completely platform independent; the bootstrapper in a framework-
dependent executable deployment is always OS specific. But it is less
convenient—you can’t run the build output without the dotnet tool.) In
this case, your code relies on a suitable version of .NET already being
installed on the machine. The build output will contain your own
application assembly, and may contain assemblies your application depends
on, but it will not contain any of the libraries built into .NET.

Framework-dependent applications necessarily use a more complex
resolution mechanism than self-contained ones. When such an application
starts up, it will first determine exactly which version of .NET to run. This
won’t necessarily be the version your application was built against, and
there are various options to configure exactly which is chosen. By default,
if the same Major.Minor version is available, that will be used. E.g., if a
framework-dependent application built for .NET Core 5.0 runs on a
machine with .NET Core versions 3.1.20, 5.0.11, and 6.0.0
installed, it will run on 5.0.11. In cases where such a match isn’t
available, but a major version number match is, it will typically roll forward
to that; e.g., if the app targets 3.0, and the machine has only 3.1.20, it
will run on 3.1.20. It is also possible to run on a higher major version
number than the app was built against (e.g., build for 3.1 but run on 6.0) but
only by explicitly requesting this through configuration.

The chosen runtime version selects not just the CLR but also the assemblies
making up the parts of the runtime libraries built into .NET. You can
typically find all the installed runtime versions in the C:\Program
Files\dotnet\shared\Micro soft.NET Core.App\ folder on Windows,
/usr/local/share/dotnet/shared/Microsoft .NET Core.App on macOS, or

/usr/share/dotnet/shared/Microsoft.NETCore.App on Linux, with version-
based subfolders such as 6.0.0. (You should not rely on these paths—the
files may move in future versions of .NET.) The assembly resolution
process will look in this version-specific folder, and this is how framework-
dependent applications get to use built-in .NET assemblies.

If you poke around these folders, you may notice other folders under
shared, such as Microsoft.AspNetCore.App. It turns out that this mechanism
is not just for the runtime libraries built into .NET—it is also possible to
install the assemblies for whole frameworks. .NET applications declare that
they are using a particular application framework. (The build tools
automatically produce a file called YourApp.runtimeconfig.json in your
build output declaring the framework you are using. Console apps specify
Microsoft.NETCore.App, whereas a web application will specify
Microsoft.AspNetCore.App.) This enables applications that target
specific Microsoft frameworks not to have to include a complete copy of all
of the framework’s DLLs even though that framework is not part of .NET
itself.

If you install the plain .NET runtime, you will get just
Microsoft.NETCore.App and none of the application frameworks. So
applications that target frameworks such as ASP.NET Core or WPF will be
unable to run if they are built in the default way, because that presumes that
those frameworks will be preinstalled on target machines, and the assembly
resolution process will fail to find framework-specific components. The
.NET SDK installs these additional framework components, so you won’t
see this problem on your development machine, but you might see it when
deploying at runtime. You can tell the build tools to include the
framework’s components, but this is not normally necessary. If you run
your application on a public cloud service such as Azure, these generally
preinstall relevant framework components, so in practice you will usually
only run into this situation if you are configuring a server yourself or when
deploying desktop applications. For those cases, Microsoft offers installers
for the .NET runtime that also include the components for web or desktop
frameworks.

The shared folder in the dotnet installation folder is not one you should
modify yourself. It is intended only for Microsoft’s own frameworks.
However, it is possible to install additional system-wide components if you
want, because .NET also supports something called the runtime package
store. This is an additional directory structured in much the same way as the
shared folder just described. You can build a suitable directory layout with
the dotnet store command, and if you set the
DOTNET_SHARED_STORE environment variable, the CLR will look in
there during assembly resolution. This enables you to play the same trick as
is possible with Microsoft’s frameworks: you can build applications that
depend on a set of components without needing to include them in your
build output, as long as you’ve arranged for those components to be
preinstalled on the target machine.

Aside from looking in these two locations for common frameworks, the
CLR will also look in the application’s own directory during assembly
resolution, just as it would for a self-contained application. Also, the CLR
has some mechanisms for enabling updates to be applied. For example, on
Windows, it is possible for Microsoft to push out critical updates to .NET
components via Windows Update.

But broadly speaking, the basic process of assembly resolution for
framework-dependent applications is that implicit assembly loading occurs
either from your application directory or from a shared set of components
installed on the machine. This is also true for applications running on the
older .NET Framework, although the mechanisms are a bit different. It has
something called the Global Assembly Cache (GAC), which effectively
combines the functionality provided by both of the shared stores in .NET. It
is less flexible, because the store location is fixed; .NET’s use of an
environment variable opens up the possibility of different shared stores for
different applications.

Explicit Loading
Although the CLR will load assemblies automatically, you can also load
them explicitly. For example, if you are creating an application that

supports plug-ins, during development you will not know exactly what
components you will load at runtime. The whole point of a plug-in system
is that it’s extensible, so you’d probably want to load all the DLLs in a
particular folder. (You would need to use reflection to discover and make
use of the types in those DLLs, as Chapter 13 describes.)

WARNING
In some scenarios, dynamic loading is restricted. For example, apps built using the UWP
and installed from Microsoft’s store can only run code from the components that ship as
part of the application. This is because Microsoft runs various tests on these store apps
designed to avoid security and stability problems, for which they need access to all of
your app’s code. The ability to download and run external code would defeat these
checks.

If you know the full path of an assembly, loading it is very straightforward:
you call the Assembly class’s static LoadFrom method, passing the path
of the file. The path can be relative to the current directory, or it can be
absolute. This static method returns an instance of the Assembly class,
which is part of the reflection API. It provides ways of discovering and
using the types defined by the assembly.

Occasionally, you might want to load a component explicitly (e.g., to use it
via reflection) without wanting to specify the path. For example, you might
want to load a particular assembly from the runtime libraries. You should
never hardcode the location for a system component—they tend to move
from one version of .NET to the next. If your project has a reference to the
relevant assembly and you know the name of a type it defines, you can
write typeof(TheType).Assembly. But if that’s not an option, you
should use the Assembly.Load method, passing the name of the
assembly.

Assembly.Load uses exactly the same mechanism as implicitly
triggered loading. So you can refer to either a component that you’ve
installed alongside your application or a system component. In either case,
you should specify a full name, which must contain name and version

information, e.g., ComparerLib, Version=1.0.0.0,
Cul ture=neutral, PublicKeyToken=null.

The .NET Framework version of the CLR remembers which assemblies
were loaded with LoadFrom. If an assembly loaded in this way triggers
the implicit loading of further assemblies, the CLR will search the location
from which that assembly was loaded. This means that if your application
keeps plug-ins in a separate folder that the CLR would not normally look
in, those plug-ins could install other components that they depend on in that
same plug-in folder. The CLR will then find them without needing further
calls to LoadFrom, even though it would not normally have looked in that
folder for an implicitly triggered load. However, .NET and .NET Core do
not support this behavior. They provide a different mechanism to support
plug-in scenarios.

Isolation and Plug-ins with AssemblyLoadContext
.NET Core introduced a type called AssemblyLoadContext. It enables
a degree of isolation between groups of assemblies within a single
application. This solves a problem that can arise in applications that
support a plug-in model.

If a plug-in depends on some component that the hosting application also
uses, but each wants a different version, this can cause problems if you use
the simple mechanisms described in the preceding section. Typically, the
.NET runtime unifies these references, loading just a single version. In any
cases where the types in that shared component are part of the plug-in
interface, this is exactly what you need: if an application requires plug-ins
to implement some interface that relies on types from, say, the
Newtonsoft.Json library, it’s important that the application and the
plug-ins all agree on which version of that library is in use.

But unification can cause problems with components used as
implementation details, and not as part of the API between the application
and its plug-ins. If the host application uses, say, v3.1 of
Microsoft.Extensions.Logging internally, and a plug-in uses

4

v6.0 of the same component, there’s no particular need to unify this to a
single version choice at runtime—there would be no harm in the application
and plug-in each using the version they require. Unification could cause
problems: forcing the plug-in to use v3.1 would cause exceptions at runtime
if it attempted to use features only present in v6.0. Forcing the application
to use v6.0 could also cause problems because major version number
changes often imply that a breaking change was introduced.

To avoid these kinds of problems, you can introduce custom assembly load
contexts. You can write a class that derives from
AssemblyLoadContext, and for each of these that you instantiate, the
.NET runtime creates a corresponding load context that supports loading of
different versions of assemblies than may already have been loaded by the
application. You can define the exact policy you require by overloading the
Load method, as Example 12-4 shows.

Example 12-4. A custom AssemblyLoadContext for plug-ins
using System.Reflection;
using System.Runtime.Loader;

namespace HostApp;

public class PlugInLoadContext : AssemblyLoadContext
{
 private readonly AssemblyDependencyResolver _resolver;
 private readonly ICollection<string> _plugInApiAssemblyNames;

 public PlugInLoadContext(
 string pluginPath,
 ICollection<string> plugInApiAssemblies)
 {
 _resolver = new AssemblyDependencyResolver(pluginPath);
 _plugInApiAssemblyNames = plugInApiAssemblies;
 }

 protected override Assembly Load(AssemblyName assemblyName)
 {
 if (!_plugInApiAssemblyNames.Contains(assemblyName.Name!))
 {
 string? assemblyPath =
_resolver.ResolveAssemblyToPath(assemblyName);
 if (assemblyPath != null)

 {
 return LoadFromAssemblyPath(assemblyPath);
 }
 }

 return AssemblyLoadContext.Default.LoadFromAssemblyName(
 assemblyName);
 }
}

This takes the location of the plug-in DLL, along with a list of the names of
any special assemblies where the plug-in must use the same version as the
host application. (This would include interfaces defining types used in your
plug-in interface. You don’t need to include assemblies that are included as
part of .NET itself—these are always unified, even if you use custom load
contexts.) The runtime will call this class’s Load method each time an
assembly is loaded in this context. This code checks to see whether the
assembly being loaded is one of the special ones that must be common to
plug-ins and the host application. If not, this looks in the plug-in’s folder to
see if the plug-in has supplied its own version of that assembly. In cases
where it will not use an assembly from the plug-in folder (either because the
plug-in hasn’t supplied this particular assembly or because it is one of the
special ones), this context defers to
AssemblyLoadContext.Default, meaning that the application host
and plug-in use the same assemblies in these cases. Example 12-5 shows
this in use.

Example 12-5. Using the plug-in load context
Assembly[] plugInApiAssemblies =
{
 typeof(IPlugIn).Assembly,
 typeof(JsonReader).Assembly
};
var plugInAssemblyNames = new HashSet<string>(
 plugInApiAssemblies.Select(a => a.GetName().Name!));

var ctx = new PlugInLoadContext(plugInDllPath,
plugInAssemblyNames);
Assembly plugInAssembly = ctx.LoadFromAssemblyPath(plugInDllPath);

This builds a list of assemblies that the plug-in and application must share,
and passes their names into the plug-in context, along with a path to the
plug-in DLL. Any DLLs that the plug-in depends on and that are copied
into the same folder as the plug-in will be loaded, unless they are in that list,
in which case the plug-in will use the same assembly as the host application
itself.

Assembly Names
Assembly names are structured. They always include a simple name, which
is the name by which you would normally refer to the DLL, such as
MyLibrary or System.Runtime. This is usually the same as the filename but
without the extension. It doesn’t technically have to be, but the assembly
resolution mechanism assumes that it is. Assembly names always include a
version number. There are also some optional components, including the
public key token, a string of hexadecimal digits, which makes it possible to
give an assembly a unique name.

Strong Names
If an assembly’s name includes a public key token, it is said to be a strong
name. Microsoft advises that any .NET component that targets .NET
Framework and is published for shared use (e.g., made available via NuGet)
should have a strong name. However, if you are writing a new component
that will only run on .NET Core or .NET, there are no benefits to strong
naming, because these newer runtimes essentially ignore the public key
token.

Since the purpose of strong naming is to make the name unique, you may
be wondering why assemblies do not simply use a Globally Unique
Identifier (GUID). The answer is that historically, strong names also did
another job: they were designed to provide some degree of assurance that
the assembly has not been tampered with. Early versions of .NET checked
strongly named assemblies for tampering at runtime, but these checks were
removed because they imposed a considerable runtime overhead, often for

5

little or no benefit. Microsoft’s documentation now explicitly advises
against treating strong names as a security feature. However, in order to
understand and use strong names, you need to know how they were
originally meant to work.

As the terminology suggests, an assembly name’s public key token has a
connection with cryptography. It is the hexadecimal representation of a 64-
bit hash of a public key. Strongly named assemblies are required to contain
a copy of the full public key from which the hash was generated. The
assembly file format also provides space for a digital signature, generated
with the corresponding private key.

ASYMMETRIC ENCRYPTION
If you’re not familiar with asymmetric encryption, this is not the place
for a thorough introduction, but here’s a very rough summary. Strong
names use an encryption algorithm called RSA, which works with a
pair of keys: the public key and the private key. Messages encrypted
with the public key can be decrypted only with the private key, and vice
versa. This enables the creation of a digital signature for an assembly:
to sign an assembly, you calculate a hash of its contents and then
encrypt that hash with the private key. This signature is then copied into
the assembly, and its validity can be verified by anyone with access to
the public key—they can calculate the hash of the assembly’s contents
themselves, and they can decrypt your signature with the public key,
and if the results are different, the signature is invalid, implying either
that it was not produced by the owner of the private key or that the file
has been modified since the signature was generated, so the file is
suspect. The mathematics of encryption are such that it is thought to be
essentially impossible to create a valid-looking signature unless you
have access to the private key, and it’s also essentially impossible to
modify the assembly without modifying the hash. And in cryptography,
“essentially impossible” means “theoretically possible but too
computationally expensive to be practical, unless some major
unexpected breakthrough in number theory or perhaps quantum
computing emerges, rendering most current cryptosystems useless.”

The uniqueness of a strong name relies on the fact that key generation
systems use cryptographically secure random-number generators, and the
chances of two people generating two key pairs with the same public key
token are vanishingly small. The assurance that the assembly has not been
tampered with comes from the fact that a strongly named assembly must be
signed, and only someone in possession of the private key can generate a
valid signature. Any attempt to modify the assembly after signing it will
invalidate the signature.

NOTE
The signature associated with a strong name is independent of Authenticode, a longer-
established code signing mechanism in Windows. These serve different purposes.
Authenticode provides traceability, because the public key is wrapped in a certificate
that tells you something about where the code came from. With a strong name’s public
key token, all you get is a number, so unless you happen to know who owns that token,
it tells you nothing. Authenticode lets you ask, “Where did this component come from?”
A public key token lets you say, “This is the component I want.” It’s common for a
single .NET component to use both mechanisms.

If an assembly’s private key becomes public knowledge, anyone can
generate valid-looking assemblies with the corresponding key token. Some
open source projects deliberately publish both keys so that anyone can build
the components from source. This completely abandons any security the
key token could offer, but that’s fine because Microsoft now recommends
that we not treat strong names as a security feature. The practice of
publishing your strong naming private key recognizes that it is useful to
have a unique name, even without a guarantee of authenticity. .NET Core
(and thus .NET) took this one step further, by making it possible for
components to have a strong name without needing to use a private key at
all. In keeping with Microsoft’s adoption of open source development, this
means you can now build and use your own versions of Microsoft-authored
components that have the same strong name, even though Microsoft has not
published its private key. See the next sidebar, “Strong Name Keys and
Public Signing”, for information on how to work with keys.

STRONG NAME KEYS AND PUBLIC SIGNING
There are three popular approaches for working with strong names. The
simplest is to use the real names throughout the development process
and to copy the public and private keys to all developers’ machines so
that they can sign the assemblies every time they build. This approach
is viable only if you don’t want to keep the private key secret, because
it’s easy for developers to compromise the secrecy of the private key
either accidentally or deliberately. Since strong names no longer offer
security, there’s nothing wrong with this. However, some organizations
nonetheless attempt to keep their private keys secret as a matter of
policy, so you may encounter other ways of working.

Another approach is to use a completely different set of keys during
development, switching to the real name only for designated release
builds. This avoids the need for all developers to have a copy of the real
private key, but it can cause confusion, because developers may end up
with two sets of components on their machines, one with development
names and one with real names.

The third approach is to use the real names across the board, but instead
of signing every build just filling the part of the file reserved for the
signature with 0 values. .NET and .NET Core call this Public Signing,
and it’s more of a convention than a feature: it works because these
runtimes never check the signatures of strongly named assemblies.
(.NET Framework does still check signatures in certain cases. For
example, to install an assembly in the GAC, it must have a strong name
with a valid signature. It has a slightly more complex mechanism called
Delay Signing, which makes you jump through a few more hoops, but
the effect is the same: developers can compile assemblies that have the
real strong names without then needing to generate signatures.)

You can generate a key file for a strong name with a command-line
utility called sn (short for strong name).

Microsoft uses the same token on most of the assemblies in the runtime
libraries. (Many groups at Microsoft produce .NET components, so this
token is common only to the components that are part of .NET, not for
Microsoft as a whole.) Here’s the full name of mscorlib, a system
assembly that offers definitions of various core types such as
System.String:

mscorlib, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089

By the way, that’s the right name even for the latest versions of .NET at the
time of writing. The Version is 4.0.0.0 even though .NET Framework
is now on v4.8, and .NET on 6.0. (In .NET and .NET Core, mscorlib
contains nothing but type forwarders, because the relevant types have
moved, mostly to System.Private.CoreLib. And while that real
home of these types is now on version 6.0.0.0, the mscorlib version
number remains the same.) Assembly version numbers have technical
significance, so Microsoft does not always update the version number in the
names of library components in step with the marketing version numbers—
the versions don’t necessarily even match on the major number. The .NET
3.5 version of mscorlib had a version number of 2.0.0.0, for
example.

While the public key token is an optional part of an assembly’s name, the
version is mandatory.

Version
All assembly names include a four-part version number. When an assembly
name is represented as a string (e.g., when you pass one as an argument to
Assembly.Load), the version consists of four decimal integers separated
by dots (e.g., 4.0.0.0). The binary format that IL uses for assembly
names and references limits the range of these numbers—each part must fit
in a 16-bit unsigned integer (a ushort), and the highest allowable value in
a version part is actually one less than the maximum value that would fit,

making the highest legal version number
65534.65534.65534.65534.

Each of the four parts has a name. From left to right, they are the major
version, the minor version, the build, and the revision. However, there’s no
particular significance to any of these names. Some developers use certain
conventions, but nothing checks or enforces them. A common convention is
that any change in the public API requires a change to either the major or
minor version number, and a change likely to break existing code should
involve a change of the major number. (Marketing is another popular reason
for a major version change.) If an update is not intended to make any visible
changes to behavior (except, perhaps, fixing a bug), changing the build
number is sufficient. The revision number could be used to distinguish
between two components that you believe were built against the same
source but not at the same time. Alternatively, some people relate the
version numbers to branches in source control, so a change in just the
revision number might indicate a patch applied to a version that has long
since stopped getting major updates. However, you’re free to make up your
own meanings. As far as the CLR is concerned, there’s really only one
interesting thing you can do with a version number, which is to compare it
with some other version number—either they match or one is higher than
the other.

NOTE
NuGet packages also have version numbers, and these do not need to be connected in
any way to assembly versions. Many package authors make them similar by convention,
but this is not universal. NuGet does treat the components of a package version number
as having particular significance: it has adopted the widely used semantic versioning
rules. This uses versions with three parts, named major, minor, and patch.

Version numbers in runtime library assembly names ignore all the
conventions I have just described. Most of the components had the same
version number (2.0.0.0) across four major updates. With .NET 4.0,
everything changed to 4.0.0.0, which is still in use with the latest

version of .NET Framework (4.8), at the time of writing. .NET Core 3.1
also uses 4 as the major version of most of its runtime library components.
In .NET 6.0, many of these components now have a matching major version
of 6, but as you’ve seen with its copy of mscorlib, that’s not universal.

You typically specify the version number by adding a <Version> element
inside a <PropertyGroup> of your .csproj file. (Visual Studio also
offers a UI for this: if you open the Properties page for the project, its
Package section lets you configure various naming-related settings. The
“Package version” field sets the version.) The build system uses this in two
ways: it sets the version number on the assembly, but, if you generate a
NuGet package for your project, by default it will also use this same version
number for the package, and since NuGet version numbers have three parts,
you normally specify just three numbers here, and the fourth part of the
assembly version will default to zero. (If you really want to specify all four
digits, consult the documentation for how to set the assembly and NuGet
versions separately.)

The build system tells the compiler which version number to use for the
assembly name via an assembly-level attribute. I’ll describe attributes in
more detail in Chapter 14, but this one’s pretty straightforward. If you want
to find it, the build system typically generates a file called
ProjectName.AssemblyInfo.cs in a subfolder of your project’s obj folder.
This contains various attributes describing details about the assembly,
including an AssemblyVersion attribute, such as the one shown in
Example 12-6.

Example 12-6. Specifying an assembly’s version
[assembly: System.Reflection.AssemblyVersion("1.0.0.0")]

The C# compiler provides special handling for this attribute—it does not
apply it blindly as it would most attributes. It parses the version number and
embeds it in the way required by .NET’s metadata format. It also checks
that the string conforms to the expected format and that the numbers are in
the allowed range.

By the way, the version that forms part of an assembly’s name is distinct
from the one stored using the standard Win32 mechanism for embedding
versions. Most .NET files contain both kinds. By default, the build system
will use the <Version> setting for both, but it’s common for the file
version to change more frequently. This was particularly important with
.NET Framework, in which only a single instance of any major version can
be installed at once—if a machine has .NET Framework 4.7.2 installed and
you install .NET Framework 4.8, that will replace version 4.7.2. (.NET and
.NET Core don’t do this—you can install any number of versions side by
side on a single computer.) This in-place updating combined with
Microsoft’s tendency to keep assembly versions the same across releases
could make it hard to work out exactly what is installed, at which point the
file version becomes important. On a computer with .NET Framework 4.0
sp1 installed, its version of mscorlib.dll had a Win32 version number of
4.0.30319.239, but if you’ve installed .NET 4.8, this changes to
4.8.4420.0, but the assembly version remains at 4.0.0.0. (As service
packs and other updates are released, the last part will keep climbing.)

By default, the build system will use the <Version> for both the
assembly and Windows file versions, but if you want to set the file version
separately, you can add a <FileVersion> to your project file. (Visual
Studio’s project properties Package section also lets you set this.) Under the
covers, this works with another attribute that gets special handling from the
compiler, AssemblyFileVersion. It causes the compiler to embed a
Win32 version resource in the file, so this is the version number users see if
they right-click your assembly in Windows Explorer and show the file
properties.

This file version is usually a more appropriate place to put a version number
that identifies the build provenance than the version that goes into the
assembly name. The latter is really a declaration of the supported API
version, and any updates that are designed to be fully backward compatible
should probably leave it unaltered and should change only the file version.

Version Numbers and Assembly Loading
Since version numbers are part of an assembly’s name (and therefore its
identity), they are also, ultimately, part of a type’s identity. The
System.String in mscorlib version 2.0.0.0 is not the same thing
as the type of the same name in mscorlib version 4.0.0.0.

The handling of assembly version numbers changed with .NET Core. In
.NET Framework, when you load a strongly named assembly by name
(either implicitly by using types it defines or explicitly with
Assembly.Load), the CLR requires the version number to be an exact
match. .NET Core relaxed this, so if the version on disk has a version
number equal to or higher than the version requested, it will use it. There
are two factors behind this change. The first is that the .NET development
ecosystem has come to rely on NuGet (which didn’t even exist for most of
the first decade of .NET’s existence), meaning that it has become
increasingly common to depend on fairly large numbers of external
components. Second, the rate of change has increased—in the early days we
would often need to wait for years between new releases of .NET
components. (Security patches and other bug fixes might turn up more
often, but new functionality would tend to emerge slowly, and typically in
big chunks, as part of a whole wave of updates to the runtime, frameworks,
and development tools.) But today, it can be rare for an application to go for
as long as a month without the version of some component somewhere
changing. .NET Framework’s strict versioning policy now looks unhelpful.
(In fact, there are parts of the build system dedicated to digging through
your NuGet dependencies, working out the specific versions of each
component you’re using, and automatically generating a configuration file
with a vast number of version substitution rules telling the CLR to use those
versions no matter which version any single assembly says it wants. So
even if you target the .NET Framework, the build system will, by default,
effectively disable strict versioning.)

Another change is that .NET Framework only takes assembly versions into
account for strongly named assemblies. .NET Core and .NET check that the
version number of the assembly on disk is equal to or greater than the

6

required version regardless of whether the target assembly is strongly
named.

Culture
So far we’ve seen that assembly names include a simple name, a version
number, and optionally a public key token. They also have a culture
component. (A culture represents a language and a set of conventions, such
as currency, spelling variations, and date formats.) This is not optional,
although the most common value for this is the default: neutral,
indicating that the assembly contains no culture-specific code or data. The
culture is usually set to something else only on assemblies that contain
culture-specific resources. The culture of an assembly’s name is designed to
support localization of resources such as images and strings. To show how,
I’ll need to explain the localization mechanism that uses it.

All assemblies can contain embedded binary streams. (You can put text in
these streams, of course. You just have to pick a suitable encoding.) The
Assembly class in the reflection API provides a way to work directly with
these, but it’s more common to use the ResourceManager class in the
System.Resources namespace. This is far more convenient than
working with the raw binary streams, because the ResourceManager
defines a container format that allows a single stream to hold any number of
strings, images, sound files, and other binary items, and Visual Studio has a
built-in editor for working with this container format. The reason I’m
mentioning all of this in the middle of a section that’s ostensibly about
assembly names is that ResourceManager also provides localization
support, and the assembly name’s culture is part of that mechanism. To
demonstrate how this works, I’ll walk you through a quick example.

The easiest way to use the ResourceManager is to add a resource file in
the .resx format to your project. (This is not the format used at runtime. It’s
an XML format that gets compiled into the binary format required by
ResourceManager. It’s easier to work with text than binary in most
source control systems. It also makes it possible to work with these files if

you’re using an editor without built-in support for the format.) To add one
of these from Visual Studio’s Add New Item dialog, select the Visual
C#→General category, and then choose Resources File. I’ll call mine
MyResources.resx. Visual Studio will show its resource editor, which opens
in string editing mode, as Figure 12-1 shows. As you can see, I’ve defined a
single string with a name of ColString and a value of Color.

Figure 12-1. Resource file editor in string mode

I can retrieve this value at runtime. The build system generates a wrapper
class for each .resx file you add, with a static property for each resource you
define. This makes it very easy to look up a string resource, as Example 12-
7 shows.

Example 12-7. Retrieving a resource with the wrapper class
string colText = MyResources.ColString;

The wrapper class hides the details, which is usually convenient, but in this
case, the details are the whole reason I’m demonstrating a resource file, so
I’ve shown how to use the ResourceManager directly in Example 12-8.
I’ve included the entire source for the file, because namespaces are
significant here—the build tools prepend your project’s default namespace
to the embedded resource stream name, so I’ve had to ask for
ResourceExample.MyResources instead of just MyResources. (If
I had put the resources in a subfolder, the tools would also include the name
of that folder in the resource stream name.)

Example 12-8. Retrieving a resource at runtime
using System.Resources;

namespace ResourceExample;

class Program
{
 static void Main(string[] args)
 {
 var rm = new ResourceManager(
 "ResourceExample.MyResources",
typeof(Program).Assembly);
 string colText = rm.GetString("ColString")!;
 Console.WriteLine("And now in " + colText);
 }
}

So far, this is just a rather long-winded way of getting hold of the string
"Color". However, now that we’ve got a ResourceManager involved,
I can define some localized resources. Being British, I have strong opinions
on the correct way to spell the word color. They are not consistent with
O’Reilly’s editorial policy, and in any case I’m happy to adapt my work for
my predominantly American readership. But a program can do better—it
should be able to provide different spellings for different audiences. (And
taking it a step further, it should be able to change the language entirely for
countries in which some form of English is not the predominant language.)
In fact, my program already contains all the code it needs to support
localized spellings of the word color. I just need to provide it with the
alternative text.

I can do this by adding a second resource file with a carefully chosen name:
MyResources.en-GB.resx. That’s almost the same as the original but with an
extra .en-GB before the .resx extension. That is short for English-Great
Britain, and it is the standardized (albeit politically tone-deaf) name of the
culture for my home. (The name for the culture that denotes English-
speaking parts of the US is en-US.) Having added such a file to my project,
I can add a string entry with the same name as before, ColString, but
this time with the correct (where I’m sitting) value of Colour. If you run
the application on a machine configured with a British locale, it will use the
British spelling. The odds are that your machine is not configured for this
locale, so if you want to try this, you can add the code in Example 12-9 at

7

the very start of the Main method in Example 12-8 to force .NET to use the
British culture when looking up resources.

Example 12-9. Forcing a nondefault culture
Thread.CurrentThread.CurrentUICulture =
 new System.Globalization.CultureInfo("en-GB");

How does this relate to assemblies? Well, if you look at the compiled
output, you’ll see that, as well as the usual executable file and related debug
files, the build process has created a subdirectory called en-GB, which
contains an assembly file called ResourceExample.resources.dll.
(ResourceExample is the name of my project. If you created a project called
SomethingElse, you’d see SomethingElse.resources.dll.) That assembly’s
name will look like this:

ResourceExample.resources, Version=1.0.0.0, Culture=en-GB,
PublicKeyToken=null

The version number and public key token will match those for the main
project—in my example, I’ve left the default version number, and I’ve not
given my assembly a strong name. But notice the Culture. Instead of the
usual neutral value, I’ve got en-GB, the same culture string I specified
in the filename for the second resource file I added. If you add more
resource files with other culture names, you’ll get a folder containing a
culture-specific assembly for each culture you specify. These are called
satellite resource assemblies.

When you first ask a ResourceManager for a resource, it will look for a
satellite resource assembly with the same culture as the thread’s current UI
culture. So it would attempt to load an assembly using the name shown a
couple of paragraphs ago. If it doesn’t find that, it tries a more generic
culture name—if it fails to find en-GB resources, it will look for a culture
called just en, denoting the English language without specifying any
particular region. Only if it finds neither (or if it finds matching assemblies,
but they do not contain the resource being looked up) does it fall back to the
neutral resource built into the main assembly.

The CLR’s assembly loader looks in different places when a nonneutral
culture is specified. It looks in a subdirectory named for the culture. That’s
why the build process placed my satellite resource assembly in an en-GB
folder.

The search for culture-specific resources incurs some runtime costs. These
are not large, but if you’re writing an application that will never be
localized, you might want to avoid paying the price for a feature you’re not
using. You might still want to use the ResourceManager, however—it’s
a more convenient way to embed resources than using assembly manifest
resource streams directly. The way to avoid the costs is to tell .NET that the
resources built directly into your main assembly are the right ones for a
particular culture. You can do this with the assembly-level attribute shown
in Example 12-10.

Example 12-10. Specifying the culture for built-in resources
[assembly: NeutralResourcesLanguage("en-US")]

When an application with that attribute runs on a machine in the usual US
locale, the ResourceManager will not attempt to search for resources. It
will just go straight for the ones compiled into your main assembly.

Protection
In Chapter 3, I described some of the accessibility specifiers you can apply
to types and their members, such as private or public. In Chapter 6, I
showed some of the additional mechanisms available when you use
inheritance. It’s worth quickly revisiting these features, because assemblies
play a part.

Also in Chapter 3, I introduced the internal keyword and said that
classes and methods with this accessibility are available only within the
same component, a slightly vague term that I chose because I had not yet
introduced assemblies. Now that it’s clear what an assembly is, it’s safe for
me to say that a more precise description of the internal keyword is that
it indicates that a member or type should be accessible only to code in the

same assembly. Likewise, protected internal members are
available to code in derived types, and also to code defined in the same
assembly, and the similar but more restrictive protected private
protection level makes members available only to code that is in a derived
type that is defined in the same assembly.

Target Frameworks and .NET Standard
One of the decisions you need to make for each assembly that you build is
the target framework or frameworks you will support. Each .csproj file will
have either a <TargetFramework> element indicating the target or a
<TargetFrameworks> element containing a list of frameworks. The
particular target is indicated with a target framework moniker (TFM). For
example, netcoreapp3.1 identifies .NET Core 3.1, and then with .NET
5.0 the naming convention changed, so we have net5.0 and net6.0 for
.NET 5.0 and .NET 6.0, respectively. For the .NET Framework 4.6.2, 4.7.2,
and 4.8, the TFMs are net462, net472, and net48, respectively. When
you list multiple target frameworks, you will get multiple assemblies when
you build, each in its own subfolder named for the TFM. The SDK
effectively builds the project multiple times.

If you need to provide different code for each target platform (perhaps
because you can only implement certain functionality on newer target
versions), you might need to use conditional compilation (described in
“Compilation Symbols”). But in cases where the same code works for all
targets, it might make sense to build for a single target, .NET Standard. As I
described in Chapter 1, the various versions of .NET Standard define
common subsets of the .NET runtime libraries that are available across
multiple versions of .NET. I said that if you need to target both .NET (or
.NET Core) and .NET Framework, the best choice today is typically .NET
Standard 2.0 (which has a TFM of netstandard2.0). However, it’s
worth being aware of the other options, particularly if you’re looking to
make your component available to the widest possible audience.

8

.NET libraries published on NuGet may decide to target the lowest version
of .NET Standard that they can if they want to ensure the broadest reach.
Versions 1.1 through 1.6 gradually added more functionality in exchange
for supporting a smaller range of targets. (For example, if you want to use a
.NET Standard 1.3 component on .NET Framework, it needs to be .NET
Framework 4.6 or later; targeting .NET Standard 1.4 requires .NET
Framework 4.61 or later.) .NET Standard 2.0 was a larger leap forward and
marked an important point in .NET Standard’s evolution: according to
Microsoft’s current plans, this will be the highest version number able to
run on .NET Framework. Versions of .NET Framework from 4.7.2 onward
fully support it, but .NET Standard 2.1 will not run on any version of .NET
Framework now or in the future. It will run on .NET Core 3.0 and 3.1 and
.NET 5.0 and later. Mono v6.4 and later support it too. But this is the end of
the road for the classic .NET Framework. In practice, .NET Standard 2.0 is
currently a popular choice with component authors because it enables the
component to run on all recently released versions of .NET while providing
access to a very broad set of features.

All of this has caused a certain amount of confusion, and you might be
pleased to know that the unification brought by .NET 6.0 simplifies things.
If you don’t need to support .NET Framework, you can just target .NET 6.0,
ignoring .NET Standard. Mono can run components that target .NET 6.0,
and .NET NativeAot is planning to, so targeting .NET 6.0 will cover most
runtimes.

What does this all mean for C# developers? If you are writing code that will
never be used outside of a particular project, you will normally just target
the latest version of .NET, unless you need some Windows-specific feature
it doesn’t offer, in which case you might target .NET Framework. Either
way, you will be able to use any NuGet package that targets .NET Standard,
up to and including v2.0 (which means the overwhelming majority of
what’s on NuGet will be available to you).

If you are writing libraries that you intend to share, and if you want your
components to be available to the largest audience possible, you should
target .NET Standard unless you absolutely need some feature that is only

available in a particular runtime. .NET Standard 2.0 is a reasonable choice
—you could open your library up to a wider audience by dropping to a
lower version, but today, the versions of .NET that support .NET Standard
2.0 are widely available, so you would only contemplate targeting older
versions if you need to support developers still using older .NET
Frameworks. (Microsoft does this in most of its NuGet libraries, but you
don’t necessarily have to tie yourself to the same regime of support for
older versions.) Microsoft provides a useful guide to which versions of the
various .NET implementations support the various .NET Standard versions.
If you want to use certain newer features (such as the memory-efficient
types described in Chapter 18), you may need to target a more recent
version of .NET Standard, with 2.1 being the latest at the time of writing,
but be aware that this rules out running on .NET Framework. At that point,
you might as well just target .NET Core 3.1 or a later version of .NET,
because .NET Standard has little to offer in the newly unified post-.NET-
Framework world. In any case, the development tools will ensure that you
only use APIs available in whichever version of .NET or .NET Standard
you declare support for.

Summary
An assembly is a deployable unit, almost always a single file, typically with
a .dll or .exe extension. It is a container for types and code. A type belongs
to exactly one assembly, and that assembly forms part of the type’s identity
—the .NET runtime can distinguish between two types with the same name
in the same namespace if they are defined in different assemblies.
Assemblies have a composite name consisting of a simple textual name, a
four-part version number, a culture string, and optionally a public key
token. Assemblies with a public key token are called strongly named
assemblies, giving them a globally unique name. Assemblies can either be
deployed alongside the application that uses them or stored in a machine-
wide repository. (In .NET Framework, that repository is the Global
Assembly Cache, and assemblies must be strongly named to use this. .NET
and .NET Core provide shared copies of built-in assemblies, and depending

https://oreil.ly/ok1ay

on how you install these newer runtimes, they may also have shared copies
of frameworks such as ASP.NET Core and WPF. And you can optionally set
up a separate runtime package store containing other shared assemblies to
avoid having to include them in application folders.)

The runtime can load assemblies automatically on demand, which typically
happens the first time you run a method that contains some code that
depends on a type defined in the relevant assembly. You can also load
assemblies explicitly if you need to.

As I mentioned earlier, every assembly contains comprehensive metadata
describing the types it contains. In the next chapter, I’ll show how you can
get access to this metadata at runtime.

1 I’m using modern in a very broad sense here—Windows NT introduced PE support in 1993.

2 With suitable build settings you can produce bootstrappers for all supported targets regardless
of which OS you build on.

3 This was the year Windows Vista shipped. Application manifests existed before then, but this
was the first version of Windows to treat their absence as signifying legacy code.

4 This is not available in .NET Framework or .NET Standard. Isolation was typically managed
with appdomains on .NET Framework, an older mechanism that is not supported in .NET or
.NET Core.

5 If you use Assembly.LoadFrom, the CLR does not care whether the filename matches the
simple name.

6 It’s possible to configure the CLR to substitute a specific different version, but even then, the
loaded assembly has to have the exact version specified by the configuration.

7 Hove, England.

8 Internal items are also available to friend assemblies, meaning any assemblies referred to with
an InternalsVisibleTo attribute, as described in Chapter 14.

Chapter 13. Reflection

The CLR knows a great deal about the types our programs define and use. It
requires all assemblies to provide detailed metadata, describing each
member of every type, including private implementation details. It relies on
this information to perform critical functions, such as JIT compilation and
garbage collection. However, it does not keep this knowledge to itself. The
reflection API grants access to this detailed type information, so your code
can discover everything that the runtime can see. Moreover, you can use
reflection to make things happen. For example, a reflection object
representing a method not only describes the method’s name and signature,
but it also lets you invoke the method. And you can go further still and
generate code at runtime.

Reflection is particularly useful in extensible frameworks, because they can
use it to adapt their behavior at runtime based on the structure of your code.
For example, Visual Studio’s Properties panel uses reflection to discover
what public properties a component offers, so if you write a component that
can appear on a design surface, such as a UI element, you do not need to do
anything special to make its properties available for editing—Visual Studio
will find them automatically.

NOTE
Many reflection-based frameworks that can automatically discover what they need to
know also allow components to enrich that information explicitly. For example,
although you don’t need to do anything special to support editing in the Properties
panel, you can customize the categorization, description, and editing mechanisms if you
want to. This is normally achieved with attributes, which are the topic of Chapter 14.

Reflection Types
The reflection API defines various classes in the System.Reflection
namespace. These classes have a structural relationship that mirrors the way
that assemblies and the type system work. For example, a type’s containing
assembly is part of its identity, so the reflection class that represents a type
(Type) has an Assembly property that returns its containing Assembly
object. And you can navigate this relationship in both directions—you can
discover all of the types in an assembly from the Assembly class’s
DefinedTypes property. An application that can be extended by loading
plug-in DLLs would typically use this to find the types each plug-in
provides. Figure 13-1 shows the reflection types that correspond to .NET
types, their members, and the components that contain them. The arrows
represent containment relationships. (As with assemblies and types, these
are all navigable in both directions.)

Figure 13-1. Reflection containment hierarchy

Figure 13-2 illustrates the inheritance hierarchy for these types. This shows
a couple of extra abstract types, MemberInfo and MethodBase, which
are shared by various reflection classes that have a certain amount in
common. For example, constructors and methods both have parameter lists,

1

and the mechanism for inspecting these is provided by their shared base
class, MethodBase. All members of types have certain common features,
such as accessibility, so anything that is (or can be) a member of a type is
represented in reflection by an object that derives from MemberInfo.

Figure 13-2. Reflection inheritance hierarchy

Assembly
The Assembly class represents, predictably enough, a single assembly. If
you’re writing a plug-in system, or some other sort of framework that needs
to load user-supplied DLLs and use them (such as a unit test runner), the
Assembly type will be your starting point. As Chapter 12 showed, the
static Assembly.Load method takes an assembly name and returns the
object for that assembly. (That method will load the assembly if necessary,
but if it has already been loaded, it just returns a reference to the relevant
Assembly object.) But there are some other ways to get hold of objects of
this kind.

The Assembly class defines three context-sensitive static methods that
each return an Assembly. The GetEntryAssembly method returns the
object representing the EXE file containing your program’s Main method.
The GetExecutingAssembly method returns the assembly that
contains the method from which you called it. GetCallin g Assembly
walks up the stack by one level and returns the assembly containing the
code that called the method that called GetCallingAssembly.

NOTE
The JIT compiler’s optimizations can sometimes produce surprising results with
GetExecutingAssembly and GetCallingAssembly. Method inlining and tail
call optimizations can both cause these methods to return the assembly for methods that
are one stack frame farther back than you would expect. You can prevent inlining
optimizations by annotating a method with the MethodImpl At tribute, passing the
NoInlining flag from the MethodImpl Options enumeration. (Attributes are
described in Chapter 14.) There’s no way to disable tail call optimizations explicitly, but
those will be applied only when a particular method call is the last thing a method does
before returning.

GetCallingAssembly can be useful in diagnostic logging, because it
provides information about the code that called your method. The
GetExecutingAssembly method is less useful: you presumably
already know which assembly the code will be in because you’re the
developer writing it. It may still be useful to get hold of the Assembly
object for the component you’re writing, but there are other ways. The
Type object described in the next section provides an Assembly property.
Example 13-1 uses that to get the Assembly via the containing class.
Empirically, this seems to be faster, which is not entirely surprising because
it’s doing less work—both techniques need to retrieve reflection objects, but
one of them also has to inspect the stack.

Example 13-1. Obtaining your own Assembly via a Type
class Program
{
 static void Main()
 {
 Assembly me = typeof(Program).Assembly;
 Console.WriteLine(me.FullName);
 }
}

If you want to use an assembly from a specific place on disk, you can use
the LoadFrom method described in Chapter 12. Alternatively, you can use
the System .Reflec tion.MetadataLoadContext NuGet
package’s MetadataLoadContext class. This loads the assembly in

such a way that you can inspect its type information, but no code in the
assembly will execute, nor will any assemblies it depends on be loaded
automatically. This is an appropriate way to load an assembly if you’re
writing a tool that displays or otherwise processes information about a
component but does not want to run its code. There are a few reasons it can
be important to avoid loading an assembly in the usual way with such a
tool. Loading an assembly and inspecting its types can sometimes trigger
the execution of code (such as static constructors) in that assembly. Also, if
you load for reflection purposes only, the processor architecture is not
significant, so you could load a 32-bit-only DLL into a 64-bit process, or
you could inspect an ARM-only assembly in an x86 process.

Having obtained an Assembly from any of the aforementioned
mechanisms, you can discover various things about it. The FullName
property provides the display name, for example. Or you can call
GetName, which returns an AssemblyName object, providing easy
programmatic access to all of the components of the assembly’s name.

You can retrieve a list of all of the other assemblies on which a particular
Assembly depends by calling GetReferencedAssemblies. If you
call this on an assembly you’ve written, it will not necessarily return all of
the assemblies you can see in the Dependencies node in Visual Studio’s
Solution Explorer, because the C# compiler strips out unused references.

Assemblies contain types, so you can find Type objects representing those
types by calling an Assembly object’s GetType method, passing in the
name of the type you require, including its namespace. This will return
null if the type is not found, unless you call one of the overloads that
additionally accept a bool—with these, passing true produces an
exception if the type is not found. There’s also an overload that takes two
bool arguments, the second of which lets you pass true to request a case-
insensitive search. All of these methods will return either public or
internal types. You can also request a nested type, by specifying the
name of the containing type, then a + symbol, then the nested type name.
Example 13-2 gets the Type object for a type called Inside nested inside

a type called ContainingType in the MyLib namespace. This works
even if the nested type is private.

Example 13-2. Getting a nested type from an assembly
Type? nt = someAssembly.GetType("MyLib.ContainingType+Inside");

The Assembly class also provides a DefinedTypes property that
returns a collection containing a TypeInfo object for every type (top-
level or nested) the assembly defines, and also ExportedTypes, which
returns only public types, and it returns Type objects and not full
TypeInfo objects. (The distinction between TypeInfo and Type is
described in “Type and TypeInfo”.) That will also include any public
nested types. It will not include protected types nested inside public
types, which is perhaps a bit surprising because such types are accessible
from outside the assembly (albeit only to classes that derive from the
containing type).

Besides returning types, Assembly can also create new instances of them
with the CreateInstance method. If you pass just the fully qualified
name of the type as a string, this will create an instance if the type is public
and has a no-arguments constructor. There’s an overload that lets you work
with nonpublic types and types with constructors that require arguments;
however, it is rather more complex to use, because it also takes arguments
that specify whether you want a case-insensitive match for the type name,
along with a CultureInfo object that defines the rules to use for case-
insensitive comparisons—different countries have different ideas about how
such comparisons work. It also has arguments for controlling more
advanced scenarios. However, you can pass null for most of these, as
Example 13-3 shows.

Example 13-3. Dynamic construction
object? o = asm.CreateInstance(
 "MyApp.WithConstructor",
 false,
 BindingFlags.Public | BindingFlags.Instance,
 null,
 new object[] { "Constructor argument" },

 null,
 null);

This creates an instance of a type called WithConstructor in the
MyApp namespace in the assembly to which asm refers. The false
argument indicates that we want an exact match on the name, not a case-
insensitive comparison. The BindingFlags indicate that we are looking
for a public instance constructor. (See the sidebar “Bind ing Flags”.) The first
null argument is where you could pass a Binder object, which allows
you to customize the behavior when the arguments you have supplied do
not exactly match the types of the required arguments. By leaving this out,
I’m indicating that I expect the ones I’ve supplied to match exactly. (I’ll get
an exception if they don’t.) The object[] argument contains the list of
arguments I’d like to pass to the constructor—a single string, in this case.
The penultimate null is where I’d pass a culture if I were using either
case-insensitive comparisons or automatic conversions between numeric
types and strings, but since I’m doing neither, I can leave it out. And the
final argument once supported scenarios that have now been deprecated, so
it should always be null.

BINDINGFLAGS
Many of the reflection APIs take an argument of the BindingFlags
enumeration type to determine which members to return. For example,
you can specify BindingFlags.Public to indicate that you want
only public members or types, or BindingFlags.NonPublic to
indicate that you want only items that are not public, or you can
combine both flags to indicate that you’d like either.

Be aware that it’s possible to specify combinations that will return
nothing. When working with members, you must include either
BindingFlags.Instance, BindingFlags.Static, or both,
for example, because all type members are one or the other (likewise
for BindingFlags.Public and BindingFlags.NonPublic).

Often, methods that can accept BindingFlags offer an overload that
does not. This typically defaults to specifying public members, both
instance and static (i.e., BindingFlags.Public |
BindingFlags.Static | BindingFlags.Instance).

BindingFlags defines numerous options, but not all are applicable
in every scenario. For example, it defines a FlattenHierarchy
value, which is used for reflection APIs that return type members: if this
flag is present, members defined by the base class will be considered, as
well as those defined by the class specified. This option is not
applicable to Assembly.CreateInstance because you cannot use
a base class constructor directly to construct a derived type.

Module
Figure 13-1 shows Assembly as a container of Module objects. .NET
Framework supports splitting the contents of one assembly across multiple
files (modules), but this rarely used feature is not supported in .NET Core or
.NET. In most cases, you can ignore the Module type—you can normally
do everything you need with the other types in the reflection API. One

exception is that the APIs for generating code at runtime require you to
identify which module should contain the generated code, even when
you’re creating just one module. (.NET’s APIs for generating code at
runtime are beyond the scope of this book.)

The Module class provides one other service: surprisingly, it defines
GetField, GetFields, GetMethod, and GetMethods properties.
These provide access to globally scoped methods and fields. You never see
these in C#, because the language requires all fields and methods to be
defined within a type, but the CLR allows globally scoped methods and
fields, so the reflection API has to be able to present them. These are
exposed through Module, and not Assembly, so even in modern .NET’s
one-module-per-assembly world, you can only get to them through the
Module type. You can retrieve that from an Assembly object’s
Modules property, or you can use any of the API types described in the
following sections that derive from MemberInfo. (Figure 13-2 shows
which types do so.) This defines a Module property that returns the
Module in which the relevant member is defined.

MemberInfo
Like all the classes I’m describing in this section, MemberInfo is abstract.
However, unlike the rest, it does not correspond to one particular feature of
the type system. It is a shared base class providing common functionality
for all of the types that represent items that can be members of other types.
So this is the base class of ConstructorInfo, MethodInfo,
FieldInfo, PropertyInfo, EventInfo, and Type, because all of
those can be members of other types. In fact, in C#, all except Type are
required to be members of some other type (although, as you just saw in the
preceding section, some languages allow methods and fields to be scoped to
a module instead of a type).

MemberInfo defines common properties required by all type members.
There’s a Name property, of course, and also a DeclaringType, which
refers to the Type object for the item’s containing type; this returns null

for nonnested types and module-scoped methods and fields. MemberInfo
also defines a Module property that refers to the containing module,
regardless of whether the item in question is module-scoped or a member of
a type.

As well as DeclaringType, MemberInfo defines a
ReflectedType, which indicates the type from which the
MemberInfo was retrieved. These will often be the same but can be
different when inheritance is involved. Example 13-4 shows the distinction.

Example 13-4. DeclaringType versus ReflectedType
class Base
{
 public void Foo()
 {
 }
}

class Derived : Base
{
}

class Program
{
 static void Main(string[] args)
 {
 MemberInfo bf = typeof(Base).GetMethod("Foo")!;
 MemberInfo df = typeof(Derived).GetMethod("Foo")!;

 Console.WriteLine("Base Declaring: {0}, Reflected: {1}",
 bf.DeclaringType, bf.ReflectedType);
 Console.WriteLine("Derived Declaring: {0}, Reflected: {1}",
 df.DeclaringType, df.ReflectedType);
 }
}

This gets the MethodInfo for the Base.Foo and Derived.Foo
methods. (MethodInfo derives from MemberInfo.) These are just
different ways of describing the same method—Derived does not define
its own Foo, so it inherits the one defined by Base. The program produces
this output:

Base Declaring: Base, Reflected: Base
Derived Declaring: Base, Reflected: Derived

When retrieving the information for Foo via the Base class’s Type object,
the DeclaringType and ReflectedType are, unsurprisingly, both
Base. However, when we retrieve the Foo method’s information via the
Derived type, the DeclaringType tells us that the method is defined
by Base, while the ReflectedType tells us that we obtained this
method via the Derived type.

WARNING
Because a MemberInfo remembers which type you retrieved it from, comparing two
MemberInfo objects is not a reliable way to detect whether they refer to the same
thing. Comparing bf and df in Example 13-4 with either the == operator or their
Equals method would return false despite the fact that they both refer to
Base.Foo. If you had been unaware of the ReflectedType property, you might not
have expected this behavior.

Slightly surprisingly, MemberInfo does not provide any information
about the visibility of the member it describes. This may seem odd, because
in C#, all of the constructs that correspond to the types that derive from
MemberInfo (such as constructors, methods, or properties) can be
prefixed with public, private, etc. The reflection API does make this
information available but not through the MemberInfo base class. This is
because the CLR handles visibility for certain member types a little
differently from how C# presents it. From the CLR’s perspective, properties
and events do not have an accessibility of their own. Instead, their
accessibility is managed at the level of the individual methods. This enables
a property’s get and set to have different accessibility levels, and
likewise for an event’s accessors. Of course, we can control property
accessor accessibility independently in C# if we want to. Where C#
misleads us is that it lets us specify a single accessibility level for the entire
property. But this is just shorthand for setting both accessors to the same

level. The confusing part is that it lets us specify the accessibility for the
property and then a different accessibility for one of the members, as
Example 13-5 does.

Example 13-5. Property accessor accessibility
public int Count
{
 get;
 private set;
}

This is a bit misleading because, despite how it looks, that public
accessibility does not apply to the whole property. This property-level
accessibility simply tells the compiler what to use for accessors that don’t
specify their own accessibility level. The first version of C# required both
property accessors to have the same accessibility, so it made sense to state it
for the whole property. (It still has an equivalent restriction for events.) But
this was an arbitrary restriction—the CLR has always allowed each
accessor to have a different accessibility. C# now supports this, but because
of the history, the syntax for exploiting this is misleadingly asymmetric.
From the CLR’s point of view, Example 13-5 just says to make the get
public and the set private. Example 13-6 would be a better
representation of what’s really going on.

Example 13-6. How the CLR sees property accessibility
// Won't compile but arguably should
int Count
{
 public get;
 private set;
}

But we can’t write it that way, because C# demands that the accessibility for
the more visible of the two accessors be stated at the property level. This
makes the syntax simpler when both properties have the same accessibility,
but it makes things a bit weird when they’re different. Moreover, the syntax
in Example 13-5 (i.e., the syntax the compiler actually supports) makes it
look like we should be able to specify accessibility in three places: the
property and both of the accessors. The CLR does not support that, so the

compiler will produce an error if you try to specify accessibility for both of
the accessors. So there is no accessibility for the property or event itself.
(Imagine if there were—what would it even mean if a property had
public accessibility but its get were internal and its set were
private?) Consequently, not everything that derives from MemberInfo
has a particular accessibility, so the reflection API provides properties
representing accessibility farther down in the class hierarchy.

Type and TypeInfo
The Type class represents a particular type. It is more widely used than any
of the other classes in this chapter, which is why it alone lives in the
System namespace while the rest are defined in System.Reflection.
It’s the easiest to get hold of because C# has an operator designed for just
this job: typeof. I’ve shown this in a few examples already, but Example
13-7 shows it in isolation. As you can see, you can use either a built-in
name, such as string, or an ordinary type name, such as IDisposable.
You could also include the namespace, but that’s not necessary when the
type’s namespace is in scope.

Example 13-7. Getting a Type with typeof
Type stringType = typeof(string);
Type disposableType = typeof(IDisposable);

Also, as I mentioned in Chapter 6, the System.Object type (or
object, as we usually write it in C#) provides a GetType instance
method that takes no arguments. You can call this on any reference type
variable to retrieve the type of the object that variable refers to. This will
not necessarily be the same type as the variable itself, because the variable
may refer to an instance of a derived type. You can also call this method on
any value type variable, and because value types do not support inheritance,
it will always return the Type object for the variable’s static type.

So all you need is an object, a value, or a type identifier (such as string),
and it is trivial to get a Type object. And, there are many other places
Type objects can come from.

In addition to Type, we also have TypeInfo. This was introduced in
early versions of .NET Core with the intention of enabling Type to serve
purely as a lightweight identifier, and for TypeInfo to be the mechanism
by which you reflect against a type. This was a departure from how Type
had always worked in .NET Framework, where it performs both roles. This
dual role was arguably a mistake because if you only need an identifier,
Type is unnecessarily heavyweight. .NET Core was originally envisaged as
having a separate existence from .NET Framework with no need for strict
compatibility, so it seemed to provide an opportunity to fix historical design
problems. However, once Microsoft took the decision that .NET Core
would be the basis of all future versions of .NET, it became necessary to
bring it back into line with how .NET Framework had always worked.
However, by this time, .NET Framework had also introduced TypeInfo,
and for a while, new type-level reflection features were added to that
instead of Type to minimize incompatibilities with .NET Core 1. .NET
Core 2.0 realigned with .NET Framework, but this meant that the split of
functionality between Type and TypeInfo is now just an upshot of what
was added when. TypeInfo contains members added during the brief
period between its introduction and the decision to revert to the old way. In
cases where you have a Type but you need to use a feature specific to
TypeInfo, you can get this from a Type by calling GetTypeInfo.

As you’ve already seen, you can retrieve Type objects from an
Assembly, either by name or as a comprehensive list. The reflection types
that derive from MemberInfo also provide a reference to their containing
type through DeclaringType. (Type derives from MemberInfo, so it
also offers this property, which is relevant when dealing with nested types.)

You can also call the Type class’s own static GetType method. If you
pass just a namespace-qualified string, it will search for the named type in a
system assembly called mscorlib, and also in the assembly from which
you called the method. However, you can pass an assembly-qualified name,
which combines an assembly name and a type name. A name of this form
starts with the namespace-qualified type name, followed by a comma and
the assembly name. For example, this is the assembly-qualified name of the

System.String class in .NET Framework 4.8 (split across two lines to
fit in this book):

System.String, mscorlib, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089

You can discover a type’s assembly-qualified name through the
Type.Assembly Quali fiedName property. Be aware that this won’t
always match what you asked for. If you pass the preceding type name into
Type.GetType on .NET 6.0, it will work, but if you then ask the
returned Type for its AssemblyQualifiedName, it will return this
instead:

System.String, System.Private.CoreLib, Version=6.0.0.0,
Culture=neutral,
 PublicKeyToken=7cec85d7bea7798e

The only reason it works when you pass either the first string or just
System.String is because mscorlib still exists for backward
compatibility purposes. I described this in the preceding chapter, but to
summarize, in .NET Framework, the mscorlib assembly contains the
core types of the runtime libraries, but in .NET Core and .NET 5.0 or later,
the code has moved elsewhere. mscorlib still exists, but it contains only
type forwarding entries indicating which assembly each class now lives in.
For example, it forwards System.String to its new home, which, at the
time of this writing, is the System.Private.CoreLib assembly.

As well as the standard MemberInfo properties, such as Module and
Name, the Type and TypeInfo classes add various properties of their
own. The inherited Name property contains the unqualified name, so Type
adds a Namespace property. All types are scoped to an assembly, so Type
defines an Assembly property. (You could, of course, get there via
Module.Assembly, but it’s more convenient to use the Assembly
property.) It also defines a BaseType property, although that will be null

for some types (e.g., nonderived interfaces and the type object for the
System.Object class).

Since Type can represent all sorts of types, there are properties you can use
to determine exactly what you’ve got: IsArray, IsClass, IsEnum,
IsInterface, IsPointer, and IsValueType. (You can also get
Type objects for non-.NET types in interop scenarios, so there’s also an
IsCOMObject property.) If it represents a class, there are some properties
that tell you more about what kind of class you’ve got: IsAbstract,
IsSealed, and IsNested. That last one is applicable to value types as
well as classes.

Type also defines numerous properties providing information about the
type’s visibility. For nonnested types, IsPublic tells you whether it’s
public or internal, but things are more complex for nested types.
IsNestedAssembly indicates an internal nested type, while
IsNestedPublic and IsNestedPrivate indicate public and
private nested types. Instead of the usual C-family “protected”
terminology, the CLR uses the term family, so we have
IsNestedFamily for protected, IsNestedFamOR As sem for
protected internal, and IsNestedFamANDAssem for
protected private.

NOTE
There is no IsRecord property. As far as the runtime is concerned, record types are
classes or structs. Records are a feature of the C# type system but not of the .NET
runtime’s type system, the CTS. Reflection is a runtime feature, so it presents the CTS
perspective.

The TypeInfo class also provides methods to discover related reflection
objects. (The properties in this paragraph are all defined on TypeInfo, not
Type. As previously discussed, this is just an accident of when they were
defined.) Most of these come in two forms: one where you want a complete

list of all the items of the specified kind and one where you know the name
of the thing you’re looking for. For example, we have
DeclaredConstructors, DeclaredEvents, DeclaredFields,
DeclaredMethods, DeclaredNestedTypes, and
DeclaredProperties along with their counterparts,
GetDeclaredConstructor, GetDeclaredEvent,
GetDeclaredField, GetDeclaredMethod,
GetDeclaredNestedType, and GetDeclaredProperty.

The Type class lets you discover type compatibility relationships. You can
ask whether one type derives from another type by calling the type’s
IsSubclassOf method. Inheritance is not the only reason one type may
be compatible with a reference of a different type—a variable whose type is
an interface can refer to an instance of any type that implements that
interface, regardless of its base class. The Type class therefore offers a
more general method called IsAssignableFrom, shown in Example 13-
8, which tells you whether an implicit reference conversion exists.

Example 13-8. Testing type compatibility
Type stringType = typeof(string);
Type objectType = typeof(object);
Console.WriteLine(stringType.IsAssignableFrom(objectType));
Console.WriteLine(objectType.IsAssignableFrom(stringType));

This shows False and then True, because you cannot take a reference to
an instance of type object and assign it into a variable of type string,
but you can take a reference to an instance of type string and assign it
into a variable of type object.

As well as telling you things about a type and its relationships to other
types, the Type class provides the ability to use a type’s members at
runtime. It defines an InvokeMember method, the exact meaning of
which depends on what kind of member you invoke—it could mean calling
a method, or getting or setting a property or field, for example. Since some
member types support multiple kinds of invocation (e.g., both get and set),
you need to specify which particular operation you want. Example 13-9
uses InvokeMember to invoke a method identified by its name (the

member string argument) on an instance of a type, also identified by name,
that it instantiates dynamically. This illustrates how reflection can be used
to work with types and members whose identities are not known until
runtime.

Example 13-9. Invoking a method with InvokeMember
public static object? CreateAndInvokeMethod(
 string typeName, string member, params object[] args)
{
 Type t = Type.GetType(typeName)
 ?? throw new ArgumentException(
 $"Type {typeName} not found", nameof(typeName));
 object instance = Activator.CreateInstance(t)!;
 return t.InvokeMember(
 member,
 BindingFlags.Instance | BindingFlags.Public |
BindingFlags.InvokeMethod,
 null,
 instance,
 args);
}

This example first creates an instance of the specified type—this uses a
slightly different approach to dynamic creation than the one I showed
earlier with Assembly.CreateInstance. Here I’m using
Type.GetType to look up the type, and then I’m using a class I’ve not
mentioned before, Activator. This class’s job is to create new instances
of objects whose type you have determined at runtime. Its functionality
overlaps somewhat with Assembly.CreateInstance, but in this case,
it’s the most convenient way to get from a Type to a new instance of that
type. Then I’ve used the Type object’s InvokeMember to invoke the
specified method. As with Example 13-3, I’ve had to specify binding flags
to indicate what kind of member I’m looking for and also what to do with it
—here I’m looking to call a method (as opposed to, say, setting a property
value). The null argument is, as with Example 13-3, a place where I
would have specified a Binder if I had wanted to support automatic
coercion of the method argument types.

Generic types
.NET’s support for generics complicates the role of the Type class. As well
as representing an ordinary nongeneric type, a Type can represent a
particular instance of a generic type (e.g., List<int>) but also an
unbound generic type (e.g., List<>, although that’s an illegal type
identifier in all but one very specific scenario). Example 13-10 shows how
to obtain both kinds of Type objects.

Example 13-10. Type objects for generic types
Type bound = typeof(List<int>);
Type unbound = typeof(List<>);

The typeof operator is the only place in which you can use an unbound
generic type identifier in C#—in all other contexts, it would be an error not
to supply type arguments. By the way, if the type takes multiple type
arguments, you must provide commas—for example,
typeof(Dictionary<,>). This is necessary to avoid ambiguity when
there are multiple generic types with the same names, distinguished only by
the number of type parameters (also known as the arity)—for example,
typeof(Func<,>) versus typeof(Func<,,,>). You cannot specify
a partially bound generic type. For example,
typeof(Dictionary<string,>) would fail to compile.

You can tell when a Type object refers to a generic type—the
IsGenericType property will return true for both bound and
unbound from Example 13-10. You can also determine whether or not the
type arguments have been supplied by using the
IsGenericTypeDefinition property, which would return false
and true for bound and unbound, respectively. If you have a bound
generic type and you’d like to get the unbound type from which it was
constructed, you use the GetGenericType Defini tion method—
calling that on bound would return the same type object that unbound
refers to.

Given a Type object whose IsGenericTypeDefinition property
returns true, you can construct a new bound version of that type by
calling MakeGenericType, passing an array of Type objects, one for
each type argument.

If you have a generic type, you can retrieve its type arguments from the
Generic Ty peArguments property. Perhaps surprisingly, this even
works for unbound types, although it behaves differently than with a bound
type. If you get GenericType Argu ments from bound from Example
13-10, it will return an array containing a single Type object, which will be
the same one you would get from typeof(int). If you get
unbound.GenericTypeArguments, you will also get an array
containing a single Type, but this time, it will be a Type object that does
not represent a specific type—its IsGenericParameter property will
be true, indicating that this represents a placeholder. Its name in this case
will be T. In general, the name will correspond to whatever placeholder
name the generic type chooses. For example, with typeof
(Dic tionary<,>), you’ll get two Type objects called TKey and
TValue, respectively. You will encounter similar generic argument
placeholder types if you use the reflection API to look up members of
generic types. For example, if you retrieve the MethodInfo for the Add
method of the unbound List<> type, you’ll find that it takes a single
argument of a type named T, which returns true from its
IsGenericParameter property.

When a Type object represents an unbound generic parameter, you can
find out whether the parameter is covariant or contravariant (or neither)
through its Generi c ParameterAttributes method.

MethodBase, ConstructorInfo, and MethodInfo
Constructors and methods have a great deal in common. The same
accessibility options are available for both kinds of members, they both
have argument lists, and they can both contain code. Consequently, the
MethodInfo and ConstructorInfo reflection types share a base

class, MethodBase, which defines properties and methods for handling
these common aspects.

To obtain a MethodInfo or ConstructorInfo, besides using the
Type class properties I mentioned earlier, you can also call the
MethodBase class’s static GetCurrentMethod method. This inspects
the calling code to see if it’s a constructor or a normal method and returns
either a MethodInfo or ConstructorInfo accordingly.

As well as the members it inherits from MemberInfo, MethodBase
defines properties specifying the member’s accessibility. These are similar
in concept to those I described earlier for types, but the names are
marginally different, because unlike Type, MethodBase does not define
accessibility properties that make a distinction between nested and
nonnested members. So with MethodBase, we find IsPublic,
IsPrivate, IsAssembly, IsFamily, IsFamilyOrAssembly, and
IsFamilyAndAssembly for public, private, internal,
protected, protected internal, and protected private,
respectively.

In addition to accessibility-related properties, MethodBase defines
properties that tell you about aspects of the method, such as IsStatic,
IsAbstract, IsVirtual, IsFinal, and IsConstructor.

There are also properties for dealing with generic methods.
IsGenericMethod and IsGenericMethodDefinition are the
method-level equivalents of the type-level IsGenericType and
IsGenericTypeDefinition properties. As with Type, there’s a
GetGenericMethodDefinition method to get from a bound generic
method to an unbound one, and a MakeGenericMethod to produce a
bound generic method from an unbound one. You can retrieve type
arguments by calling GetGenericArguments, and as with generic
types, this will return specific types when called on a bound method and
will return placeholder types when used with an unbound method.

You can inspect the implementation of the method by calling
GetMethodBody. This returns a MethodBody object that provides
access to the IL (as an array of bytes) and also to the local variable
definitions used by the method.

The MethodInfo class derives from MethodBase and represents only
methods (and not constructors). It adds a ReturnType property that
provides a Type object indicating the method’s return type. (There’s a
special system type, System.Void, whose Type object is used here
when a method returns nothing.)

The ConstructorInfo class does not add any properties beyond those
it inherits from MethodBase. It does define two read-only static fields,
though: ConstructorName and TypeConstructorName. These
contain the strings ".ctor" and ".cctor", respectively, which are the
values you will find in the Name property for ConstructorInfo objects
for instance and static constructors. As far as the CLR is concerned, these
are the real names—although in C# constructors appear to have the same
name as their containing type, that’s true only in your C# source files, and
not at runtime.

You can invoke the method or constructor represented by a MethodInfo
or ConstructorInfo by calling the Invoke method. This does the
same thing as Type.InvokeMember—Example 13-9 used that to call a
method. However, because Invoke is specialized for working with just
methods and constructors, it’s rather simpler to use. With a
ConstructorInfo, you need to pass only an array of arguments. With
MethodInfo, you also pass the object on which you want to invoke the
method, or null if you want to invoke a static method. Example 13-11
performs the same job as Example 13-9 but using MethodInfo.

Example 13-11. Invoking a method
public static object? CreateAndInvokeMethod(
 string typeName, string member, params object[] args)
{
 Type t = Type.GetType(typeName)
 ?? throw new ArgumentException(

 $"Type {typeName} not found", nameof(typeName));
 object instance = Activator.CreateInstance(t)!;
 MethodInfo m = t.GetMethod(member)
 ?? throw new ArgumentException(
 $"Method {member} not found", nameof(member));
 return m.Invoke(instance, args);
}

For either methods or constructors, you can call GetParameters, which
returns an array of ParameterInfo objects representing the method’s
parameters.

ParameterInfo
The ParameterInfo class represents parameters for methods or
constructors. Its ParameterType and Name properties provide the basic
information you’d see from looking at the method signature. It also defines
a Member property that refers back to the method or constructor to which
the parameter belongs. The HasDefaultValue property will tell you
whether the parameter is optional, and if it is, DefaultValue provides
the value to be used when the argument is omitted.

If you are working with members defined by unbound generic types, or
with an unbound generic method, be aware that the ParameterType of a
ParameterInfo could refer to a generic type argument, and not a real
type. This is also true of any Type objects returned by the reflection
objects described in the next three sections.

FieldInfo
FieldInfo represents a field in a type. You typically obtain it from a
Type object with GetField or GetFields, or if you’re using code
written in a language that supports global fields, you can retrieve those from
the containing Module.

FieldInfo defines a set of properties representing accessibility. These
look just like the ones defined by MethodBase. Additionally, there’s
FieldType, representing the type a field can contain. (As always, if the

member belongs to an unbound generic type, this might refer to a type
argument rather than a specific type.) There are also some properties
providing further information about the field, including IsStatic,
IsInitOnly, and IsLiteral. These correspond to static,
readonly, and const in C#, respectively. (Fields representing values in
enumeration types will also return true from IsLiteral.)

FieldInfo defines GetValue and SetValue methods that let you
read and write the value of the field. These take an argument specifying the
instance to use, or null if the field is static. As with the MethodBase
class’s Invoke, these do not do anything you couldn’t do with the Type
class’s InvokeMember, but these methods are typically more convenient.

PropertyInfo
The PropertyInfo type represents a property. You can obtain these from
the containing Type object’s GetProperty or GetProperties
methods. As I mentioned earlier, PropertyInfo does not define any
properties for accessibility, because the accessibility is determined at the
level of the individual get and set methods. You can retrieve those with the
GetGetMethod and GetSetMethod methods, which both return
MethodInfo objects.

Much like with FieldInfo, the PropertyInfo class defines
GetValue and SetValue methods for reading and writing the value.
Properties are allowed to take arguments—C# indexers are properties with
arguments, for example. So there are overloads of GetValue and
SetValue that take arrays of arguments. Also, there is a
GetIndexParameters method that returns an array of
ParameterInfo objects, representing the arguments required to use the
property. The property’s type is available through the PropertyType
property.

EventInfo
Events are represented by EventInfo objects, which are returned by the
Type class’s GetEvent and GetEvents methods. Like
PropertyInfo, this does not have any accessibility properties, because
the event’s add and remove methods each define their own accessibility.
You can retrieve those methods with GetAddMethod and
GetRemoveMethod, which both return a MethodInfo. EventInfo
defines an EventHandlerType, which returns the type of delegate that
event handlers are required to supply.

You can attach and remove handlers by calling the AddEventHandler
and Remove EventHandler methods. As with all other dynamic
invocation, these just offer a more convenient alternative to the Type
class’s InvokeMember method.

Reflection Contexts
.NET has a feature called reflection contexts. These enable reflection to
provide a virtualized view of the type system. By writing a custom
reflection context, you can modify how types appear—you can cause a type
to look like it has extra properties, or you can add to the set of attributes that
members and parameters appear to offer. (Chapter 14 will describe
attributes.)

Reflection contexts are useful because they make it possible to write
reflection-driven frameworks that enable individual types to customize how
they are handled but without forcing every type that participates into
providing explicit support. Prior to the introduction of custom reflection
contexts in .NET 4.5, this was handled with various ad hoc systems. Take
the Properties panel in Visual Studio, for example. This can automatically
display every public property defined by any .NET object that ends up on a
design surface (e.g., any UI component you write). It’s great to have
automatic editing support even for components that do not provide any

explicit handling for that, but components should have the opportunity to
customize how they behave at design time.

Because the Properties panel predates .NET 4.5, it uses one of the ad hoc
solutions: the TypeDescriptor class. This is a wrapper on top of
reflection, which allows any class to augment its design-time behavior by
implementing ICustomTypeDescriptor, enabling a class to
customize the set of properties it offers for editing and also to control how
they are presented, even offering custom editing UIs. This is flexible, but
has the downside of coupling the design-time code with the runtime code—
components that use this model cannot easily be shipped without also
supplying the design-time code. So Visual Studio introduced its own
virtualization mechanisms for separating the two.

To avoid having each framework define its own virtualization system,
custom reflection contexts add virtualization directly into the reflection
API. If you want to write code that can consume type information provided
by reflection but can also support design-time augmentation or modification
of that information, it’s no longer necessary to use some sort of wrapper
layer. You can use the usual reflection types described earlier in this chapter,
but it’s now possible to ask reflection to give you different implementations
of these types, providing different virtualized views.

You do this by writing a custom reflection context that describes how you
want to modify the view that reflection provides. Example 13-12 shows a
particularly boring type followed by a custom reflection context that makes
that type look like it has a property.

Example 13-12. A simple type, enhanced by a reflection context
class NotVeryInteresting
{
}

class MyReflectionContext : CustomReflectionContext
{
 protected override IEnumerable<PropertyInfo> AddProperties(Type
type)
 {
 if (type == typeof(NotVeryInteresting))

 {
 var fakeProp = CreateProperty(
 MapType(typeof(string).GetTypeInfo()),
 "FakeProperty",
 o => "FakeValue",
 (o, v) => Console.WriteLine($"Setting value:
{v}"));

 return new[] { fakeProp };
 }
 else
 {
 return base.AddProperties(type);
 }
 }
}

Code that uses the reflection API directly will see the
NotVeryInteresting type directly as it is, with no properties.
However, we can map that type through MyReflectionContext, as
Example 13-13 shows.

Example 13-13. Using a custom reflection context
var ctx = new MyReflectionContext();
TypeInfo mappedType =
ctx.MapType(typeof(NotVeryInteresting).GetTypeInfo());

foreach (PropertyInfo prop in mappedType.DeclaredProperties)
{
 Console.WriteLine($"{prop.Name} ({prop.PropertyType.Name})");
}

The mappedType variable holds a reference to the resulting mapped type.
It still looks like an ordinary reflection TypeInfo object, and we can
iterate through its properties in the usual way with
DeclaredProperties, but because we’ve mapped the type through my
custom reflection context, we see the modified version of the type. This
code’s output will show that the type appears to define one property called
FakeProperty, of type string.

Summary
The reflection API makes it possible to write code whose behavior is based
on the structure of the types it works with. This might involve deciding
which values to present in a UI grid based on the properties an object offers,
or it might mean modifying the behavior of a framework based on what
members a particular type chooses to define. For example, parts of the
ASP.NET Core web framework will detect whether your code is using
synchronous or asynchronous programming techniques and adapt
appropriately. These techniques require the ability to inspect code at
runtime, which is what reflection enables. All of the information in an
assembly required by the type system is available to our code. Furthermore,
you can present this through a virtualized view by writing a custom
reflection context, making it possible to customize the behavior of
reflection-driven code.

Code that inspects the structure of types to drive its behavior often needs
additional information. For example, the System.Text.Json
namespace includes types described in Chapter 15 that can convert between
.NET objects and JSON documents. These rely on reflection, but you can
take more precise control over the purpose by supplying extra information
in the form of attributes. These are the topic of the next chapter.

1 For historical reasons discussed later, a subset of this functionality is in a derived type called
TypeInfo. But the base Type class is the one you most often encounter.

Chapter 14. Attributes

In .NET, you can annotate components, types, and their members with
attributes. An attribute’s purpose is to control or modify the behavior of a
framework, a tool, the compiler, or the CLR. For example, in Chapter 1, I
showed a class annotated with the [TestClass] attribute. This told a
unit testing framework that the annotated class contains some tests to be run
as part of a test suite.

Attributes are passive containers of information that do nothing on their
own. To draw an analogy with the physical world, if you print out a
shipping label containing an address and tracking information and attach it
to a package, that label will not in itself cause the package to make its way
to a destination. Such a label is useful only once the package is in the hands
of a shipping company. When the company picks up your parcel, it’ll expect
to find the label and will use it to work out how to route your package. So
the label is important, but ultimately, its only job is to provide information
that some system requires. .NET attributes work the same way—they have
an effect only if something goes looking for them. Some attributes are
handled by the CLR or the compiler, but these are in the minority. The
majority of attributes are consumed by frameworks, libraries, tools (such as
a unit test runner), or your own code.

Applying Attributes
To avoid having to introduce an extra set of concepts into the type system,
.NET models attributes as instances of .NET types. To be used as an
attribute, a type must derive from the System.Attribute class, but it
can otherwise be entirely ordinary. To apply an attribute, you put the type’s
name in square brackets, and this usually goes directly before the attribute’s
target. (Since C# mostly ignores whitespace, attributes don’t have to be on a
separate line, but that is the convention when the target is a type or a

member.) Example 14-1 shows some attributes from Microsoft’s test
framework. I’ve applied one to the class to indicate that this contains tests
I’d like to run, and I’ve also applied attributes to individual methods, telling
the test framework which ones represent tests and which contain
initialization code to be run before each test.

Example 14-1. Attributes in a unit test class
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace ImageManagement.Tests;

[TestClass]
public class WhenPropertiesRetrieved
{
 private ImageMetadataReader? _reader;

 [TestInitialize]
 public void Initialize()
 {
 _reader = new ImageMetadataReader(TestFiles.GetImage());
 }

 [TestMethod]
 public void ReportsCameraMaker()
 {
 Assert.AreEqual(_reader!.CameraManufacturer, "Fabrikam");
 }

 [TestMethod]
 public void ReportsCameraModel()
 {
 Assert.AreEqual(_reader!.CameraModel, "Fabrikam F450D");
 }
}

If you look at the documentation for most attributes, you’ll find that their
real name ends with Attribute. If there’s no class with the name you
specify in the brackets, the C# compiler tries appending Attribute, so
the [TestClass] attribute in Example 14-1 refers to the
TestClassAttribute class. If you really want to, you can spell the
class name out in full—for example, [TestClassAttribute]—but
it’s more common to use the shorter version.

If you want to apply multiple attributes, you have two options. You can
either provide multiple sets of brackets or put multiple attributes inside a
single pair of brackets, separated by commas.

Some attribute types can take constructor arguments. For example,
Microsoft’s test framework includes a TestCategoryAttribute.
When running tests, you can choose to execute only those in a certain
category. This attribute requires you to pass the category name as a
constructor argument, because there would be no point in applying this
attribute without specifying the name. As Example 14-2 shows, the syntax
for specifying an attribute’s constructor arguments is unsurprising.

Example 14-2. Attribute with constructor argument
[TestCategory("Property Handling")]
[TestMethod]
public void ReportsCameraMaker()
{
 ...

You can also specify property or field values. Some attributes have features
that can be controlled only through properties or fields, and not constructor
arguments. (If an attribute has lots of optional settings, it’s usually easier to
present these as properties or fields, instead of defining a constructor
overload for every conceivable combination of settings.) The syntax for this
is to write one or more PropertyOrFieldName=Value entries after
the constructor arguments (or instead of them, if there are no constructor
arguments). Example 14-3 shows another attribute used in unit testing,
ExpectedExceptionAttribute, which allows you to specify that
when your test runs, you expect it to throw a particular exception. The
exception type is mandatory, so we pass that as a constructor argument, but
this attribute also allows you to state whether the test runner should accept
exceptions of a type derived from the one specified. (By default, it will
accept only an exact match.) This is controlled with the
AllowDerivedTypes property.

Example 14-3. Specifying optional attribute settings with properties
[ExpectedException(typeof(ArgumentException), AllowDerivedTypes =
true)]

[TestMethod]
public void ThrowsWhenNameMalformed()
{
 ...

Applying an attribute will not cause it to be constructed. All you are doing
when you apply an attribute is providing instructions on how the attribute
should be created and initialized if something should ask to see it. (There is
a common misconception that method attributes are instantiated when the
method runs. Not so.) When the compiler builds the metadata for an
assembly, it includes information about which attributes have been applied
to which items, including a list of constructor arguments and property
values, and the CLR will dig that information out and use it only if
something asks for it. For example, when you tell Visual Studio to run your
unit tests, it will load your test assembly, and then for each public type, it
asks the CLR for any test-related attributes. That’s the point at which the
attributes get constructed. If you were simply to load the assembly by, say,
adding a reference to it from another project and then using some of the
types it contains, the attributes would never come into existence—they
would remain as nothing more than a set of building instructions frozen into
your assembly’s metadata.

Attribute Targets
Attributes can be applied to numerous different kinds of targets. You can
put attributes on any of the features of the type system represented in the
reflection API that I showed in Chapter 13. Specifically, you can apply
attributes to assemblies, modules, types, methods, method parameters,
constructors, fields, properties, events, and generic type parameters. In
addition, you can supply attributes that target a method’s return value.

For most of these, you denote the target simply by putting the attribute in
front of it. But that’s not an option for assemblies or modules, because there
is no single feature that represents those in your source code—everything in
your project goes into the assembly it produces, and modules are likewise
an aggregate (typically constituting the whole assembly, as I described in
Chapter 12). So for these, we have to state the target explicitly at the start of

the attribute. You will often see assembly-level attributes like the one shown
in Example 14-4 in a GlobalSuppressions.cs file. Visual Studio sometimes
makes suggestions for modifying your code, and if you choose to suppress
these, it can do so with assembly-level attributes.

Example 14-4. Assembly-level attributes
[assembly: System.Diagnostics.CodeAnalysis.SuppressMessage(
 "Style",
 "IDE0060:Remove unused parameter",
 Justification = "This is just some example code from a book",
 Scope = "member",
 Target = "~M:Idg.Examples.SomeMethod")]

You can put assembly-level attributes in any file. The sole restriction is that
they must appear before any namespace or type definitions. The only things
that should come before assembly-level attributes are whichever using
directives you need, comments, and whitespace (all of which are optional).

Module-level attributes follow the same pattern, although they are much
less common, not least because multimodule assemblies are pretty rare and
are not supported in the latest versions of .NET—they only work on .NET
Framework. Example 14-5 shows how to configure the debuggability of a
particular module, should you want one module in a multimodule assembly
to be easily debuggable but the rest to be JIT-compiled with full
optimizations. (This is a contrived scenario so that I can show the syntax. In
practice, you’re unlikely ever to want to do this.) I’ll talk about the
DebuggableAttribute later, in “JIT compilation”.

Example 14-5. Module-level attribute
using System.Diagnostics;

[module:
Debuggable(DebuggableAttribute.DebuggingModes.DisableOptimizations)
]

Another kind of target that needs qualification is a compiler-generated field.
You get these with properties in which you do not supply code for the getter
or setter, and also in event members without explicit add and remove
implementations. The attributes in Example 14-6 apply to the fields that

hold the property’s value and the delegate for the event; without the
field: qualifiers, attributes in those positions would apply to the property
or event itself.

Example 14-6. Attribute for compiler-generated property and event fields
[field: NonSerialized]
public int DynamicId { get; set; }

[field: NonSerialized]
public event EventHandler? Frazzled;

Methods’ return values can be annotated, and this also requires
qualification, because return value attributes go in front of the method, the
same place as attributes that apply to the method itself. (Attributes for
parameters do not need qualification, because these appear inside the
parentheses with the arguments.) Example 14-7 shows a method with
attributes applied to both the method and the return type. (The attributes in
this example are part of the interop services that enable .NET code to call
external code, such as OS APIs. This example imports a function from a
Win32 DLL, enabling you to use it from C#. There are several different
representations for Boolean values in unmanaged code, so I’ve annotated
the return type here with a MarshalAsAttribute to say which
particular one the CLR should expect.)

Example 14-7. Method and return value attributes
[DllImport("User32.dll")]
[return: MarshalAs(UnmanagedType.Bool)]
static extern bool IsWindowVisible(HandleRef hWnd);

What about cases where we don’t write the method declaration explicitly?
As you saw in Chapter 9, the lambda syntax lets us write an expression
whose value is a delegate. The compiler generates a normal method to hold
the code (typically in a hidden class), and we might want to pass that
method to a framework that uses attributes to control its functionality, such
as the ASP.NET Core web framework. Example 14-8 shows how we can
specify these attributes when using a lambda.

Example 14-8. Lambda with attributes
app.MapGet(
 "/items/{id}",
 [Authorize] ([FromRoute] int id) => $"Item {id} requested");

The MapGet method here tells the ASP.NET Core framework how our
application should behave when it receives GET requests on URLs
matching a particular pattern. The first argument specifies the pattern, and
the second is a delegate that defines the behavior. I’ve used the lambda
syntax here, and I’ve applied a couple of attributes.

The first attribute is [Authorize]. This appears before the parameter
list, so its target is the whole method. (You can also use a return:
attribute in this position.) This causes ASP.NET Core to block
unauthenticated requests that match this URL pattern. The [FromRoute]
attribute is inside the parameter list’s parentheses, so it applies to the id
parameter, and it tells ASP.NET Core that we want that particular
parameter’s value to be taken from the expression of the same name in the
URL pattern. So if a request came in for https://myserver/items/42,
ASP.NET Core would first check that the request meets the application’s
configured requirements for authentication and authorization, and if so, it
would then invoke my lambda passing 42 as the id argument.

NOTE
Example 9-22 in Chapter 9 showed that you can omit details in certain cases. The
parentheses around the parameter list are normally optional for 1-argument lambdas.
However, the parentheses must be present if you apply attributes to a lambda. To see
why, imagine Example 14-8 without parentheses around the parameter list: it would be
unclear whether the attributes were meant to apply to the method or the parameter.

Compiler-Handled Attributes
The C# compiler recognizes certain attribute types and handles them in
special ways. For example, assembly names and versions are set via
attributes and also some related information about your assembly. As

Chapter 12 described, in modern .NET projects, the build process generates
a hidden source file containing these for you. If you’re curious, it usually
ends up in the obj\Debug or obj\Release folder of your project, and it will
be named something like YourProject.AssemblyInfo.cs. Example 14-9
shows a typical example.

Example 14-9. A typical generated file with assembly-level attributes
//---

// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.42000
//
// Changes to this file may cause incorrect behavior and will
be lost if
// the code is regenerated.
// </auto-generated>
//---

using System;
using System.Reflection;

[assembly: System.Reflection.AssemblyCompanyAttribute("MyCompany")]
[assembly:
System.Reflection.AssemblyConfigurationAttribute("Debug")]
[assembly:
System.Reflection.AssemblyFileVersionAttribute("1.0.0.0")]
[assembly:
System.Reflection.AssemblyInformationalVersionAttribute("1.0.0")]
[assembly: System.Reflection.AssemblyProductAttribute("MyApp")]
[assembly: System.Reflection.AssemblyTitleAttribute("MyApp")]
[assembly: System.Reflection.AssemblyVersionAttribute("1.0.0.0")]

// Generated by the MSBuild WriteCodeFragment class.

Old versions of the .NET Framework SDK did not generate this file at build
time, so if you work on older projects, you will often find these attributes in
a file called AssemblyInfo.cs. (By default Visual Studio hid this inside the
project’s Properties node in Solution Explorer, but it was still just an
ordinary source file.) The advantage of the file generation used in modern
projects is that names are less likely to drift out of sync. For example, by
default the assembly Product and Title will be the same as the project

filename. If you rename the project file, the generated
YourRenamedProject.AssemblyInfo.cs will change to match (unless you
added <Product> and <AssemblyTitle> properties to your project
file, in which case it will use those), whereas with the old AssemblyInfo.cs
approach you could accidentally end up with mismatched names. Similarly,
if you build a NuGet package from your project, certain properties end up
in both the NuGet package and the compiled assembly. When these are all
generated from information in the project file, it’s easier to keep things
consistent.

Even though you only control these attributes indirectly, it’s useful to
understand them since they affect the compiler output.

Names and versions
As you saw in Chapter 12, assemblies have a compound name. The simple
name, which is typically the same as the filename but without the .exe or
.dll extension, is configured as part of the project settings. The name also
includes a version number, and this is controlled with an attribute, as
Example 14-10 shows.

Example 14-10. Version attributes
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

As you may recall from Chapter 12, the first of these sets the version part of
the assembly’s name. The second has nothing to do with .NET—the
compiler uses this to generate a Win32-style version resource. This is the
version number end users will see if they select your assembly in Windows
Explorer and open the Properties window.

The culture is also part of the assembly name. This will often be set
automatically if you’re using the satellite resource assembly mechanisms
described in Chapter 12. You can set it explicitly with the
AssemblyCulture attribute, but for nonresource assemblies, the culture
should usually not be set. (The only culture-related assembly-level attribute
you will normally specify explicitly is the

Neu tral Res our ces Lan gua ge Att rib ute, which I showed in
Chapter 12.)

Strongly named assemblies have an additional component in their name: the
public key token. The easiest way to set up a strong name in Visual Studio
is with the “Strong naming” section of your project’s properties page
(which is inside the Build section). If you’re using VS Code or some other
editor, you can just add two properties to your .csproj file:
SignAssembly set to True, and AssemblyOriginatorKeyFile
with the path to your key file. However, you can also manage strong
naming from the source code, because the compiler recognizes some special
attributes for this. AssemblyKeyFileAttribute takes the name of a
file that contains a key. Alternatively, you can install a key in the
computer’s key store (which is part of the Windows cryptography system).
If you want to do that, you can use the AssemblyKeyNameAttribute
instead. The presence of either of these attributes causes the compiler to
embed the public key in the assembly and include a hash of that key as the
public key token of the strong name. If the key file includes the private key,
the compiler will sign your assembly too. If it does not, it will fail to
compile, unless you also enable either delay signing or public signing. You
can enable delay signing by applying the Ass emb ly
Del ayS ign Att rib ute with a constructor argument of true.
Alternatively, you can add either <DelaySign>true</DelaySign>
or <PublicSign>true</PublicSign> to your .csproj file.

WARNING
Although the key-related attributes trigger special handling from the compiler, it still
embeds them in the metadata as normal attributes. So, if you use the
AssemblyKeyFileAttribute, the path to your key file will be visible in the final
compiled output. This is not necessarily a problem, but you might prefer not to advertise
these sorts of details, so it may be better to use the project-level configuration for strong
names than the attribute-based approach.

Description and related resources
The version resource produced by the AssemblyFileVersion attribute
is not the only information that the C# compiler can embed in Win32-style
resources. There are several other attributes providing copyright
information and other descriptive text. Example 14-11 shows a typical
selection.

Example 14-11. Typical assembly description attributes
[assembly: AssemblyTitle("ExamplePlugin")]
[assembly: AssemblyDescription("An example plug-in DLL")]
[assembly: AssemblyConfiguration("Retail")]
[assembly: AssemblyCompany("Endjin Ltd.")]
[assembly: AssemblyProduct("ExamplePlugin")]
[assembly: AssemblyCopyright("Copyright © 2022 Endjin Ltd.")]
[assembly: AssemblyTrademark("")]

As with the file version, these are all visible in the Details tab of the
Properties window that Windows Explorer can show for the file. And with
all of these attributes, you can cause them to be generated by editing the
project file.

Caller information attributes
There are some compiler-handled attributes designed for scenarios where
your methods need information about the context from which they were
invoked. This is useful for certain diagnostic logging or error handling
scenarios, and it is also helpful when implementing a particular interface
commonly used in UI code.

Example 14-12 illustrates how you can use these attributes in logging code.
If you annotate method parameters with any of these three attributes, the
compiler provides some special handling when callers omit the arguments.
We can ask for the name of the member (method or property) that called the
attributed method, the filename containing the code that called the method,
or the line number from which the call was made. Example 14-12 asks for
all three, but you can be more selective.

NOTE
These attributes are allowed only for optional parameters. Optional arguments are
required to specify a default value, but C# will always substitute a different value when
these attributes are present, so the default you specify will not be used if you invoke the
method from C# (or Visual Basic, which also supports these attributes). Nonetheless,
you must provide a default because without one, the parameter is not optional, so we
normally use empty strings, null, or the number 0.

Example 14-12. Applying caller info attributes to method parameters
public static void Log(
 string message,
 [CallerMemberName] string callingMethod = "",
 [CallerFilePath] string callingFile = "",
 [CallerLineNumber] int callingLineNumber = 0)
{
 Console.WriteLine("Message {0}, called from {1} in file '{2}',
line {3}",
 message, callingMethod, callingFile, callingLineNumber);
}

If you supply all arguments when invoking this method, nothing unusual
happens. But if you omit any of the optional arguments, C# will generate
code that provides information about the site from which the method was
invoked. The default values for the three optional arguments in Example
14-12 will be the name of the method or property that called this Log
method, the full path of the source code containing the code that made the
call, and the line number from which Log was called.

The CallerMemberName attribute has a superficial resemblance to the
nameof operator, which we saw in Chapter 8. Both cause the compiler to
create a string containing the name of some feature of the code, but they
work quite differently. With nameof, you always know exactly what string
you’ll get, because it’s determined by the expression you supply. (E.g., if
we were to write nameof(message) inside Log in Example 14-12, it
would always evaluate to "message".) But CallerMemberName
changes the way the compiler invokes the method to which they apply—

cal lin g Met hod has that attribute, and its value is not fixed. It will
depend on where this method is called from.

NOTE
You can discover the calling method another way: the StackTrace and
StackFrame classes in the System.Diagnostics namespace can report
information about methods above you in the call stack. However, these have a
considerably higher runtime expense—the caller information attributes calculate the
values at compile time, making the runtime overhead very low. (Likewise with
nameof.) Also, StackFrame can determine the filename and line number only if
debug symbols are available.

Although diagnostic logging is the obvious application for this, I also
mentioned a certain scenario that most .NET UI developers will be familiar
with. The runtime libraries define an interface called
INotifyPropertyChanged. As Example 14-13 shows, this is a very
simple interface with just one member, an event called
PropertyChanged.

Example 14-13. INotifyPropertyChanged
public interface INotifyPropertyChanged
{
 event PropertyChangedEventHandler? PropertyChanged;
}

Types that implement this interface raise the PropertyChanged event
every time one of their properties changes. The
PropertyChangedEventArgument provides a string containing the
name of the property that just changed. These change notifications are
useful in UIs, because they enable an object to be used with databinding
technologies (such as those provided by .NET’s WPF UI framework) that
can automatically update the UI any time a property changes. Databinding
can help you to achieve a clean separation between the code that deals
directly with UI types and code that contains the logic that decides how the
application should respond to user input.

Implementing INotifyPropertyChanged can be both tedious and
error-prone. Because the PropertyChanged event indicates which
property changed as a string, it is very easy to mistype the property name,
or to accidentally use the wrong name if you copy and paste the
implementation from one property to another. Also, if you rename a
property, it’s easy to forget to change the text used for the event, meaning
that code that was previously correct will now provide the wrong name
when raising the PropertyChanged event. The nameof operator helps
avoid mistyping, and helps with renames, but can’t always detect cut-and-
paste errors. (It won’t notice if you fail to update the name when pasting
code between properties of the same class, for example.)

Caller information attributes can help make implementing this interface
much less error-prone. You can refer to Example 14-14, which shows a base
class that implements INotifyPropertyChanged, supplying a helper
for raising change notifications in a way that exploits one of these
attributes. (It also uses the null-conditional ?. operator to ensure that it
only invokes the event’s delegate if it is non-null. By the way, when you use
the operator this way, C# generates code that only evaluates the delegate’s
Invoke method’s arguments if it is non-null. So not only does it skip the
call to Invoke when the delegate is null, it will also avoid constructing the
Pro per ty Cha nge dEv ent Args that would have been passed as an
argument.) This code also detects whether the value really has changed,
only raising the event when that’s the case, and its return value indicates
whether it changed, in case callers might find that useful.

Example 14-14. A reusable INotifyPropertyChanged
implementation
public class NotifyPropertyChanged : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler? PropertyChanged;

 protected bool SetProperty<T>(
 ref T field,
 T value,
 [CallerMemberName] string propertyName = "")
 {
 if (Equals(field, value))

 {
 return false;
 }

 field = value;

 PropertyChanged?.Invoke(this, new
PropertyChangedEventArgs(propertyName));
 return true;
 }
}

The presence of the [CallerMemberName] attribute means that a class
deriving from this type does not need to specify the property name if it calls
SetProperty from inside a property setter, as Example 14-15 shows.

Example 14-15. Raising a property changed event
public class MyViewModel : NotifyPropertyChanged
{
 private string? _name;

 public string? Name
 {
 get => _name;
 set => SetProperty(ref _name, value);
 }
}

Even with the new attribute, implementing
INotifyPropertyChanged is clearly more effort than an automatic
property, where you just write { get; set; } and let the compiler do
the work for you. But it’s only a little more complex than an explicit
implementation of a trivial field-backed property, and it’s simpler than
would be possible without [CallerMemberName], because I’ve been
able to omit the property name when asking the base class to raise the
event. More importantly, it’s less error prone: I can now be confident that
the right name will be used every time, even if I rename the property at
some point in the future.

.NET 6.0 adds a new caller information attribute:
CallerArgumentExpression. Example 14-16 shows an excerpt from

the runtime libraries’ ArgumentNullException class. It declares a
ThrowIfNull method that uses this attribute.

Example 14-16. The CallerArgumentExpressionAttribute in
ArgumentNullException.ThrowIfNull
public class ArgumentNullException
{
 public static void ThrowIfNull(
 [NotNull] object? argument,
 [CallerArgumentExpression("argument")] string? paramName =
null)
 {
...

As you can see, the CallerArgumentExpression attribute takes a
single string argument. This must be the name of another parameter in the
same method—in this case there is only one other parameter, called
argument, so it has to refer to that. The effect is that if you call this
method without providing a value for the annotated paramName argument,
the C# compiler will pass a string containing the exact expression you used
for the argument that the attribute identified. Example 14-17 shows how
this ThrowIfNull method is typically called.

Example 14-17. Calling a method that uses
CallerArgumentExpressionAttribute
static void Greet(string greetingRecipient)
{
 ArgumentNullException.ThrowIfNull(greetingRecipient);
 Console.WriteLine($"Hello, {greetingRecipient}");
}

Greet("world");
Greet(null!);

The Greet method needs greetingRecipient not to be null, so it
calls Arg ume nt Nul lEx cep tio n.T hro wIf Null, passing in
greetingRecipient. Because this code does not provide a second
argument to ThrowIfNull, the compiler will provide the full text of the
expression we used for the first argument. In this case, that’s "gre eti ng

Rec ipi ent". So the effect is that when I run this program, it throws an
Arg ume nt Nul lEx cep tion with this message:

Value cannot be null. (Parameter 'greetingRecipient')

Before C# 10.0, we would typically have used
nameof(greetingRecipient) to tell ArgumentNullException
the name of the offending argument. This new technique prevents a certain
mistake: it used to be all too easy to pass the name of the wrong argument
when throwing an exception. (This was particularly common if you needed
to check multiple arguments for null—copying and pasting the relevant
checks provided ample opportunities to make this mistake.)

One of the scenarios this attribute supports is to improve assertion
messages. For example, unit test libraries typically provide mechanisms for
asserting that certain conditions are true after exercising the code under test.
The idea is that if your test contains code such as
Assert.IsTrue(answer == 42); the test library could use
[CallerArgumentExpression] to be able to report the exact
expression (answer == 42) on failure.

You might expect the Debug.Assert method in the runtime libraries to
use this for similar reasons. However, to use
CallerArgumentExpressionAttribute, you have to add a
parameter to the method to receive the expression text (in addition to the
existing parameter that receives the value of the expression), so it’s not a
binary-compatible change. The new ThrowIfNull method is the only
place the .NET 6.0 runtime libraries use this attribute, and at the time of
writing this, the NuGet packages for Microsoft’s testing framework do not
yet use this. But it seems likely that test frameworks will adopt this in time.

CLR-Handled Attributes
Some attributes get special treatment at runtime from the CLR. There is no
official comprehensive list of such attributes, so in the next few sections, I
will just describe some of the most widely used examples.

InternalsVisibleToAttribute
You can apply the InternalsVisibleToAttribute to an assembly
to declare that any internal types or members it defines should be
visible to one or more other assemblies. A popular use for this is to enable
unit testing of internal types. As Example 14-18 shows, you pass the name
of the assembly as a constructor argument.

NOTE
Strong naming complicates matters. Strongly named assemblies cannot make their
internals visible to assemblies that are not strongly named, and vice versa. When a
strongly named assembly makes its internals visible to another strongly named
assembly, it must specify not just the simple name but also the public key of the
assembly to which it is granting access. And this is not just the public key token I
described in Chapter 12—it is the hexadecimal for the entire public key, which will be
several hundred digits. You can discover an assembly’s full public key with the .NET
SDK’s sn.exe utility, using the -Tp switch followed by the assembly’s path.

Example 14-18. InternalsVisibleToAttribute
[assembly:InternalsVisibleTo("ImageManagement.Tests")]
[assembly:InternalsVisibleTo("ImageServices.Tests")]

This shows that you can make the types visible to multiple assemblies by
applying the attribute multiple times, with a different assembly name each
time.

The CLR is responsible for enforcing accessibility rules. Normally, if you
try to use an internal class from another assembly, you’ll get an error at
runtime. (C# won’t even let you compile such code, but it’s possible to trick
the compiler. Or you could write directly in IL. The IL assembler, ILASM,
does what you tell it and imposes far fewer restrictions than C#. Once you
get past the compile-time restrictions, then you’ll hit the runtime ones.) But
when this attribute is present, the CLR relaxes its rules for the assemblies
you list. The compiler also understands this attribute and lets code that tries
to use externally defined internal types compile as long as the external
library names your assembly in an InternalsVisibleToAttribute.

Besides being useful in unit test scenarios, this attribute can also be helpful
if you want to split code across multiple assemblies. If you have written a
large class library, you might not want to put it into one massive DLL. If it
has several areas that your customers might want to use in isolation, it could
make sense to split it up so that they can deploy just the parts that they
need. However, although you may be able to partition your library’s public-
facing API, the implementation might not be as easy to divide, particularly
if your codebase performs a lot of reuse. You might have many classes that
are not designed for public consumption but that you use throughout your
code.

If it weren’t for the InternalsVisibleToAttribute, it would be
awkward to reuse shared implementation details across assemblies. Either
each assembly would need to contain its own copy of the relevant classes,
or you’d need to make them public types in some common assembly. The
problem with that second technique is that making types public effectively
invites people to use them. Your documentation might state that the types
are for the internal use of your framework and should not be used, but that
won’t stop some people.

Fortunately, you don’t have to make them public. Any types that are just
implementation details can remain internal, and you can make them
available to all of your assemblies with the
InternalsVisibleToAttribute while keeping them inaccessible to
everyone else.

JIT compilation
There are a few attributes that influence how the JIT compiler generates
code. You can apply the MethodImplAttribute to a method, passing
values from the Met hod Imp lOp tions enumeration. Its NoInlining
value ensures that whenever your method is called by another method, it
will be a full method call. Without this, the JIT compiler will sometimes
just copy a method’s code directly into the calling code.

In general, you’ll want to leave inlining enabled. The JIT compiler inlines
only small methods, and it’s particularly important for tiny methods, such as
property accessors. For simple field-based properties, invoking accessors
with a normal function call often requires more code than inlining, so this
optimization can produce code that’s smaller, as well as faster. (Even if the
code is not smaller, it may still be faster, because function calls can be
surprisingly expensive. Modern CPUs tend to handle long sequential
streams of instructions more efficiently than code that leaps around from
one location to another.) However, inlining is an optimization with
observable side effects—an inlined method does not get its own stack
frame. Earlier, I mentioned some diagnostic APIs you can use to inspect the
stack, and inlining will change the number of reported stack frames. If you
just want to ask the question “Which method is calling me?” the caller info
attributes described earlier provide a more efficient way to discover this and
will not be defeated by inlining, but if you have code that inspects the stack
for any reason, it can sometimes be confused by inlining. So, just
occasionally, it’s useful to disable it.

Conversely, you can specify AggressiveInlining, which encourages
the JIT compiler to inline things it might otherwise leave as normal method
calls. If you have identified a particular method as being highly
performance sensitive, it might be worth trying this setting to see if it makes
any difference, although be aware that it could make code either slower or
faster—it will depend on the circumstances. Conversely, you can disable all
optimizations with the NoOptimization option (although the
documentation implies that this is more for the benefit of the CLR team at
Microsoft than for consumers, because it is for “debugging possible code
generation problems”).

Another attribute that has an impact on optimization is the
DebuggableAttribute. The C# compiler automatically applies this to
your assembly in Debug builds. The attribute tells the CLR to be less
aggressive about certain optimizations, particularly ones that affect variable
lifetime and ones that change the order in which code executes. Normally,
the compiler is free to change such things as long as the final result of the

code is the same, but this can cause confusion if you break into the middle
of an optimized method with the debugger. This attribute ensures that
variable values and the flow of execution are easy to follow in that scenario.

STAThread and MTAThread
Applications that run only on Windows and that present a UI (e.g., anything
using .NET’s WPF or Windows Forms frameworks) typically have the
[STAThread] attribute on their Main method (although you won’t
always see it, because the entry point is often generated by the build system
for these kinds of applications). This is an instruction to the CLR’s interop
services for the Component Object Model (COM), but it has broader
implications: you need this attribute on Main if you want your main thread
to host UI elements.

Various Windows UI features rely on COM under the covers. The clipboard
uses it, for example, as do certain kinds of controls. COM has several
threading models, and only one of them is compatible with UI threads. One
of the main reasons for this is that UI elements have thread affinity, so
COM needs to ensure that it does certain work on the right thread. Also, if a
UI thread doesn’t regularly check for messages and handle them, deadlock
can ensue. If you don’t tell COM that a particular thread is a UI thread, it
will omit these checks, and you will encounter problems.

NOTE
Even if you’re not writing UI code, some interop scenarios need the [STAThread]
attribute, because certain COM components are incapable of working without it.
However, UI work is the most common reason for seeing it.

Since COM is managed for you by the CLR, the CLR needs to know that it
should tell COM that a particular thread needs to be handled as a UI thread.
When you create a new thread explicitly using the techniques shown in
Chapter 16, you can configure its COM threading mode, but the main
thread is a special case—the CLR creates it for you when your application

starts, and by the time your code runs, it’s too late to configure the thread.
Placing the [STAThread] attribute on the Main method tells the CLR
that your main thread should be initialized for UI-compatible COM
behavior.

STA is short for single-threaded apartment. Threads that participate in
COM always belong to either an STA or a multithreaded apartment (MTA).
There are other kinds of apartments, but threads have only temporary
membership in those; when a thread starts using COM, it must pick either
STA or MTA mode. So there is, unsurprisingly, also an [MTAThread]
attribute.

Interop
The CLR’s interop services define numerous attributes. Most of them are
handled directly by the CLR, because interop is an intrinsic feature of the
runtime. Since the attributes make sense only in the context of the
mechanisms they support, and because there are so many, I will not
describe them in full here, but Example 14-19 illustrates the kinds of things
they can do.

Example 14-19. Interop attributes
[DllImport("advapi32.dll", CharSet = CharSet.Unicode, SetLastError
= true,
 EntryPoint = "LookupPrivilegeValueW")]
internal static extern bool LookupPrivilegeValue(
 [MarshalAs(UnmanagedType.LPWStr)] string lpSystemName,
 [MarshalAs(UnmanagedType.LPWStr)] string lpName,
 out LUID lpLuid);

This uses two interop attributes that we saw earlier in Example 14-7 but in a
somewhat more complex way. This calls into a function exposed by
advapi32.dll, part of the Win32 API. The first argument to the DllImport
attribute tells us that, but unlike the earlier example, this goes on to provide
the interop layer with additional information. This API deals with strings, so
interop needs to know which character representation is in use. This
particular API uses a common Win32 idiom: it returns a Boolean value to
indicate success or failure, but it also uses the Windows SetLastError

API to provide more information in the failure case. The attribute’s
SetLastError property tells the interop layer to retrieve that
immediately after calling this API so that .NET code can inspect it if
necessary. The EntryPoint property deals with the fact that Win32 APIs
taking strings sometimes come in two forms, working with either 8-bit or
16-bit characters (Windows 95 only supported 8-bit text, to conserve
memory) and that we want to call the Wide form (hence the W suffix). It
then uses MarshalAs on the two string arguments to tell the interop layer
which of the many different string representations available in unmanaged
code this particular API expects.

Defining and Consuming Attributes
The vast majority of attributes you will come across are not intrinsic to the
runtime or compiler. They are defined by class libraries and have an effect
only if you are using the relevant libraries or frameworks. You are free to do
exactly the same in your own code—you can define your own attribute
types. Because attributes don’t do anything on their own—they don’t even
get instantiated unless something asks to see them—it is normally useful to
define an attribute type only if you’re writing some sort of framework,
particularly one that is driven by reflection.

For example, unit test frameworks often discover the test classes you write
via reflection and enable you to control the test runner’s behavior with
attributes. Another example is how Visual Studio uses reflection to discover
the properties of editable objects on design surfaces (such as UI controls),
and it will look for certain attributes that enable you to customize the
editing behavior. Another application of attributes is to opt out of rules
applied by the static code analysis tools. (The .NET SDK has built-in tools
for detecting potential problems in your code. This is an extensible system,
and NuGet packages can add analyzers that expand on this, potentially
detecting common mistakes specific to a particular library.) Sometimes
these tools get it wrong, and you can suppress their warnings by annotating
your code with attributes.

The common theme here is that some tool or framework examines your
code and decides what to do based on what it finds. This is the kind of
scenario in which attributes are a good fit. For example, attributes could be
useful if you write an application that end users could extend. You might
support loading of external assemblies that augment your application’s
behavior—this is often known as a plug-in model. It might be useful to
define an attribute that allows a plug-in to provide descriptive information
about itself. It’s not strictly necessary to use attributes—you would
probably define at least one interface that all plug-ins are required to
implement, and you could have members in that interface for retrieving the
necessary information. However, one advantage of using attributes is that
you would not need to create an instance of the plug-in just to retrieve the
description information. That would enable you to show the plug-in’s
details to the user before loading it, which might be important if
constructing the plug-in could have side effects that the user might not
want.

Attribute Types
Example 14-20 shows how an attribute containing information about a
plug-in might look.

Example 14-20. An attribute type
[AttributeUsage(AttributeTargets.Class)]
public class PluginInformationAttribute : Attribute
{
 public PluginInformationAttribute(string name, string author)
 {
 Name = name;
 Author = author;
 }

 public string Name { get; }

 public string Author { get; }

 public string? Description { get; set; }
}

To act as an attribute, a type must derive from the Attribute base class.
Although Attribute defines various static methods for discovering and
retrieving attributes, it does not provide very much of interest for instances.
We do not derive from it to get any particular functionality; we do so
because the compiler will not let you use a type as an attribute unless it
derives from Attribute.

Notice that my type’s name ends in the word Attribute. This is not an
absolute requirement, but it is an extremely widely used convention. As you
saw earlier, it’s even built into the compiler, which automatically adds the
Attribute suffix if you leave it out when applying an attribute. So
there’s usually no reason not to follow this convention.

I’ve annotated my attribute type with an attribute. Most attribute types are
annotated with the AttributeUsageAttribute, indicating the targets
to which the attribute can usefully be applied. The C# compiler will enforce
this. Since my attribute in Example 14-20 states that it may be applied only
to classes, the compiler will generate an error if anyone attempts to apply it
to anything else.

NOTE
As you’ve seen, sometimes when we apply an attribute, we need to state its target. For
example, when an attribute appears before a method, its target is the method, unless you
qualify it with the return: prefix. You might have hoped that you’d be able to leave
out these prefixes when using attributes that can target only certain members. For
example, if an attribute can be applied only to an assembly, do you really need the
assembly: qualifier? However, C# doesn’t let you leave it off. It uses the
AttributeUsageAttribute only to verify that an attribute has not been
misapplied.

My attribute defines only one constructor, so any code that uses it will have
to pass the arguments that the constructor requires, as Example 14-21 does.

Example 14-21. Applying an attribute
[PluginInformation("Reporting", "Endjin Ltd.")]
public class ReportingPlugin

{
 ...
}

Attribute classes are free to define multiple constructor overloads to support
different sets of information. They can also define properties as a way to
support optional pieces of information. My attribute defines a
Description property, which is not required because the constructor
does not demand a value for it, but which I can set using the syntax I
described earlier in this chapter. Example 14-22 shows how that looks for
my attribute.

Example 14-22. Providing an optional property value for an attribute
[PluginInformation("Reporting", "Endjin Ltd.",
 Description = "Automated report generation")]
public class ReportingPlugin
{
 ...
}

So far, nothing I’ve shown will cause an instance of my
Plu gin Inf orm ation Att rib ute type to be created. These
annotations are simply instructions for how the attribute should be
initialized if anything asks to see it. So, if this attribute is to be useful, I
need to write some code that will look for it.

Retrieving Attributes
You can discover whether a particular kind of attribute has been applied
using the reflection API, which can also instantiate the attribute for you. In
Chapter 13, I showed all of the reflection types representing the various
targets to which attributes can be applied—types such as MethodInfo,
Type, and PropertyInfo. These all implement an interface called
ICustomAttributeProvider, as shown in Example 14-23.

Example 14-23. ICustomAttributeProvider
public interface ICustomAttributeProvider
{
 object[] GetCustomAttributes(bool inherit);

 object[] GetCustomAttributes(Type attributeType, bool inherit);
 bool IsDefined(Type attributeType, bool inherit);
}

The IsDefined method simply tells you whether or not a particular
attribute type is present—it does not instantiate it. The two
GetCustomAttributes overloads create attributes and return them.
(This is the point at which attributes are constructed and also when any
properties the annotations specify are set.) The first overload returns all
attributes applied to the target, while the second lets you request only those
attributes of a particular type.

All of these methods take a bool argument that lets you specify whether
you want only attributes that were applied directly to the target you’re
inspecting or also attributes applied to the base type or types.

This interface was introduced in .NET 1.0, so it does not use generics,
meaning you need to cast the objects that come back. Fortunately, the
Cus tom Att rib ute Ext ens ions static class defines several extension
methods. Instead of defining them for the
ICustomAttributeProvider interface, it extends the reflection
classes that offer attributes. For example, if you have a variable of type
Type, you could call
GetCustomAttribute<PluginInformationAttribute>() on
it, which would construct and return the plug-in information attribute or
null if the attribute is not present. Example 14-24 uses this to show all of
the plug-in information from all the DLLs in a particular folder.

Example 14-24. Showing plug-in information
static void ShowPluginInformation(string pluginFolder)
{
 var dir = new DirectoryInfo(pluginFolder);
 foreach (FileInfo file in dir.GetFiles("*.dll"))
 {
 Assembly pluginAssembly = Assembly.LoadFrom(file.FullName);
 var plugins =
 from type in pluginAssembly.ExportedTypes
 let info =
type.GetCustomAttribute<PluginInformationAttribute>()
 where info != null

 select new { type, info };

 foreach (var plugin in plugins)
 {
 Console.WriteLine($"Plugin type: {plugin.type.Name}");
 Console.WriteLine(
 $"Name: {plugin.info.Name}, written by
{plugin.info.Author}");
 Console.WriteLine($"Description:
{plugin.info.Description}");
 }
 }
}

There’s one potential problem with this. I said that one benefit of attributes
is that they can be retrieved without instantiating their target types. That’s
true here—I’m not constructing any of the plug-ins in Example 14-24.
However, I am loading the plug-in assemblies, and a possible side effect of
enumerating the plug-ins would be to run static constructors in the plug-in
DLLs. So, although I’m not deliberately running any code in those DLLs, I
can’t guarantee that no code from those DLLs will run. If my goal is to
present a list of plug-ins to the user, and to load and run only the ones
explicitly selected, I’ve failed, because I’ve given plug-in code a chance to
run. However, we can fix this.

Metadata-Only Load
You do not need to load an assembly fully in order to retrieve attribute
information. As I discussed in Chapter 13, you can load an assembly for
reflection purposes only with the MetadataLoadContext class. This
prevents any of the code in the assembly from running but enables you to
inspect the types it contains. However, this presents a challenge for
attributes. The usual way to inspect an attribute’s properties is to instantiate
it by calling GetCustomAttributes or a related extension method.
Since that involves constructing the attribute—which means running some
code—it is not supported for assemblies loaded by
MetadataLoadContext (not even if the attribute type in question were
defined in a different assembly that had been fully loaded in the normal

way). If I modified Example 14-24 to load the assembly with Met ada ta
Loa dCo ntext, the call to
Get Cus tom Att rib ute <Pl ugi nIn for mat ion Att rib ute> would
throw an exception.

When loading for metadata only, you have to use the
GetCustomAttributesData method. Instead of instantiating the
attribute for you, this returns the information stored in the metadata—the
instructions for creating the attribute. Example 14-25 shows a version of the
relevant code from Example 14-24 modified to work this way. (It also
includes the code required to initialize the MetadataLoadContext.)

Example 14-25. Retrieving attributes with the MetadataLoadContext
string[] runtimeAssemblies = Directory.GetFiles(
 RuntimeEnvironment.GetRuntimeDirectory(), "*.dll");
var paths = new List<string>(runtimeAssemblies);
paths.Add(file.FullName);

var resolver = new PathAssemblyResolver(paths);
var mlc = new MetadataLoadContext(resolver);

Assembly pluginAssembly = mlc.LoadFromAssemblyPath(file.FullName);
var plugins =
 from type in pluginAssembly.ExportedTypes
 let info =
type.GetCustomAttributesData().SingleOrDefault(attrData =>
 attrData.AttributeType.FullName ==
pluginAttributeType.FullName)
 where info != null
 let description = info.NamedArguments
 .SingleOrDefault(a => a.MemberName ==
"Description")
 select new
 {
 type,
 Name = (string) info.ConstructorArguments[0].Value,
 Author = (string) info.ConstructorArguments[1].Value,
 Description =
 description == null ? null :
description.TypedValue.Value
 };

foreach (var plugin in plugins)

{
 Console.WriteLine($"Plugin type: {plugin.type.Name}");
 Console.WriteLine($"Name: {plugin.Name}, written by
{plugin.Author}");
 Console.WriteLine($"Description: {plugin.Description}");
}

The code is rather more cumbersome because we don’t get back an instance
of the attribute. GetCustomAttributesData returns a collection of
CustomAttributeData objects. Example 14-25 uses LINQ’s
SingleOrDefault operator to find the entry for the
PluginInformationAttribute, and if that’s present, the info
variable in the query will end up holding a reference to the relevant
CustomAttributeData object. The code then picks through the
constructor arguments and property values using the
ConstructorArguments and NamedArguments properties,
enabling it to retrieve the three descriptive text values embedded in the
attribute.

As this demonstrates, the MetadataLoadContext adds complexity, so
you should use it only if you need the benefits it offers. One benefit is the
fact that it won’t run any of the assemblies you load. It can also load
assemblies that might be rejected if they were loaded normally (e.g.,
because they target a specific processor architecture that doesn’t match your
process). But if you don’t need the metadata-only option, accessing the
attributes directly, as Example 14-24 does, is more convenient.

Summary
Attributes provide a way to embed custom data into an assembly’s
metadata. You can apply attributes to a type, any member of a type, a
parameter, a return value, or even a whole assembly or one of its modules.
A handful of attributes get special handling from the CLR, and a few
control compiler features, but most have no intrinsic behavior, acting
merely as passive information containers. Attributes do not even get
instantiated unless something asks to see them. All of this makes attributes

most useful in systems with reflection-driven behavior—if you already have
one of the reflection API objects such as ParameterInfo or Type, you
can ask it directly for attributes. You therefore most often see attributes used
in frameworks that inspect your code with reflection, such as unit test
frameworks, serialization frameworks, data-driven UI elements like Visual
Studio’s Properties panel, or plug-in frameworks. If you are using a
framework of this kind, you will typically be able to configure its behavior
by annotating your code with the attributes the framework recognizes. If
you are writing this sort of framework, then it may make sense to define
your own attribute types.

Chapter 15. Files and Streams

Most of the techniques I’ve shown so far in this book revolve around the
information that lives in objects and variables. This kind of state is stored in
a particular process’s memory, but to be useful, a program must interact
with a broader world. This might happen through UI frameworks, but
there’s one particular abstraction that can be used for many kinds of
interactions with the outside world: a stream.

Streams are so widely used in computing that you will no doubt already be
familiar with them, and a .NET stream is much the same as in most other
programming systems: it is simply a sequence of bytes. That makes a
stream a useful abstraction for many commonly encountered features such
as a file on disk or the body of an HTTP response. A console application
uses streams to represent its input and output. If you run such a program
interactively, the text that the user types at the keyboard becomes the
program’s input stream, and anything the program writes to its output
stream appears on screen. A program doesn’t necessarily know what kind of
input or output it has, though—you can redirect these streams with console
programs. For example, the input stream might actually provide the
contents of a file on disk, or it could even be the output from some other
program.

NOTE
Not all I/O APIs are stream-based. For example, in addition to the input stream, the
Console class provides a ReadKey method that gives information about exactly
which key was pressed, which works only if the input comes from the keyboard. So,
although you can write programs that do not care whether their input comes
interactively or from a file, some programs are pickier.

The stream APIs present you with raw byte data. However, it is possible to
work at a different level. For example, there are text-oriented APIs that can
wrap underlying streams, so you can work with characters or strings instead
of raw bytes. There are also various serialization mechanisms that enable
you to convert .NET objects into a stream representation, which you can
turn back into objects later, making it possible to save an object’s state
persistently or to send that state over the network. I’ll show these higher-
level APIs later, but first, let’s look at the stream abstraction itself.

The Stream Class
The Stream class is defined in the System.IO namespace. It is an
abstract base class, with concrete derived types such as FileStream or
GZipStream representing particular kinds of streams. Example 15-1
shows the Stream class’s three most important members. It has several
other members, but these are at the heart of the abstraction. (As you’ll see
later, there are also asynchronous versions of Read and Write. .NET Core
3.1 and .NET also provide overloads that take one of the span types
described in Chapter 18 in place of an array. Everything I say in this section
about these methods also applies to the asynchronous and span-based
forms.)

Example 15-1. The most important members of Stream
public abstract int Read(byte[] buffer, int offset, int count);
public abstract void Write(byte[] buffer, int offset, int count);
public abstract long Position { get; set; }

Some streams are read-only. For example, when the input stream for a
console application represents the keyboard or the output of some other
program, there’s no meaningful way for the program to write to that stream.
(And for consistency, even if you use input redirection to run a console
application with a file as its input, the input stream will be read-only.) Some
streams are write-only, such as the output stream of a console application. If
you call Read on a write-only stream or Write on a read-only one, these
methods throw a NotSupportedException.

TIP
The Stream class defines various bool properties that describe a stream’s capabilities,
so you don’t have to wait until you get an exception to find out what sort of stream
you’ve got. You can check the CanRead or CanWrite properties.

Both Read and Write take a byte[] array as their first argument, and
these methods copy data into or out of that array, respectively. The offset
and count arguments that follow indicate the array element at which to
start and the number of bytes to read or write; you do not have to use the
whole array. Notice that there are no arguments to specify the offset within
the stream at which to read or write. This is managed by the Position
property—this starts at zero, but each time you read or write, the position
advances by the number of bytes processed.

Notice that the Read method returns an int. This tells you how many
bytes were read from the stream—the method does not guarantee to provide
the amount of data you requested. One obvious reason for this is that you
could reach the end of the stream, so even though you may have asked to
read 100 bytes into your array, there may have been only 30 bytes of data
left between the current Position and the end of the stream. However,
that’s not the only reason you might get less than you asked for, and this
often catches people out, so for the benefit of people skim-reading this
chapter, I’ll put this in a scary warning.

WARNING
If you ask for more than one byte at a time, a Stream is always free to return less data
than you requested from Read for any reason. You should never presume that a call to
Read returned as much data as it could, even if you have good reason to know that the
amount you asked for will be available.

The reason Read is slightly tricky is that some streams are live,
representing a source of information that produces data gradually as the

program runs. For example, if a console application is running interactively,
its input stream can provide data only as fast as the user types; a stream
representing data being received over a network connection can provide
data only as fast as it arrives. If you call Read and you ask for more data
than is currently available, a stream might wait until it has as much as
you’ve asked for, but it doesn’t have to—it may return whatever data it has
immediately. (The only situation in which it is obliged to wait before
returning is if it currently has no data at all but is not yet at the end of the
stream. It has to return at least one byte, because a 0 return value indicates
the end of the stream.) If you want to ensure that you read a specific
number of bytes, you’ll have to check whether Read returned fewer bytes
than you wanted, and if necessary, keep calling it until you have what you
need. Example 15-2 shows how to do this.

Example 15-2. Reading a specific number of bytes
static int ReadAll(Stream s, byte[] buffer, int offset, int length)
{
 if ((offset + length) > buffer.Length)
 {
 throw new ArgumentException("Buffer too small to hold
requested data");
 }

 int bytesReadSoFar = 0;
 while (bytesReadSoFar < length)
 {
 int bytes = s.Read(
 buffer, offset + bytesReadSoFar, length -
bytesReadSoFar);
 if (bytes == 0)
 {
 break;
 }
 bytesReadSoFar += bytes;
 }

 return bytesReadSoFar;
}

Notice that this code checks for a 0 return value from Read to detect the
end of the stream. Without that, it would loop forever if it reached the end

of the stream before reading as much data as has been asked for. That
means that if we do reach the end of the stream, this method will have to
provide less data than the caller requested, so this may seem like it hasn’t
really solved the problem. However, it does rule out the situation where you
get less than you asked for despite not reaching the end of the stream. (You
could change the method so that it throws an exception if it reaches the end
of the stream before providing the specified number of bytes. That way, if
the method returns at all, it is guaranteed to return exactly as many bytes as
have been requested.)

Stream offers a simpler way to read. The ReadByte method returns a
single byte, unless you hit the end of the stream, at which point it returns a
value of −1. (Its return type is int, enabling it to return any possible value
for byte as well as negative values.) This avoids the problem of being
handed back only some of the data you requested, because if you get
anything back at all, you always get exactly one byte. However, it’s not
especially convenient or efficient if you want to read larger chunks of data.

The Write method doesn’t have any of these issues. If it succeeds, it
always accepts all of the data you provide. Of course, it might fail—it could
throw an exception before it manages to write all of the data because of an
error (e.g., running out of space on disk or losing a network connection).

Position and Seeking
Streams automatically update their current position each time you read or
write. As you can see in Example 15-1, the Position property can be set,
so you can attempt to move directly to a particular position. This is not
guaranteed to work because it’s not always possible to support it. For
example, a Stream that represents data being received over a TCP network
connection could produce data indefinitely—as long as the connection
remains open and the other end keeps sending data, the stream will continue
to honor calls to Read. A connection could remain open for many days and
might receive terabytes of data in that time. If such a stream let you set its
Position property, enabling your code to go back and reread data

received earlier, the stream would have to find somewhere to store every
single byte it received just in case the code using the stream wants to see it
again. Since that might involve storing more data than you have space for
on disk, this is clearly not practical, so some streams will throw
NotSupportedException when you try to set the Position
property. (There’s a CanSeek property you can use to discover whether a
particular stream supports changing the position, so just like with read-only
and write-only streams, you don’t have to wait until you get an exception to
find out whether it will work.)

As well as the Position property, Stream also defines a Seek method,
whose signature is shown in Example 15-3. This lets you specify the
position you require relative to the stream’s current position. (This also
throws NotSupportedException on streams that don’t support
seeking.)

Example 15-3. The Seek method
public abstract long Seek(long offset, SeekOrigin origin);

If you pass SeekOrigin.Current as the second argument, it will set
the position by adding the first argument to the current position. You can
pass a negative offset if you want to move backward. You can also pass
SeekOrigin.End to set the position to be some specified number of
bytes from the end of the stream. Passing Seek Ori gin.Begin has the
same logical effect as just setting Position—it sets the position relative
to the start of the stream.

Flushing
As with many stream APIs on other programming systems, writing data to a
Stream does not necessarily cause the data to reach its destination
immediately. When a call to Write returns, all you know is that it has
copied your data somewhere; but that might be a buffer in memory, not the
final target. For example, if you write a single byte to a stream representing
a file on a storage device, the stream object will typically defer writing that
to the drive until it has enough bytes to make it worth the effort. Storage

devices are block-based, meaning that writes happen in fixed-size chunks,
typically several kilobytes in size, so it generally makes sense to wait until
there’s enough data to fill a block before writing anything out.

This buffering is usually a good thing—it improves write performance
while enabling you to ignore the details of how the disk works. However, a
downside is that if you write data only occasionally (e.g., when writing
error messages to a logfile), you could easily end up with long delays
between the program writing data to a stream and that data reaching the
disk. This could be perplexing for someone trying to diagnose a problem by
looking at the logfiles of a program that’s currently running. And more
insidiously, if your program crashes, anything in a stream’s buffers that has
not yet made it to the storage device will probably be lost.

The Stream class therefore offers a Flush method. This lets you tell the
stream that you want it to do whatever work is required to ensure that any
buffered data is written to its target, even if that means making suboptimal
use of the buffer.

WARNING
When using a FileStream, the Flush method does not necessarily guarantee that
the data being flushed has made it to disk yet. It merely makes the stream pass the data
to the OS. Before you call Flush, the OS hasn’t even seen the data, so if you were to
terminate the process suddenly, the data would be lost. After Flush has returned, the
OS has everything your code has written, so the process could be terminated without
loss of data. However, the OS may perform additional buffering of its own, so if the
power fails before the OS gets around to writing everything to disk, the data will still be
lost. If you need to guarantee that data has been written persistently (rather than merely
ensuring that you’ve handed it to the OS), you will also need to either use the
WriteThrough flag, described in “FileStream Class”, or call the Flush overload
that takes a bool, passing true to force flushing to the storage device.

A stream automatically flushes its contents when you call Dispose. You
need to use Flush only when you want to keep a stream open after writing
out buffered data. It is particularly important if there will be extended

periods during which the stream is open but inactive. (If the stream
represents a network connection, and if your application depends on prompt
data delivery—this would be the case in an online chat application or game,
for example—you would call Flush even if you expect only fairly brief
periods of inactivity.)

Copying
Copying all of the data from one stream to another is occasionally useful. It
wouldn’t be hard to write a loop to do this, but you don’t have to, because
the Stream class’s CopyTo method (or the equivalent CopyToAsync)
does it for you. There’s not much to say about it. The main reason I’m
mentioning it is that it’s not uncommon for developers to write their own
version of this method because they didn’t know the functionality was built
into Stream.

Length
Some streams are able to report their length through the predictably named
Length property. As with Position, this property’s type is long—
Stream uses 64-bit numbers because streams often need to be larger than
2 GB, which would be the upper limit if sizes and positions were
represented with int.

Stream also defines a SetLength method that lets you define the length
of a stream (where supported). You might think about using this when
writing a large quantity of data to a file, to ensure that there is enough space
to contain all the data you wish to write—better to get an IOException
before you start than wasting time on a doomed operation and potentially
causing system-wide problems by using up all of the free space. However,
many filesystems support sparse files, letting you create files far larger than
the available free space, so in practice you might not see any error until you
start writing nonzero data. Even so, if you specify a length that is longer
than the filesystem supports, SetLength will throw an
ArgumentException.

Not all streams support length operations. The Stream class
documentation says that the Length property is available only on streams
that support CanSeek. This is because streams that support seeking are
typically ones where the whole content of the stream is known and
accessible up front. Seeking is unavailable on streams where the content is
produced at runtime (e.g., input streams representing user input or streams
representing data received over the network), and in those cases the length
is also very often not known in advance. As for SetLength, the
documentation states that this is supported only on streams that support
both writing and seeking. (As with all members representing optional
features, Length and SetLength will throw a
NotSupportedException if you try to use these members on streams
that do not support them.)

Disposal
Some streams represent resources external to the .NET runtime. For
example, FileStream provides stream access to the contents of a file, so
it needs to obtain a file handle from the OS. It’s important to close handles
when you’re done with them; otherwise you might prevent other
applications from being able to use the file. Consequently, the Stream
class implements the IDisposable interface (described in Chapter 7) so
that it can know when to do that. And, as I mentioned earlier, buffering
streams such as FileStream flush their buffers when you call Dispose,
before closing handles.

Not all stream types depend on Dispose being called: MemoryStream
works entirely in memory, so the GC would be able to take care of it. But in
general, if you caused a stream to be created, you should call Dispose
when you no longer need it.

NOTE
There are some situations in which you will be provided with a stream, but it is not your
job to dispose it. For example, ASP.NET Core can provide streams to represent data in
HTTP requests and responses. It creates these for you and then disposes them after
you’ve used them, so you should not call Dispose on them.

Confusingly, the Stream class also has a Close method. This is an
accident of history. The first public beta release of .NET 1.0 did not define
IDisposable, and C# did not have using statements—the keyword
was only for using directives, which bring namespaces into scope. The
Stream class needed some way of knowing when to clean up its resources,
and since there was not yet a standard way to do this, it invented its own
idiom. It defined a Close method, which was consistent with the
terminology used in many stream-based APIs in other programming
systems. IDisposable was added before the final release of .NET 1.0,
and the Stream class added support for this, but it left the Close method
in place; removing it would have disrupted a lot of early adopters who had
been using the betas. But Close is redundant, and the documentation
actively advises against using it. It says you should call Dispose instead
(through a using statement if that is convenient). There’s no harm in
calling Close—there’s no practical difference between that and Dispose
—but Dispose is the more common idiom and is therefore preferred.

Asynchronous Operation
The Stream class offers asynchronous versions of Read and Write. Be
aware that there are two forms. Stream first appeared in .NET 1.0, so it
supported what was then the standard asynchronous mechanism, the
Asynchronous Programming Model (APM, described in Chapter 16)
through the BeginRead, EndRead, BeginWrite, and EndWrite
methods. This model is now deprecated, having been superseded by the
newer Task-based Asynchronous Pattern (or TAP, also described in Chapter
16). Stream supports this through its ReadAsync and WriteAsync

methods. There are two more operations that did not originally have any
kind of asynchronous form that now have TAP versions: FlushAsync and
CopyToAsync. (These support only TAP, because APM was already
deprecated by the time Microsoft added these methods.)

WARNING
Avoid the old APM-based Begin/End forms of Read and Write. They weren’t
present at all in early versions of .NET Core, nor in .NET Standard prior to 2.0. They
reappeared to make it easier to migrate existing code from .NET Framework to .NET
Core, so they are supported only for legacy scenarios.

Some stream types implement asynchronous operations using very efficient
techniques that correspond directly to the asynchronous capabilities of the
underlying OS. (FileStream does this, as do the various streams .NET
can provide to represent content from network connections.) You may come
across libraries with custom stream types that do not do this, but even then,
the asynchronous methods will be available, because the base Stream
class can fall back to using multithreaded techniques instead.

One thing you need to be careful of when using asynchronous reads and
writes is that a stream only has a single Position property. Reads and
writes depend on the current Position and also update it when they are
done, so in general you must avoid starting a new operation before one
already in progress is complete. However, if you wish to perform multiple
concurrent read or write operations from a particular file, FileStream
has special handling for this. If you tell it that you will be using the file in
asynchronous mode, operations use the value Position has at the start of
the operation, and once an asynchronous read or write has started, you are
allowed to change Position and start another operation without waiting
for all the previous ones to complete. But this only applies to
FileStream, and only when the file was opened in asynchronous mode.
Alternatively, instead of using FileStream, you could use the new
RandomAccess class described later in this chapter.

.NET Core 3.1 and .NET 5.0 and later offer IAsyncDisposable, an
asynchronous form of Dispose. The Stream class implements this,
because disposal often involves flushing, which is a potentially slow
operation.

Concrete Stream Types
The Stream class is abstract, so to use a stream, you’ll need a concrete
derived type. In some situations, this will be provided for you—the
ASP.NET Core web framework supplies stream objects representing HTTP
request and response bodies, for example, and the client-side
HttpClient class will do something similar. But sometimes you’ll need
to create a stream object yourself. This section describes a few of the more
commonly used types that derive from Stream.

The FileStream class represents a file on the filesystem. I will describe
this in “Files and Directories”.

MemoryStream lets you create a stream on top of a byte[] array. You
can either take an existing byte[] and wrap it in a MemoryStream, or
you can create a MemoryStream and then populate it with data by calling
Write (or the asynchronous equivalent). You can retrieve the populated
byte[] once you’re done by calling either ToArray or GetBuffer.
(ToArray allocates a new array, with the size based on the number of
bytes actually written. GetBuffer is more efficient because it returns the
underlying array MemoryStream is using, but unless the writes happened
to fill it completely, the array returned will typically be oversized, with
some unused space at the end.) This class is useful when you are working
with APIs that require a stream and you don’t have one for some reason.
For example, most of the serialization APIs described later in this chapter
work with streams, but you might end up wanting to use that in conjunction
with some other API that works in terms of byte[]. MemoryStream lets
you bridge between those two representations.

Both Windows and Unix define an interprocess communication (IPC)
mechanism enabling you to connect two processes through a stream.

Windows calls these named pipes. Unix also has a mechanism with that
name, but it is completely different; it does, however, offer a mechanism
similar to Windows named pipes: domain sockets. Although the precise
details of Windows named pipes and Unix domain sockets differ, the
various classes derived from PipeStream provide a common abstraction
for both in .NET.

BufferedStream derives from Stream but also takes a Stream in its
constructor. It adds a layer of buffering, which is useful if you want to
perform small reads or writes on a stream that is designed to work best with
larger operations. (You don’t need to use this with FileStream because
that has its own built-in buffering mechanism.)

There are various stream types that transform the contents of other streams
in some way. For example, DeflateStream, GZipStream, and
BrotliStream implement three widely used compression algorithms.
You can wrap these around other streams to compress the data written to the
underlying stream or to decompress the data read from it. (These just
provide the lowest-level compression service. If you want to work with the
popular ZIP format for packages of compressed files, use the
ZipArchive class.) There’s also a class called CryptoStream, which
can encrypt or decrypt the contents of other streams using any of the wide
variety of encryption mechanisms supported in .NET.

One Type, Many Behaviors
As you’ve now seen, the abstract base class Stream gets used in a wide
range of scenarios. It is arguably an abstraction that has been stretched a
little too thin. The presence of properties such as CanSeek that tell you
whether the particular Stream you have can be used in a certain way is
arguably a symptom of an underlying problem, an example of something
known as a code smell. .NET streams did not invent this particular one-size-
fits-all approach—it was popularized by Unix and the C programming
language’s standard library a long time ago. The problem is that when

writing code that deals with a Stream, you might not know what sort of
thing you are dealing with.

There are many different ways to use a Stream, but three usage styles
come up a lot:

Sequential access of a sequence of bytes

Random access, with a presumption of efficient caching

Access to some underlying capability of a device or system

As you know, not all Stream implementations support all three models—
if CanSeek returns false, that rules out the middle option. But what is
less obvious is that even when these properties indicate that a capability is
available, not all streams support all usage models equally efficiently.

For example, I worked on a project that used a library for accessing files in
a cloud-hosted storage service that was able to represent those files with
Stream objects. This looks convenient because you can pass those to any
API that works with a Stream. However, it was designed very much for
the third style of use in the preceding list: every single call to Read (or
ReadAsync) would cause the library to make an HTTP request to the
storage service. We had initially hoped to use this with another library that
knew how to parse Parquet files (a binary tabular data storage format
widely used in high-volume data processing). However, it turned out that
the library was expecting a stream that supported the second type of access:
it jumped back and forth through the file, making large numbers of fairly
small reads. It worked perfectly well with the FileStream type I’ll be
describing later, because that supports the first two modes of use well. (For
the second style, it relies on the OS to do the caching.) But it would have
been a performance disaster to plug a Stream from the storage service
library directly into the Parquet parsing library.

It’s not always obvious when you have a mismatch of this kind. In this
example, the properties reporting capabilities such as CanSeek gave no
clue that there would be a problem. And applications that use Parquet files

often use some sort of remote storage service, rather than the local
filesystem, so there was no obvious reason to think that this library would
presume that any Stream would offer local filesystem-like caching. It did
technically work when we tried it: the storage library Stream worked hard
to do everything asked of it, and the code worked correctly…eventually. So
whenever you use a Stream, it’s important to make sure you have fully
understood what access patterns it will be subjected to and how efficiently it
supports those patterns.

In some cases you might be able to bridge the gap. The
BufferedStream class can often take a Stream designed only for the
third usage style mentioned previously and adapt it for the first style of
usage. However, there’s nothing in the runtime libraries that can add
support for the second style of usage to a Stream that doesn’t already
innately support it. (This is typically only available either with streams that
represent something already fully in memory or that wrap some local API
that does the caching for you, such as the OS filesystem APIs.) In these
cases you will either need to rethink your design (e.g., make a local copy of
the Stream contents), change the way that the Stream is consumed, or
write some sort of custom caching adapter. (In the end, we wrote an adapter
that augmented the capabilities of BufferedStream with just enough
random access caching to solve the performance problems.)

Random Access and Scatter/Gather I/O
Without Stream
.NET 6.0 adds a new class to the System.IO namespace:
RandomAccess. It enables file read and write operations without using
Stream. It can simplify scenarios in which you want to perform multiple
concurrent reads from a single file. It can also perform single read or write
operations that operate across data that is not in a single contiguous block of
memory, taking advantage of the underlying OS’s ability to handle such
reads and writes efficiently.

To use RandomAccess, you must open a file with the File class’s
OpenHandle method (also new in .NET 6.0), which returns a
SafeFileHandle, a disposable wrapper around an OS file handle. You
can pass this to the various Read, ReadAsync, Write, and
WriteAsync static methods offered by RandomAccess. All of the read
and write methods require you to pass the offset within the file, unlike
Stream, which remembers the current Position for you. The advantage
of passing the offset with each method is that it avoids the problems
described earlier with performing multiple concurrent operations. Example
15-4 uses this to read data directly from a Windows .exe file. Notice that as
with the Stream class, reads may fetch less data than you ask for, so in
cases where you need to read a particular number of bytes, you will need to
write a loop that can keep reading until the required amount of data has
been fetched.

Example 15-4. Reading data from a file with RandomAccess
static void ReadAll(SafeFileHandle fh, Span<byte> buffer, long
offset)
{
 int soFar = 0;
 do
 {
 int read = RandomAccess.Read(fh, buffer[soFar..], offset +
soFar);
 if (read == 0)
 {
 throw new InvalidOperationException(
 "Reached end of file before filling buffer");
 }
 soFar += read;
 } while (soFar < buffer.Length);
}

var stubSignature = new byte[2];
ReadAll(fh, stubSignature, 0);
if (stubSignature[0] != (byte)'M' || stubSignature[1] != (byte)'Z')
{
 Console.WriteLine("No 'MZ' at start of file - not an EXE
file");
}

This particular example just performs a single read to illustrate the usage,
but a more complex example would be free to execute multiple concurrent
reads, either on multiple threads or by using the ReadAsync method.

The buffer here is passed as a Span<byte>; Write takes a
ReadOnlySpan<byte>. The asynchronous forms take
Memory<byte> and ReadOnlyMemory<byte>, respectively. These
types represent regions of memory—often but not necessarily arrays. They
are all described in Chapter 18.

Each method also offers an overload that accepts a list of the relevant type
(e.g., IReadOnlyList<Memory<byte>>,
IReadOnlyList<ReadOnlyMemory<byte>>, etc.) to support
scatter/gather reads or writes. These are operations in which a single read
or write spans multiple blocks of memory. If the data you want to write out
to a file is spread across multiple areas of memory (e.g., because the data in
question was obtained by making multiple requests to external services),
you can perform a single write operation, passing in a list of all the blocks
of memory to write. This can be considerably more efficient than
performing multiple separate writes—the operating system is able to handle
this sort of I/O directly, and in many cases the underlying disk controller
hardware is able to do the work of aggregating the blocks of data back into
a single disk operation—it gathers together the data that was scattered in
memory, hence the name. And the mirror image of this is available for
reads: you can read a block of data from a file and have that distributed
across multiple destination buffers.

Text-Oriented Types
The Stream and RandomAccess classes are byte oriented, but it’s
common to work with files that contain text. If you want to process text
stored in a file (or received over the network), it is cumbersome to use a
byte-based API, because this forces you to deal explicitly with all of the
variations that can occur. For example, there are multiple conventions for
how to represent the end of a line—Windows typically uses two bytes with

values of 13 and 10, as do many internet standards such as HTTP, but
Unix-like systems often use just a single byte with the value 10.

There are also multiple character encodings in popular use. Some files use
one byte per character, some use two, and some use a variable-length
encoding. There are many different single-byte encodings too, so if you
encounter a byte value of, say, 163 in a text file, you cannot know what
that means unless you know which encoding is in use.

In a file using the single-byte Windows-1252 encoding, the value 163
represents a pound sign: £. But if the file is encoded with ISO/IEC 8859-5
(designed for regions that use Cyrillic alphabets), the exact same code
represents the Cyrillic capital letter DJE: Ђ. And if the file uses the UTF-8
encoding, the value 163 would only be allowed as part of a multibyte
sequence representing a single character.

Awareness of these issues is, of course, an essential part of any developer’s
skill set, but that doesn’t mean you should have to handle every little detail
any time you encounter text. So .NET defines specialized abstractions for
working with text.

TextReader and TextWriter
The abstract TextReader and TextWriter classes present data as a
sequence of char values. Logically speaking, these classes are similar to a
stream, but each element in the sequence is a char instead of a byte.
However, there are some differences in the details. For one thing, there are
separate abstractions for reading and writing. Stream combines these,
because it’s common to want read/write access to a single entity,
particularly if the stream represents a file on disk. For byte-oriented random
access, this makes sense, but it’s a problematic abstraction for text.

Variable-length encodings make it tricky to support random write access
(i.e., the ability to change values at any point in the sequence). Consider
what it would mean to take a 1 GB UTF-8 text file whose first character is a
$ and replace that first character with a £. In UTF-8, the $ character takes

1

only one byte, but £ requires two, so changing that first character would
require an extra byte to be inserted at the start of the file. This would mean
moving the remaining file contents—almost 1 GB of data—along by one
byte.

Even read-only random access is relatively expensive. Finding the millionth
character in a UTF-8 file requires you to read the first 999,999 characters,
because without doing that, you have no way of knowing what mix of
single-byte and multibyte characters there is. The millionth character might
start at the millionth byte, but it could also start some 4 million bytes in, or
anywhere in between. Since supporting random access with variable-length
text encodings is expensive, particularly for writable data, these text-based
types don’t offer it. Without random access, there’s no real benefit in
merging readers and writers into one type. Also, separating reader and
writer types removes the need to check the CanWrite property—you
know that you can write because you’ve got a TextWriter.

TextReader offers several ways to read data. The simplest is the zero-
argument overload of Read, which returns an int. This will return −1 if
you’ve reached the end of the input and will otherwise return a character
value. (You’ll need to cast it to a char once you’ve verified that it’s
nonnegative.) Alternatively, there are two methods that look similar to the
Stream class’s Read method, as Example 15-5 shows.

Example 15-5. TextReader chunk reading methods
public virtual int Read(char[] buffer, int index, int count) {...}
public virtual int ReadBlock(char[] buffer, int index, int count)
{...}

Just like Stream.Read, these take an array, as well as an index into that
array and a count, and will attempt to read the number of values specified.
The most obvious difference from Stream is that these use char instead
of byte. But what’s the difference between Read and ReadBlock? Well,
ReadBlock solves the same problem that I had to solve manually for
Stream in Example 15-2: whereas Read may return fewer characters than

you asked for, ReadBlock will not return until either as many characters
as you asked for are available or it reaches the end of the content.

One of the challenges of handling text input is dealing with the various
conventions for line endings, and TextReader can insulate you from that.
Its ReadLine method reads an entire line of input and returns it as a
string. This string will not include the end-of-line character or
characters.

NOTE
TextReader does not presume one particular end-of-line convention. It accepts either
a carriage return (character value 13, which we write as \r in string literals) or a line
feed (10, or \n). And if both characters appear adjacently, the character pair is treated
as being a single end of line, despite being two characters. This processing happens only
when you use either ReadLine or Read Li neAsync. If you work directly at the
character level by using Read or ReadBlock, you will see the end-of-line characters
exactly as they are.

TextReader also offers ReadToEnd, which reads the input in its
entirety and returns it as a single string. And finally, there’s Peek,
which does the same thing as the single-argument Read method, except it
does not change the state of the reader. It lets you look at the next character
without consuming it, so the next time you call either Peek or Read, it
will return the same character again.

As for TextWriter, it offers two overloaded methods for writing:
Write and WriteLine. Each of these offers overloads for all of the
built-in value types (bool, int, float, etc.). Functionally, the class
could have gotten away with a single overload that takes an object,
because that can just call ToString on its argument, but these specialized
overloads make it possible to avoid boxing the argument. TextWriter
also offers a Flush method for much the same reason that Stream does.

By default, a TextWriter will use the default end-of-line sequence for
the OS you are running on. On Windows this is the \r\n sequence (13,
then 10). On Linux you will just get a single \n at each line end. You can
change this by setting the writer’s NewLine property.

Both of these abstract classes implement IDisposable because some of
the concrete derived text reader and writer types are wrappers around other
disposable resources.

As with Stream, these classes offer asynchronous versions of their
methods. Unlike with Stream, this was a fairly recent addition, so they
support only the task-based pattern described in Chapter 16, which can be
consumed with the await keyword described in Chapter 17.

Concrete Reader and Writer Types
As with Stream, various APIs in .NET will present you with
TextReader and TextWriter objects. For example, the Console
class defines In and Out properties that provide textual access to the
process’s input and output streams. I’ve not described these before, but we
have been using them implicitly—the Console.WriteLine method
overloads are all just wrappers that call Out.WriteLine for you.
Likewise, the Console class’s Read and ReadLine methods simply
forward to In.Read and In.ReadLine. There’s also Error, another
TextWriter for writing to the standard error output stream. However,
there are some concrete classes that derive from TextReader or
TextWriter that you might want to instantiate directly.

StreamReader and StreamWriter
Perhaps the most useful concrete text reader and writer types are
StreamReader and StreamWriter, which wrap a Stream object.
You can pass a Stream as a constructor argument, or you can just pass a
string containing the path of a file, in which case they will automatically
construct a FileStream for you and then wrap that. Example 15-6 uses
this technique to write some text to a file.

Example 15-6. Writing text to a file with StreamWriter
using (var fw = new StreamWriter(@"c:\temp\out.txt"))
{
 fw.WriteLine($"Writing to a file at {DateTime.Now}");
}

There are various constructor overloads offering more fine-grained control.
When passing a string in order to use a file with a StreamWriter (as
opposed to some Stream you have already obtained), you can optionally
pass a bool indicating whether to start from scratch or to append to an
existing file if one exists. (A true value enables appending.) If you do not
pass this argument, appending is not used, and writing will begin from the
start. You can also specify an encoding. By default, StreamWriter will
use UTF-8 with no byte order mark (BOM), but you can pass any type
derived from the Encoding class, which is described in “Encoding”.

StreamReader is similar—you can construct it by passing either a
Stream or a string containing the path of a file, and you can optionally
specify an encoding. However, if you don’t specify an encoding, the
behavior is subtly different from StreamWriter. Whereas
StreamWriter just defaults to UTF-8, StreamReader will attempt to
detect the encoding from the stream’s content. It looks at the first few bytes
and will look for certain features that are typically a good sign that a
particular encoding is in use. If the encoded text begins with a Unicode
BOM, this makes it possible to determine with high confidence what the
encoding is.

StringReader and StringWriter
The StringReader and StringWriter classes serve a similar
purpose to MemoryStream: they are useful when you are working with an
API that requires either a TextReader or TextWriter, but you want to
work entirely in memory. Whereas MemoryStream presents a Stream
API on top of a byte[] array, StringReader wraps a string as a
TextReader, while StringWriter presents a TextWriter API on
top of a StringBuilder.

One of the APIs .NET offers for working with XML, XmlReader, requires
either a Stream or a TextReader. Suppose you have XML content in a
string. If you pass a string when creating a new XmlReader, it will
interpret that as a URI from which to fetch the content, rather than the
content itself. The constructor for StringReader that takes a string just
wraps that string as the content of the reader, and we can pass that to the
XmlReader.Create overload that requires a TextReader, as
Example 15-7 shows. (The line that does this is in bold—the code that
follows just uses the XmlReader to read the content to show that it works
as expected.)

Example 15-7. Wrapping a string in a StringReader
string xmlContent =
 "<message><text>Hello</text><recipient>world</recipient>
</message>";
var xmlReader = XmlReader.Create(new StringReader(xmlContent));
while (xmlReader.Read())
{
 if (xmlReader.NodeType == XmlNodeType.Text)
 {
 Console.WriteLine(xmlReader.Value);
 }
}

StringWriter is even simpler: you can just construct it with no
arguments. Once you’ve finished writing to it, you can call either
ToString or GetStringBuilder to extract all of the text that has
been written.

Encoding
As I mentioned earlier, if you’re using the StreamReader or
StreamWriter, these need to know which character encoding the
underlying stream uses to be able to convert correctly between the bytes in
the stream and .NET’s char or string types. To manage this, the
System.Text namespace defines an abstract Encoding class, with
various encoding-specific public concrete derived types, including

ASCIIEncoding, UTF7Encoding, UTF8Encoding,
UTF32Encoding, and UnicodeEncoding.

Most of those type names are self-explanatory, because they are named after
the standard character encodings they represent, such as ASCII or UTF-8.
The one that requires a little more explanation is UnicodeEncoding—
after all, UTF-7, UTF-8, and UTF-32 are all Unicode encodings, so what’s
this other one for? When Windows introduced support for Unicode back in
the first version of Windows NT, it adopted a slightly unfortunate
convention: in documentation and various API names, the term Unicode
was used to refer to a 2-byte little-endian character encoding, which is just
one of many possible encoding schemes, all of which could correctly be
described as being “Unicode” of one form or another.

The UnicodeEncoding class is named to be consistent with this
historical convention, although even then it’s still a bit confusing. The
encoding referred to as “Unicode” in Win32 APIs is effectively UTF-16LE,
but the UnicodeEncoding class is also capable of supporting the big-
endian UTF-16BE.

The base Encoding class defines static properties that return instances of
all the encoding types I’ve mentioned, so if you need an object representing
a particular encoding, you would normally just write Encoding.ASCII
or Encoding.UTF8, etc., instead of constructing a new object. There are
two properties of type UnicodeEncoding: the Unicode property
returns one configured for UTF-16LE, and BigEndianUnicode returns
one for UTF-16BE.

For the various Unicode encodings, these properties will return encoding
objects that will tell StreamWriter to generate a BOM at the start of the
output. The main purpose of the BOM is to enable software that reads
encoded text to detect automatically whether the encoding is big- or little-
endian. (You can also use it to recognize UTF-8, because that encodes the
BOM differently than other encodings.) If you know that you will be using
an endian-specific encoding (e.g., UTF-16LE), the BOM is unnecessary,
because you already know the order, but the Unicode specification defines

2

adaptable formats in which the encoded bytes can advertise the order in use
by starting with a BOM, a character with Unicode code point U+FEFF. The
16-bit version of this encoding is just called UTF-16, and you can tell
whether any particular set of UTF-16-encoded bytes is big- or little-endian
by seeing whether it begins with 0xFE, 0xFF or 0xFF, 0xFE.

WARNING
Although Unicode defines encoding schemes that allow the endianness to be detected, it
is not possible to create an Encoding object that works that way—it will always have
a specific endianness. So, although an Encoding specifies whether a BOM should be
written when writing data, this does not influence the behavior when reading data—it
will always presume the endianness specified when the Encoding was constructed.
This means that the Encoding.UTF32 property is arguably misnamed—it always
interprets data as little-endian even though the Unicode specification allows UTF-32 to
use either big- or little-endian. Encoding.UTF32 is really UTF-32LE.

As mentioned earlier, if you do not specify an encoding when creating a
StreamWriter, it defaults to UTF-8 with no BOM, which is different
from Encoding.UTF8—that will generate a BOM. And recall that
StreamReader is more interesting: if you do not specify an encoding, it
will attempt to detect the encoding. So .NET is able to handle automatic
detection of byte ordering as required by the Unicode specification for
UTF-16 and UTF-32; it is just that the way to do it is not to specify any
particular encoding when constructing a StreamReader. It will look for
a BOM, and if it finds one present, it will use a suitable Unicode encoding;
otherwise, it presumes UTF-8 encoding.

UTF-8 is a popular encoding. If your main language is English, it’s a
particularly convenient representation, because if you happen to use only
the characters available in ASCII, each character will occupy a single byte,
and the encoded text will have the exact same byte values as it would with
ASCII encoding. But unlike ASCII, you’re not limited to a 7-bit character
set. All Unicode code points are available; you just have to use multibyte

representations for anything outside of the ASCII range. However, although
it’s very widely used, UTF-8 is not the only popular 8-bit encoding.

Code page encodings
Windows, like DOS before it, has long supported 8-bit encodings that
extend ASCII. ASCII is a 7-bit encoding, meaning that with 8-bit bytes you
have 128 “spare” values to use for other characters. This is nowhere near
enough to cover every character for every locale, but within a particular
country, it’s often enough to get by (although not always—many Far
Eastern countries need more than 8 bits per character). But each country
tends to want a different set of non-ASCII characters, depending on which
accented characters are popular in that locale and whether a non-Roman
alphabet is required. So various code pages exist for different locales. For
example, code page 1253 uses values in the range 193–254 to define
characters from the Greek alphabet (filling the remaining non-ASCII values
with useful characters such as non-US currency symbols). Code page 1255
defines Hebrew characters instead, while 1256 defines Arabic characters in
the upper range (and there is some common ground for these particular
code pages, such as using 128 for the euro symbol, €, and 163 for the pound
sign, £).

One of the most commonly encountered code pages is 1252, because that’s
the Windows default for English-speaking locales. This does not define a
non-Roman alphabet; instead it uses the upper character range for useful
symbols and for various accented versions of the Roman alphabet that
enable a wide range of Western European languages to be adequately
represented.

You can create an encoding for a code page by calling the
Encoding.GetEncoding method, passing in the code page number.
(The concrete type of the object you get back is often not one of those I
listed earlier. This method may return nonpublic types that derive from
Encoding.) Example 15-8 uses this to write text containing a pound sign
to a file using code page 1252.

Example 15-8. Writing with the Windows 1252 code page
using (var sw = new StreamWriter("Text.txt", false,
 Encoding.GetEncoding(1252)))
{
 sw.Write("£100");
}

This will encode the £ symbol as a single byte with the value 163. With the
default UTF-8 encoding, it would have been encoded as two bytes, with
values of 194 and 163, respectively.

Using encodings directly
TextReader and TextWriter are not the only way to use encodings.
Objects representing encodings (such as Encoding.UTF8) define various
members. The GetBytes method converts a string directly to a
byte[] array, for example, and the GetString method converts back
again.

You can also discover how much data these conversions will produce.
GetByteCount tells you how large an array GetBytes would produce
for a given string, while GetCharCount tells you how many characters
decoding a particular array would generate. You can also find an upper limit
for how much space will be required without knowing the exact text with
GetMaxByteCount. Instead of a string, this takes a number, which it
interprets as a string length; since .NET strings use UTF-16, this means that
this API answers the question “If I have this many UTF-16 code units,
what’s the largest number of code units that might be required to represent
the same text in the target encoding?” This can produce a significant
overestimate for variable-length encodings. For example, with UTF-8,
GetMaxByteCount multiplies the length of the input string by three and
adds an extra 3 bytes to deal with an edge case that can occur with surrogate
characters. It produces a correct description of the worst possible case, but
text containing any characters that don’t require 3 bytes in UTF-8 (i.e., any
text in English or any other languages that use the Latin alphabet, and also
any text using Greek, Cyrillic, Hebrew, or Arabic writing systems, for

3

example) will require significantly less space than GetMaxByteCount
predicts.

Some encodings can provide a preamble, a distinctive sequence of bytes
that, if found at the start of some encoded text, indicate that you are likely
to be looking at something using that encoding. This can be useful if you
are trying to detect which encoding is in use when you don’t already know.
The various Unicode encodings all return their encoding of the BOM as the
preamble, which you can retrieve with the GetPreamble method.

The Encoding class defines instance properties offering information
about the encoding. EncodingName returns a human-readable name for
the encoding, but there are two more names available. The WebName
property returns the standard name for the encoding registered with the
Internet Assigned Numbers Authority (IANA), which manages standard
names and numbers for things on the internet such as MIME types. Some
protocols, such as HTTP, sometimes put encoding names into headers, and
this is the text you should use in that situation. The other two names,
BodyName and HeaderName, are somewhat more obscure and are used
only for internet email—there are different conventions for how certain
encodings are represented in the body and headers of email.

Files and Directories
The abstractions I’ve shown so far in this chapter are very general purpose
in nature—you can write code that uses a Stream without needing to have
any idea where the bytes it contains come from or are going to, and
likewise, TextReader and TextWriter do not demand any particular
origin or destination for their data. This is useful because it makes it
possible to write code that can be applied in a variety of scenarios. For
example, the stream-based GZipStream can compress or decompress data
from a file, over a network connection, or from any other stream. However,
there are occasions where you know you will be dealing with files and want
access to file-specific features. This section describes the classes for
working with files and the filesystem.

FileStream Class
The FileStream class derives from Stream and represents a file from
the filesystem. I’ve used it a few times in passing already. It adds relatively
few members to those provided by the base class. The Lock and Unlock
methods provide a way of acquiring exclusive access to specific byte ranges
when using a single file from multiple processes. The Name property tells
you the filename.

FileStream offers a great deal of control in its constructors—
disregarding the ones marked with the [Obsolete] attribute, there are
no fewer than 10 constructor overloads. The ways of creating a
FileStream fall into two groups: ones where you already have an OS
file handle and ones where you don’t. If you already have a handle from
somewhere, you are required to tell the FileStream whether that handle
offers read, write, or read/write access to the file, which you do by passing a
value from the FileAccess enumeration. The other overloads optionally
let you indicate the buffer size you’d like to use when reading or writing,
and a flag indicating whether the handle was opened for overlapped I/O, a
Win32 mechanism for supporting asynchronous operation. (The
constructors that don’t take that flag assume that you did not request
overlapped I/O when creating the file handle.)

It is more common to use the other constructors, in which the
FileStream uses OS APIs to create the file handle on your behalf. You
can provide varying levels of detail on how you’d like this done. At a
minimum, you must specify the file’s path and a value from the FileMode
enumeration. Table 15-1 shows the values this enumeration defines and
describes what the FileStream constructor will do for each value in
situations where the named file already exists and where it does not.

4

T
a
b
le
1
5
-
1
.
F

i

l

e

M

o

d

e
e
n
u
m
e
r
a
ti
o
n

Value Behavior if file exists Behavior if file does not exist

CreateNew Throws IOException Creates new file

Create Replaces existing file Creates new file

Open Opens existing file Throws
FileNotFoundException

OpenOrCreate Opens existing file Creates new file

Truncate Replaces existing file Throws
FileNotFoundException

Append Opens existing file, setting Position to
end of file

Creates new file

You can optionally specify a FileAccess too. If you do not, the
FileStream will use FileAccess.ReadWrite unless you’ve chosen
a FileMode of Append. Files opened in append mode can only be
written to, so FileStream chooses Write in that case. (If you pass an
explicit FileAccess asking for anything other than Write when
opening in Append mode, the constructor throws an
ArgumentException.)

By the way, as I describe each additional constructor argument in this
section, the relevant overload will take all of the previously described ones
too (with the exception of the useAsync argument, which appears in just
one constructor). As Example 15-9 shows, most of these constructors look
just like the one before it, with one additional argument.

Example 15-9. FileStream constructors taking a path
public FileStream(string path, FileMode mode)
public FileStream(string path, FileMode mode, FileAccess access)
public FileStream(string path, FileMode mode, FileAccess access,
 FileShare share)
public FileStream(string path, FileMode mode, FileAccess access,
 FileShare share, int bufferSize)
public FileStream(string path, FileMode mode, FileAccess access,
 FileShare share, int bufferSize, bool useAsync)
public FileStream(string path, FileMode mode, FileAccess access,
 FileShare share, int bufferSize, FileOptions
options)

The overloads that accept an argument of type FileShare let you
indicate whether you want exclusive access to the file. If you pass
FileShare.None, the constructor will throw an IOException if the
file is already open elsewhere, and if it succeeds, no other code will be able
to open this file until you are finished with it. If you are prepared to allow
other processes (or other code in your process) to open the file
simultaneously, you can indicate whether your code can tolerate other users
of the file having read access, write access, or both. FileShare is a flags-
style enumeration, so you can specify
FileShare.Read|FileShare.Write, but since that’s a common
combination, FileShare defines a precombined ReadWrite value.

The constructor overloads that don’t take an explicit FileShare both use
FileShare.Read, which indicates that your code is happy for other
code to have the same file open simultaneously for reading but not writing.
This would make sense if you are writing entries to a logfile, for example:
you would most likely use FileMode.Append and FileShare.Read,
meaning only your code will be able to append log entries, but others could
still open the file with FileAccess.Read to be able to read the log. If
two programs attempt to open the same log file simultaneously for write
access, and both specify FileShare.Read (explicitly or as the implicit
default), then whichever gets in there first will succeed, but when the
second one tries, the constructor will throw an IOException because the
attempt to open the file for writing conflicts with the fact that the file is

already open without FileShare.Write. And in this case, that is what
you’d want—if two programs attempted to append to the end of the same
file simultaneously, the result would be a mess because each would have its
own idea about where the end of the file is.

If you attempt to open a file that some other code (either another process or
code elsewhere inside your application) already has open, it will succeed
only if the File Ac cess and FileShare you specify are compatible
with the FileShare that was used by the code that got there first.
Likewise, if your code has already opened a file, the FileShare you
chose at that point determines which FileAccess and FileShare
combinations other code could successfully apply while you are using the
file. For example, if you want to read a logfile that some other process is
writing to, then if that other process specified FileShare.Read, you
will need to use FileAccess.Read. (The constructors that don’t specify
a FileAccess default to FileAccess.ReadWrite, which would fail
in this case because you can’t get write access if something else already has
the file open with FileShare.Read.) But you would also need to
specify FileShare.ReadWrite. That may look surprising in code that
only wants to read, but it makes sense: it states that we don’t mind if other
code attempts to modify the file while we are reading from it. The default of
FileShare.Read states that we need the file not to change while we’re
using it, but that would be the wrong choice for reading from a logfile—if
we managed to open a logfile with FileShare.Read, that would prevent
the main application from opening the logfile for writing.

Specifying FileShare.Write on its own (not combined with
FileShare.Read) is legal but slightly strange. It tolerates other handles
with write access being active simultaneously, but no readers will be
allowed. You can also pass Delete (on its own or in combination with
Read and/or Write), indicating that you don’t mind if someone else tries
to delete the file while you have it open. Obviously, you’ll get I/O
exceptions if you try to use a file after it has been deleted, so you’d need to
be prepared for that, but this can sometimes be worth the effort; otherwise,
attempts to delete a file will be blocked while you have it open.

WARNING
Unix has fewer file-locking mechanisms than Windows, so these locking semantics will
often be mapped to something simpler in those environments. Also, file locks are
advisory in Unix, meaning processes can simply ignore them if they want to.

The next piece of information we can pass is the buffer size. This controls
the size of block that the FileStream will use when reading from and
writing to the filesystem. It defaults to 4,096 bytes. In most scenarios, this
value works just fine, but if you are processing very high volumes of data, a
large buffer size might provide better throughput. However, as with all
performance matters, you should measure the effect of such a change to see
if it is worthwhile—in some cases, you will not see any difference in data
throughput and will simply use a bit more memory than necessary.

The useAsync flag lets you determine whether the file handle is opened
in a way that is optimized for large asynchronous reads and writes. (On
Windows, this opens the file for overlapped I/O, a Win32 feature supporting
asynchronous operations.) If you are reading data in relatively large chunks,
and you use the stream’s asynchronous APIs, you will typically get better
performance by setting this flag. However, if you read data a few bytes at a
time, this mode actually increases overhead. If the code accessing the file is
particularly performance sensitive, it will be worth trying both settings to
see which works better for your workload. As mentioned earlier, this also
makes it possible to perform multiple concurrent operations on a single
FileStream.

The next argument you can add is of type FileOptions. If you’re paying
close attention, you’ll notice in Example 15-9 that each of the overloads
we’ve looked at up to now adds one more argument, but with this one, the
FileOptions argument replaces the bool useAsync argument.
That’s because one of the options you can specify with FileOptions is
asynchronous access. FileOptions is a flags enumeration, so you can
specify a combination of any of the flags it offers, which are described in
Table 15-2.

T
a
b
l
e
1
5
-
2
.
F

i

l

e

O

p

t

i

o

n

s
f
l
a
g
s

Flag Meaning

WriteThrough Disables OS write buffering so data goes straight to the storage device when
you flush the stream

Asynchronous Specifies the use of asynchronous I/O

RandomAccess Hints to filesystem cache that you will be seeking, not reading or writing data
in order

SequentialSca
n

Hints to filesystem cache that you will be reading or writing data in order

DeleteOnClose Tells FileStream to delete the file when you call Dispose

Encrypted Encrypts the file so that its contents cannot be read by other users

Be wary of the WriteThrough flag. Although it works as advertised, it
might not have the desired effect, because some hard drives defer writes to
improve performance. (Many hard drives have their own RAM, enabling
them to receive data from the computer very quickly and to report write
operations as having completed before really storing the data.) The
WriteThrough flag will ensure that when you dispose or flush the
stream, all the data you’ve written will have been delivered to the drive, but
the drive will not necessarily have written that data persistently, so you
could still lose the data if the power fails. The exact behavior will depend
on how you have told the OS to configure the drive.

.NET 6.0 adds a new overload that accepts two arguments: a string (the
file’s path) and a FileStreamOptions. FileStreamOptions
defines a property for each of the settings we’ve just discussed. So it has
Mode, Access, Share, Options, and BufferSize. It also adds an

additional setting, new to .NET 6.0, PreallocationSize, enabling
applications to indicate how much space they expect the file to take up. This
enables the OS to detect when insufficient space is available and also to
reserve the space, reducing the chances of starting an operation that
eventually fails due to lack of disk space. The FileStreamOptions
overload makes it easier to set only those aspects for which you don’t want
the defaults—you can just set the relevant properties. This means it’s no
longer inconvenient if there isn’t a FileStream constructor overload
with the exact combination of parameters you need.

While FileStream gives you control over the contents of the file, some
operations you might wish to perform on files are either cumbersome or not
supported at all with FileStream. For example, you can copy a file with
this class, but it’s not as straightforward as it could be, and FileStream
does not offer any way to delete a file. So the runtime libraries include a
separate class for these kinds of operations.

File Class
The static File class provides methods for performing various operations
on files. The Delete method removes the named file from the filesystem.
The Move method can either move or just rename a file. There are methods
for retrieving information and attributes that the filesystem stores about
each file, such as GetCreationTime, GetLastAccessTime,
GetLastWriteTime, and GetAttributes. (The last of those returns
a FileAttributes value, which is a flags enumeration type telling you
whether the file is read only, a hidden file, a system file, and so on.)

The Encrypt method overlaps with FileStream to some extent—as
you saw earlier, you can request that a file be stored with encryption when
you create it. However, Encrypt is able to work with a file that has
already been created without encryption—it effectively encrypts it in situ.
(This is only supported on Windows, and only on drives where the
filesystem supports it. It will throw PlatformNotSupported
Ex ception on other operating systems, and

5

NotSupportedException on Windows if encryption is not available
for the specified file. This has the same effect as enabling encryption
through a file’s Properties window in Windows File Explorer.) You can also
turn an encrypted file back into an unencrypted one by calling Decrypt.

NOTE
It is not necessary to call Decrypt before reading an encrypted file. When logged in
under the same user account that encrypted a file, you can read its contents in the usual
way—encrypted files look just like normal ones because Windows automatically
decrypts the contents as you read from them. The purpose of this particular encryption
mechanism is that if some other user manages to obtain access to the file (e.g., if it’s on
an external drive that gets stolen), the content will appear to be random junk. Decrypt
removes this encryption, meaning that anyone who can access the file will be able to
look at its contents.

The other methods provided by File all just offer slightly more convenient
ways of doing things you could have done by hand with FileStream.
The Copy method makes a copy of a file, and while you could do that with
the CopyTo method on FileStream, Copy takes care of some awkward
details. For example, it ensures that the target file carries over attributes
such as whether it’s read-only and whether encryption is enabled.

The Exists method lets you discover whether a file exists before you
attempt to open it. You don’t strictly need this, because FileStream will
throw a FileNotFound exception if you attempt to open a nonexistent
file, but Exists is useful if you don’t need to do anything with the file
other than determining whether it is there. If you are planning to open the
file anyway, and are just trying to avoid an exception, you should be wary
of this method; just because Exists returns true, that’s no guarantee that
you won’t get a FileNotFound exception. It’s always possible that in
between your checking for a file’s existence and attempting to open it,
another process might delete the file. Alternatively, the file might be on a
network share, and you might lose network connectivity. So you should

always be prepared for exceptions with file access, even if you’ve
attempted to avoid provoking them.

File offers many helper methods to simplify opening or creating files. The
Create method simply constructs a FileStream for you, passing in
suitable FileMode, FileAccess, and FileShare values. Example
15-10 shows how to use it and also shows what the equivalent code would
look like without using the Create helper. The Create method provides
overloads letting you specify the buffer size, FileOptions, and
FileSecurity, but these still provide the other arguments for you.

Example 15-10. File.Create versus new FileStream
using (FileStream fs = File.Create("foo.bar"))
{
 ...
}

// Equivalent code without using File class
using (var fs = new FileStream("foo.bar", FileMode.Create,
 FileAccess.ReadWrite,
FileShare.None))
{
 ...
}

The File class’s OpenRead and OpenWrite methods provide similar
decluttering for when you want to open an existing file for reading or open
or create a file for writing. There’s also an Open method that requires you
to pass a FileMode. This is of more marginal utility—it’s very similar to
the FileStream constructor overload that also takes just a path and a
mode, automatically supplying suitable other settings. The somewhat
arbitrary difference is that while the FileStream constructor defaults to
FileShare.Read, the File.Open method defaults to
FileShare.None.

File also offers several text-oriented helpers. The simplest method,
OpenText, opens a file for text reading and is of limited value because it
does exactly the same thing as the StreamReader constructor that takes
a single string argument. The only reason to use this is if you happen to

prefer how it makes your code look—if your code makes heavy use of the
File helpers, you might choose to use this for idiomatic consistency.

Several of the methods exposed by File are text oriented. These enable us
to improve on code of the kind shown in Example 15-11. This appends a
line of text to a logfile.

Example 15-11. Appending to a file with StreamWriter
static void Log(string message)
{
 using (var sw = new StreamWriter(@"c:\temp\log.txt", true))
 {
 sw.WriteLine(message);
 }
}

One issue with this is that it’s not all that easy to see at a glance how the
StreamWriter is being opened—what does that true argument mean?
As it happens, that tells the StreamWriter that we want it to create the
underlying FileStream in append mode. Example 15-12 has the same
effect—it uses File.AppendText, which just calls the exact same
FileStream constructor for us. While I was somewhat dismissive of
File.OpenText earlier for offering similarly marginal value, I think
File.AppendText did once provide a genuinely useful improvement in
readability in a way that File.OpenText does not. It’s much easier to
see that Example 15-12 will append text to a file than it is with Example 15-
11. However, since support for named arguments was added to C#,
AppendText now looks less useful—we could just name the append
argument in Example 15-11 for a similar improvement in readability.

Example 15-12. Creating an appending StreamWriter with
File.AppendText
static void Log(string message)
{
 using (StreamWriter sw = File.AppendText(@"c:\temp\log.txt"))
 {
 sw.WriteLine(message);
 }
}

If you’re only going to append some text to a file and immediately close it,
there’s an even easier way. As Example 15-13 shows, we can simplify
things further with the AppendAllText helper.

Example 15-13. Appending a single string to a file
static void Log(string message)
{
 File.AppendAllText(@"c:\temp\log.txt", message);
}

Be careful, though. This does not do quite the same thing as Example 15-
12. That example used WriteLine to append the text, but Example 15-13
is equivalent to using just Write. So, if you were to call the Log method
in Example 15-13 multiple times, you’d end up with one long line in your
output file, unless the strings you were using happened to contain end-of-
line characters. If you want to work with lines, there’s an
AppendAllLines method that takes a collection of strings and appends
each as a new line to the end of a file. Example 15-14 uses this to append a
full line with each call.

Example 15-14. Appending a single line to a file
static void Log(string message)
{
 File.AppendAllLines(@"c:\temp\log.txt", new[] { message });
}

Since AppendAllLines accepts an IEnumerable<string>, you
can use it to append any number of lines. But it’s perfectly happy to append
just one if that’s what you want. File also defines WriteAllText and
WriteAllLines methods, which work in a very similar way, but if there
is already a file at the specified path, these will replace it instead of
appending to it.

There are also some related text-oriented methods for reading the contents
of files. ReadAllText performs the equivalent of constructing a
StreamReader and then calling its ReadToEnd method—it returns the
entire content of the file as a single string. ReadAllBytes fetches the
whole file into a byte[] array. ReadAllLines reads the whole file as a

string[] array, with one element for each line in the file. ReadLines
is superficially very similar. It provides access to the whole file as an
IEnumerable<string> with one item for each line, but the difference
is that it works lazily—unlike all the other methods I’ve described in this
paragraph, it does not read the entire file into memory up front, so
ReadLines would be a better choice for very large files. It not only
consumes less memory, but it also enables your code to get started more
quickly—you can begin to process data as soon as the first line can be read
from disk, whereas none of the other methods return until they have read
the whole file.

Directory Class
Just as File is a static class offering methods for performing operations
with files, Directory is a static class offering methods for performing
operations with directories. Some of the methods are very similar to those
offered by File—there are methods to get and set the creation time, last
access time, and last write time, for example, and we also get Move,
Exists, and Delete methods. Unlike File, Directory.Delete
has two overloads. One takes just a path and works only if the directory is
empty. The other also takes a bool that, if true, will delete everything in
the folder, recursively deleting any nested folders and the files they contain.
Use that one carefully.

Of course, there are also directory-specific methods. GetFiles takes a
directory path and returns a string[] array containing the full path of
each file in that directory. There’s an overload that lets you specify a pattern
by which to filter the results, and a third overload that takes a pattern and
also a flag that lets you request recursive searching of all subfolders.
Example 15-15 uses that to find all files with a .jpg extension in my
Pictures folder. (Unless you’re also called Ian, you’d need to change that
path to match your account name for this to work on your computer.) In a
real application, you should get this path using the technique shown in
“Known Folders”.

Example 15-15. Recursively searching for files of a particular type
foreach (string file in
Directory.GetFiles(@"c:\users\ian\Pictures",
 "*.jpg",

SearchOption.AllDirectories))
{
 Console.WriteLine(file);
}

There is a similar GetDirectories method, offering the same three
overloads, which returns the directories inside the specified directory
instead of returning files. And there’s a GetFileSystemEntries
method, again with the same three overloads, which returns both files and
folders.

There are also methods called EnumerateFiles,
EnumerateDirectories, and EnumerateFileSystemEntries,
which do exactly the same thing as the three GetXxx methods, but they
return IEnumerable<string>. This is a lazy enumeration, so you can
start processing results immediately instead of waiting for all the results as
one big array.

The Directory class offers methods relating to the process’s current
directory (the one used any time you call a file-based API without
specifying the full path). GetCurrentDirectory returns the path, and
SetCurrentDirectory sets it.

You can create new directories too. The CreateDirectory method
takes a path and will attempt to create as many directories as are necessary
to ensure that the path exists. So, if you pass C:\new\dir\here, and there is
no C:\new directory, it will create three new directories: first it will create
C:\new, then C:\new\dir, and then C:\new\dir\here. If the folder you ask for
already exists, it doesn’t treat that as an error; it just returns without doing
anything.

The GetDirectoryRoot strips a directory path down to the drive name
or other root, such as a network share name. For example, on Windows if

you pass this C:\temp\logs, it will return C:\; and if you pass
\\someserver\myshare\dir\test, it will return \\someserver\myshare. This sort
of string slicing, in which you split a path into its component parts, is a
sufficiently common requirement that there’s a class dedicated to various
operations of this kind.

Path Class
The static Path class provides useful utilities for strings containing
filenames. Some extract pieces from a file path, such as the containing
folder name or the file extension. Some combine strings to produce new file
paths. Most of these methods just perform specialized string processing and
do not require the files or directories to which the paths refer to exist.
However, there are a few that go beyond string manipulation. For example,
Path.GetFullPath will take the current directory into account if you
do not pass an absolute path as the argument. But only the methods that
need to make use of real locations will do so.

The Path.Combine method deals with the fiddly issues around
combining folder and filenames. If you have a folder name, C:\temp, and a
filename, log.txt, passing both to Path.Combine returns C:\temp\log.txt.
And it will also work if you pass C:\temp\ as the first argument, so one of
the issues it deals with is working out whether it needs to supply an extra \
character. If the second path is absolute, it detects this and simply ignores
the first path, so if you pass C:\temp and C:\logs\log.txt, the result will be
C:\logs\log.txt. Although these may seem like trivial matters, it’s
surprisingly easy to get the file path combination wrong if you try to do it
yourself by concatenating strings, so you should always avoid the
temptation to do that and just use Path.Combine.

.NET Core and .NET have platform-specific behavior when it comes to
paths. On Unix-like systems, only the / character is used as a directory
separator, so the various methods in Path that expect paths to contain
directories will treat only / as a separator on these systems. Windows uses
a \ as a separator, although it is common for / to be tolerated as a

substitute, and Path follows suit. So Path .Com bine("/x/y",
"/z.txt") will produce the same results on Windows and Linux, but
Path.Combine(@"\x\y", @"\z.txt") will not. Also, on
Windows, if a path begins with a drive letter, it is an absolute path, but Unix
does not recognize drive letters. The examples in the preceding paragraph
will produce strange-looking results on Linux or macOS because on those
systems, all the paths will be treated as relative paths. If you remove the
drive letters and replace \ with /, the results will be as you’d expect.

Given a file path, the GetDirectoryName method removes the filename
part and just returns the directory. This method provides a good illustration
of why you need to remember that most of the Path class’s members do
not look at the filesystem. If you didn’t take that into account, you might
expect that if you pass GetDirectoryName just the name of a directory
such as C:\Program Files, it would detect that this is a directory and return
the same string, but in fact it will return just C:\. The name Program Files is
a perfectly good name for either a file or a directory, and since
GetDirectoryName does not inspect the disk, and it expects to be
passed a path that includes a filename, it will conclude in this case that it is
a file. (Arguably, even if it were aware that C:\Program Files is a directory,
C:\ would be the correct result because that is the directory that contains the
Program Files directory.) This method effectively looks for the final / or \
character and returns everything before that. (So, if you pass a directory
name with a trailing \, such as C:\Program Files\, it will return C:\Program
Files. Then again, the whole point of this API is to remove the filename
from a file’s full path. If you already have a string with just a directory
name, you should not call this API.)

The GetFileName method returns just the filename (including the
extension, if any). Like GetDirectoryName, it also looks for the last
directory separator character, but it returns the text that comes after it rather
than before it. Again, it does not look at the filesystem—this works purely
through string manipulation (although as with all of these operations, it
takes into account the local system’s rules for what counts as a directory
separator or an absolute path). GetFileNameWithoutExtension is

similar, but if an extension is present (e.g., .txt or .jpg), it removes that from
the end of the name. Conversely, GetExtension returns the extension
and nothing else.

If you need to create temporary files to perform some work, Path provides
three useful methods. GetRandomFileName uses a random-number
generator to create a name you can use for either a random file or folder.
The random number is cryptographically strong, which provides two useful
properties: the name will be unique and hard to guess. (Certain kinds of
attacks on a system’s security can become possible if an attacker can predict
the name or location of temporary files.) This method does not actually
create anything on the filesystem—it just hands back a suitable name.
GetTempFileName, on the other hand, will create a file in the location
the OS provides for temporary files. This file will be empty, and the method
returns you its path as a string. You can then open the file and modify it.
(This does not guarantee that cryptography will be used to pick a truly
random name, so you should not depend on this sort of file’s location being
unguessable. It will be unique, but that is all.) You should delete any file
created by GetTempFileName once you have finished with it. Finally,
GetTempPath returns the path of the folder that GetTempFileName
would use; this doesn’t create anything, but you could use this in
conjunction with a name returned by GetRandomFileName (combined
with Path.Combine) to pick a location in which to create your own
temporary file.

FileInfo, DirectoryInfo, and FileSystemInfo
Although the File and Folder classes provide you with access to
information—such as a file’s creation time and whether it is a system file or
a read-only file—those classes have an issue if you need access to multiple
pieces of information. It’s not very efficient to collect each bit of data with a
separate call, because the information can be fetched from the underlying
OS with fewer steps. Also, it can sometimes be easier to pass around a
single object containing all the data you need instead of finding somewhere
to put lots of separate items. So the System.IO namespace defines

FileInfo and DirectoryInfo classes that contain the information
about a file or directory. Since there’s a certain amount of common ground,
these types both derive from a base class, FileSystemInfo.

To construct instances of these classes, you pass the path of the file or
folder you want, as Example 15-16 shows. By the way, if sometime later
you think the file may have been changed by some other program, and you
want to update the information a FileInfo or DirectoryInfo returns,
you can call Refresh, and it will reload information from the filesystem.

Example 15-16. Displaying information about a file with FileInfo
var fi = new FileInfo(@"c:\temp\log.txt");
Console.WriteLine(
 $"{fi.FullName} ({fi.Length} bytes) last modified on
{fi.LastWriteTime}");

As well as providing properties corresponding to the various File and
Directory methods that fetch information (CreationTime,
Attributes, etc.), these information classes provide instance methods
that correspond to many of the static methods of File and Directory.
For example, if you have a FileInfo, it provides Delete, Encrypt,
and Decrypt—methods that work just like their File namesakes, except
you don’t need to pass a path argument. There is also a counterpart of
Move, although with a different name, MoveTo.

FileInfo also provides equivalents to the various helper methods for
opening the file with a Stream or a FileStream, such as
AppendText, OpenRead, and OpenText. Perhaps more surprisingly,
Create and CreateText are also available. It turns out that you can
construct a FileInfo for a file that does not exist yet and then create it
with these helpers. It doesn’t attempt to populate any of the properties that
describe the file until the first time you try to read them, so it will defer
throwing a FileNotFound Ex ception until that point, in case you were
creating the FileInfo in order to create a new file.

As you’d expect, DirectoryInfo also offers instance methods that
correspond to the various static helper methods defined by Directory.

Known Folders
Desktop applications sometimes need to use specific folders. For example,
an application’s settings will typically be stored in a certain folder under the
user’s profile. There’s a separate folder for system-wide application
settings. On Windows these are typically in the user’s AppData folder and
C:\ProgramData, respectively. Windows also defines standard places for
pictures, videos, music, and documents, and there are also folders
representing special shell features, such as the desktop and the user’s
“favorites.”

Although these folders are often in much the same place from one system to
another, you should never presume that they will be where you expect. (So
you should never do what Example 15-15 does in real code.) Many of these
folders have different names in localized versions of Windows. And even
within a particular language, there’s no guarantee that these folders will be
in the usual place—it’s possible to move some of them, and the locations
have not remained fixed across different versions of Windows.

So, if you need access to a particular standard folder, you should use the
Environment class’s GetFolderPath method, as shown in Example
15-17. This takes a member from the nested
Environment.SpecialFolder enum type, which defines values for
all of the well-known folder types available in Windows.

Example 15-17. Discovering where to store settings
string appSettingsRoot =

Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData
);
string myAppSettingsFolder =
 Path.Combine(appSettingsRoot, @"Endjin\FrobnicatorPro");

NOTE
On non-Windows systems, GetFolderPath returns an empty string for most of this
enumeration’s entries, because there is no local equivalent. However, a few work, such
as MyDocuments, Common Ap plicationData, and UserProfile.

clbr://internal.invalid/book/OEBPS/Images/#discovering_where_to_store_settings

The ApplicationData folder is in the roaming section of the user’s
profile. Information that does not need to be copied across all the machines
a person uses (e.g., a cache that could be reconstructed if necessary) should
go in the local section, which you can get with the
LocalApplicationData enum entry.

Serialization
The Stream, TextReader, and TextWriter types provide the ability
to read and write data in files, networks, or anything else stream-like that
provides a suitable concrete class. But these abstractions support only byte
or text data. Suppose you have an object with several properties of various
types, including some numeric types and perhaps also references to other
objects, some of which might be collections. What if you wanted to write
all the information in that object out to a file or over a network connection
so that an object of the same type and with the same property values could
be reconstituted at a later date, or on another computer at the other end of a
connection?

You could do this with the abstractions shown in this chapter, but it would
require a fair amount of work. You’d have to write code to read each
property and write its value out to a Stream or TextWriter, and you’d
need to convert the value to either binary or text. You’d also need to decide
on your representation—would you just write values out in a fixed order, or
would you come up with a scheme for writing name/value pairs so that
you’re not stuck with an inflexible format if you need to add more
properties later on? You’d also need to come up with ways to handle
collections and references to other objects, and you’d need to decide what
to do in the face of circular references—if two objects each refer to one
another, naive code could end up getting stuck in an infinite loop.

.NET offers several solutions to this problem, each making varying trade-
offs between the complexity of the scenarios they are able to support, how
well they deal with versioning, and how suitable they are for interoperating
with other platforms. These techniques all fall under the broad name of

serialization (because they involve writing an object’s state into some form
that stores data sequentially—serially—such as a Stream). Many different
mechanisms have been introduced over the years in .NET, so I won’t cover
all of them. I’ll just present the ones that best represent particular
approaches to the problem.

BinaryReader, BinaryWriter, and BinaryPrimitives
Although they are not strictly forms of serialization, no discussion of this
area is complete without covering the BinaryReader and
BinaryWriter classes, because they solve a fundamental problem that
any attempt to serialize and deserialize objects must deal with: they can
convert the CLR’s intrinsic types to and from streams of bytes.
BinaryPrimitives does the same thing, but it is able to work with
Span<byte> and related types, which are discussed in Chapter 18.

BinaryWriter is a wrapper around a writable Stream. It provides a
Write method that has overloads for all of the intrinsic types except for
object. So it can take a value of any of the numeric types, or the
string, char, or bool types, and it writes a binary representation of
that value into a Stream. It can also write arrays of type byte or char.

BinaryReader is a wrapper around a readable Stream, and it provides
various methods for reading data, each corresponding to the overloads of
Write provided by BinaryWriter. For example, you have
ReadDouble, ReadInt32, and ReadString.

To use these types, you would create a BinaryWriter when you want to
serialize some data, and write out each value you wish to store. When you
later want to deserialize that data, you’d wrap a BinaryReader around a
stream containing the data written with the writer, and call the relevant read
methods in the exact same order that you wrote the data out in the first
place.

BinaryPrimitives works slightly differently. It is designed for code
that needs to minimize the number of heap allocations, so it’s not a wrapper

type—it is a static class offering a wide range of methods, such as
ReadInt32LittleEndian and WriteUInt16BigEndian. These
take ReadOnlySpan<byte> and Span<byte> arguments,
respectively, because it is designed to work directly with data wherever it
may lie in memory (not necessarily wrapped in a Stream). However, the
basic principle is the same: it converts between byte sequences and
primitive .NET types. (Also, string handling is rather more complex: there’s
no ReadString method because anything that returns a string will
create a new string object on the heap, unless there’s a fixed set of possible
strings that you can preallocate and hand out again and again. See Chapter
18 for details.)

These classes only solve the problem of how to represent various built-in
types in binary. You are still left with the task of working out how to
represent whole objects and what to do about more complex kinds of
structures such as references between objects.

CLR Serialization
CLR serialization is, as the name suggests, a feature built into the runtime
itself—it is not simply a library feature. Although it has been in .NET
Framework since v1.0, it was not supported in .NET Core for the first few
versions, but Microsoft eventually added it back in a somewhat reduced
form to make it easier to migrate applications from .NET Framework.
Microsoft discourages its use, but it continues to be popular in certain
scenarios. It is fairly widely used in microservice environments for sending
exceptions and relatively straightforward data structures across service
boundaries. The limited support that .NET Core and .NET provide is aimed
at these scenarios, so you cannot serialize just any old .NET object.

The most interesting aspect of CLR serialization is that it deals directly with
object references. If you serialize, say, a List<SomeType> where
multiple entries in the list refer to the same object, CLR serialization will
detect this, storing just one copy of that object, and when deserializing, it
will re-create that one-object-many-references structure. (Serialization

systems based on the very widely used JSON format normally don’t do
this.)

Types are required to opt into CLR serialization. .NET defines a
[Serializable] attribute that must be present, and once you’ve added
this, the CLR can take care of all of the details for you. Serialization works
directly with an object’s fields. It uses reflection, which enables it to access
all of them, whether public or private. The BinaryFormatter type
(which is in the System.Runtime.Serialization.Format ters
.Binary namespace) provides a Serialize method that will write an
instance of any serializable type to a stream. It correctly detects circular
references, storing just one copy of each object in the stream, and when we
pass the resulting stream back into the Deserialize method, it will
restore any such structure correctly.

So this is pretty powerful—by adding a single attribute, I can write out a
complete graph of objects. There is a downside: if I change the
implementation of any of the types being serialized, I will be in trouble if a
new version of my code attempts to deserialize a stream produced by an old
version. So this is not a good choice for writing out an application’s settings
to disk, because those are likely to evolve with each new version. As it
happens, you can customize the way serialization works, which does make
it possible to support versioning, but at that point, you’re back to doing a lot
of the work by hand. (It may actually be easier to use BinaryReader and
BinaryWriter.) Also, it’s easy to introduce security problems with this
style of serialization: someone who controls a stream that you deserialize
essentially has complete control over all the fields of your objects. The
documentation states that BinaryFormatter “is insecure and can’t be
made secure,” and you will see deprecation warnings when you attempt to
use it. So I’m only describing CLR serialization here because it still gets
used despite Microsoft’s attempts to end it, and also because its existence
means that an assumption you might otherwise have made about object
creation—specifically that a reference type can only be created through one
of its constructors or via MemberwiseClone—turns out not be true.

Another issue with CLR serialization is that it produces binary streams in a
.NET-specific format. If the only code that needs to deal with the stream is
running .NET, then that’s not a problem, but you might want to produce
streams for a broader audience. There are other serialization mechanisms
than CLR serialization, and these can produce streams that may be easier
for other systems to consume.

JSON
The JavaScript Object Notation, JSON, is a very widely used serialization
format, and the .NET runtime libraries provide support for working with it
in the System.Text.Json namespace. It provides three ways of
working with JSON data.

The Utf8JsonReader and Utf8JsonWriter types are stream-like
abstractions that represent the contents of JSON data as a sequence of
elements. These can be useful if you need to process JSON documents that
are too large to load into memory as a single object. They are built on the
memory-efficient mechanisms described in Chapter 18, which includes a
full example showing how to process JSON with these types. This is a very
high-performance option, but it is not the easiest to use.

NOTE
As the names suggest, these types read and write JSON using UTF-8 encoding. This is
by far the most widely used encoding for sending and storing JSON, so all of
System.Text.Json is optimized for it. Because of this, performance-sensitive code
should typically avoid ever obtaining a JSON document as a .NET string, because
that uses UTF-16 encoding and will require conversion to UTF-8 before you can work
with these APIs.

There’s also the JsonSerializer class, which converts between entire
.NET objects and JSON. It requires you to define classes with a structure
corresponding to the JSON.

6

Finally, System.Text.Json offers types that can provide a description
of a JSON document’s structure. These are useful when you do not know at
development time exactly what the structure of your JSON data will be,
because they provide a flexible object model that can adapt to any shape of
JSON data. In fact, there are two variations on this approach. We have
JsonDocument, JsonElement, and related types, which provide a
highly efficient read-only mechanism for inspecting a JSON document, and
the more flexible but slightly less efficient JsonNode, which is writable,
enabling you either to build up a description of JSON from scratch or to
read in some JSON and then modify it.

JsonSerializer
JsonSerializer offers an attribute-driven serialization model in which
you define one or more classes mirroring the structure of the JSON data you
need to deal with, and can then convert JSON data to and from that model.

Example 15-18 shows a simple model suitable for use with
JsonSerializer. As you can see, I’m not required to use any particular
base class, and there are no mandatory attributes.

Example 15-18. Simple JSON serialization model
public class SimpleData
{
 public int Id { get; set; }
 public IList<string>? Names { get; set; }
 public NestedData? Location { get; set; }
 public IDictionary<string, int>? Map { get; set; }
}

public class NestedData
{
 public string? LocationName { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
}

Example 15-19 creates an instance of this model and then uses the
JsonConvert class’s Serialize method to serialize it to a string.

Example 15-19. Serializing data with JsonSerializer
var model = new SimpleData
{
 Id = 42,
 Names = new[] { "Bell", "Stacey", "her", "Jane" },
 Location = new NestedData
 {
 LocationName = "London",
 Latitude = 51.503209,
 Longitude = -0.119145
 },
 Map = new Dictionary<string, int>
 {
 { "Answer", 42 },
 { "FirstPrime", 2 }
 }
};

string json = JsonSerializer.Serialize(
 model,
 new JsonSerializerOptions { WriteIndented = true });
Console.WriteLine(json);

The second argument to Serialize is optional. I’ve used it here to indent
the JSON to make it easier to read. (By default, JsonSerializer will
use a more efficient layout with no unnecessary whitespace, but that is
much harder to read.) The results look like this:

{
 "Id": 42,
 "Names": [
 "Bell",
 "Stacey",
 "her",
 "Jane"
],
 "Location": {
 "LocationName": "London",
 "Latitude": 51.503209,
 "Longitude": -0.119145
 },
 "Map": {
 "Answer": 42,
 "FirstPrime": 2

 }
}

As you can see, each .NET object has become a JSON object, where the
name/value pairs correspond to properties in my model. Numbers and
strings are represented exactly as you would expect. The
IList<string> has become a JSON array, and the
IDictionary<string, int> has become another JSON dictionary.
I’ve used interfaces for these collections, but you can also use the concrete
List<T> and Dictio nary <TKey,TValue> types. You can use
ordinary arrays to represent lists if you prefer. I tend to prefer the interfaces
because it leaves you free to use whatever collection types you want. (E.g.,
Example 15-19 initialized the Names property with a string array, but it
could also have used List<string> without changing the model type.)

Converting serialized JSON back into the model is equally straightforward,
as Example 15-20 shows.

Example 15-20. Deserializing data with JsonSerializer
var deserialized = JsonSerializer.Deserialize<SimpleData>(json);

Although a plain and simple model such as this will often suffice,
sometimes you may need to take control over some aspects of serialization,
particularly if you are working with an externally defined JSON format. For
example, you might need to work with a JSON API that uses naming
conventions that are different from .NET’s—camelCasing is popular but
conflicts with the PascalCasing convention for .NET properties. One way to
resolve this to use the JsonPropertyName attribute to specify the name
to use in the JSON, as Example 15-21 shows.

Example 15-21. Controlling the JSON with JsonPropertyName
attributes
public class NestedData
{
 [JsonPropertyName("locationName")]
 public string? LocationName { get; set; }

 [JsonPropertyName("latitude")]

 public double Latitude { get; set; }

 [JsonPropertyName("longitude")]
 public double Longitude { get; set; }
}

JsonSerializer will use the names specified in
JsonPropertyName when serializing and will look for those names
when deserializing. This approach gives us complete control over the .NET
and JSON property names, but there is a simpler solution for this particular
scenario. This kind of renaming that just changes the case of the first letter
is so common that you can get JsonSerializer to do it for you. The
JsonSerializationOptions passed to
JsonSerializer.Serialize takes an optional constructor argument
of type JsonSerializerDefaults, and if you pass Json
Seri ali zerDefaults.Web, as Example 15-22 does, you will get the
camelCasing style without needing to use any attributes.

Example 15-22. Using JsonSerializerDefaults to get camelCased
property names
var options = new JsonSerializerOptions(JsonSerializerDefaults.Web)
{
 WriteIndented = true
};
string json = JsonSerializer.Serialize(
 model,
 options);

The JsonSerializerOptions also provide a way to handle circular
references. Suppose you want to serialize objects of type SelfRef, as
shown in Example 15-23.

Example 15-23. A type supporting circular references
public class SelfRef
{
 public string? Name { get; set; }
 public SelfRef? Next { get; set; }
}

By default, if you attempt to serialize objects that refer to one another either
directly or indirectly, you’ll get a JsonException reporting a possible
cycle. It says “possible” because it doesn’t directly detect cycles by default
—instead, JsonSerializer has a limit on the depth of any object graph
that it will serialize. This is configurable through the
JsonSerializerOptions.MaxDepth property, but by default the
serializer will report an error if it has to go more than 64 objects deep.
However, you can set the ReferenceHandler to change the behavior.
Example 15-24 sets this to ReferenceHandler.Preserve, enabling
it to serialize a pair of SelfRef instances that refer to each other.

Example 15-24. Serializing a type supporting circular references
var options = new JsonSerializerOptions(JsonSerializerDefaults.Web)
{
 WriteIndented = true,
 ReferenceHandler = ReferenceHandler.Preserve
};
var circle = new SelfRef
{
 Name = "Top",
 Next = new SelfRef
 {
 Name = "Bottom",
 }
};
circle.Next.Next = circle;
string json = JsonSerializer.Serialize(circle, options);

To enable this, the JsonSerializer gives objects identifiers by adding
an $id property:

{
 "$id": "1",
 "name": "Top",
 "next": {
 "$id": "2",
 "name": "Bottom",
 "next": {
 "$ref": "1"
 }
 }
}

This enables the serializer to avoid problems when it encounters a circular
reference. Whenever it has to serialize a property, it checks to see whether
that refers to some object that has already been written out (or is in the
process of being written out). If it does, then instead of attempting to write
out the object again (which would cause an infinite loop, since it’ll just
encounter the circular reference again and again), the serializer emits a
JSON object containing a property with the special name $ref referring
back to the relevant $id. This is not a universally supported form of JSON,
which is why ID generation is not enabled by default.

You can control many other aspects of serialization with
JsonSerializerOptions—you can define custom serialization
mechanisms for data types, for example. (E.g., you might want to represent
something as a DateTimeOffset in your C# code but have that become
a string with a particular date-time format in the JSON.) The full details can
be found in the System.Text.Json documentation.

JSON DOM
Whereas JsonSerializer requires you to define one or more types
representing the structure of the JSON you want to work with,
System.Text.Json provides a fixed set of types that enable a more
dynamic approach. You can build a Document Object Model (DOM) in
which instances of types such as JsonElement or JsonNode represent
the structure of the JSON.

System.Text.Json provides two ways to build a DOM. If you have
data already in JSON form, you can use the JsonDocument class to
obtain a read-only model of the JSON, in which each object, value, and
array is represented as a JsonElement, and each property in an object is
represented as a JsonProperty. Example 15-25 uses JsonDocument
to discover all of the properties in the object at the root of the JSON by
calling RootElement.EnumerateObject() on the
JsonDocument. This returns a collection of JsonProperty structs.

Example 15-25. Dynamic JSON inspection with JsonDocument and
JsonElement
using (JsonDocument document = JsonDocument.Parse(json))
{
 foreach (JsonProperty property in
document.RootElement.EnumerateObject())
 {
 Console.WriteLine($"Property: {property.Name}
({property.Value.ValueKind})");
 }
}

Running this on the serialized document produced by earlier examples
produces this output:

Property: id (Number)
Property: names (Array)
Property: location (Object)
Property: map (Object)

As this shows, we are able to discover at runtime what properties exist. The
JsonProperty.Value returns a JsonElement struct, and we can
inspect its ValueKind to discover which sort of JSON value it is. If it’s an
array, we can enumerate its contents by calling EnumerateArray, and if
it’s a string value, we can read its value by calling GetString. Example
15-26 uses these methods to show all the strings in the names property.

Example 15-26. Dynamic JSON array enumeration with JsonDocument
and JsonElement
JsonElement namesElement =
document.RootElement.GetProperty("names");
foreach (JsonElement name in namesElement.EnumerateArray())
{
 Console.WriteLine($"Name: {name.GetString()}");
}

As this example also shows, if you know in advance that a particular
property will be present, you don’t need to use EnumerateObject to
find it: you can call GetProperty. There’s also a TryGetProperty
for when the property is optional. Example 15-27 uses both: this treats the

root object’s location property as optional, but if it is present, it then
requires the locationName, latitude, and longitude properties to
be present.

Example 15-27. Reading JSON properties with JsonElement
if (root.TryGetProperty("location", out JsonElement
locationElement))
{
 JsonElement nameElement =
locationElement.GetProperty("locationName");
 JsonElement latitudeElement =
locationElement.GetProperty("latitude");
 JsonElement longitudeElement =
locationElement.GetProperty("longitude");
 string locationName = nameElement.GetString()!;
 double latitude = latitudeElement.GetDouble();
 double longitude = longitudeElement.GetDouble();
 Console.WriteLine($"Location: {locationName}: {latitude},
{longitude}");
}

In addition to structural elements, objects and arrays, the data model in the
JSON specification recognizes four basic data types: strings, numbers,
Booleans, and null. As you’ve seen, you can discover which of these any
particular JsonElement represents with its Kind property. If it’s one of
the basic data types, you can use a suitable Get method. The last two
examples both used GetString, and the second also used GetDouble.
There are multiple methods you can use to retrieve a number: if you are
expecting an integer, you can call GetSByte, GetInt16, GetInt32, or
GetInt64 (and unsigned versions are also available) depending on what
range of values you are expecting. There’s also GetDecimal.

JsonElement also offers methods for reading string properties in
particular formats: GetGuid, GetDateTime, GetDateTimeOffset,
and GetBytesFromBase64.

All of the Get methods will throw an InvalidOperationException
if the value is not in the required format. Each of them is also available in a
TryGet form, enabling you to detect when the data cannot be parsed in the
expected way without having to trigger an exception.

https://oreil.ly/T1Qoe

These types attempt to minimize the amount of memory allocated.
JsonElement and JsonProperty are both structs, so you can obtain
these without causing additional heap allocations. The underlying data is
held in UTF-8 format by the JsonDocument, and the JsonElement
and JsonProperty instances just refer back to that, avoiding the need to
allocate copies of the relevant data. Obviously, the underlying data does
need to live somewhere, and depending on exactly how you loaded the
JSON into a JsonDocument, it may have to allocate some memory to
hold it. (E.g., you can pass it a Stream, and since not all streams are
rewindable, JsonDocument would need to make a copy of the stream’s
contents.) JsonDocument uses the buffer pooling features available in
the .NET runtime libraries to manage this data, meaning that if an
application parses many JSON documents, it may be able to reuse memory,
reducing pressure on the garbage collector (GC). But this means the
JsonDocument needs to know when you’ve finished with the JSON so
that it can return buffers to the pool. That’s why we use a using statement
when working with a JsonDocument.

WARNING
Be aware that JsonElement.GetString is more expensive than all the other Get
methods, because it has to create a new .NET string on the heap. The other Get
methods all return value types, so they do not cause heap allocations.

I mentioned earlier that there are two ways of working with a JSON DOM.
JsonDocument provides a read-only model that lets you inspect existing
JSON. But there is also JsonNode, which is read/write. You can use this
in a couple of ways that JsonDocument does not support. You can build
up an object model from scratch to create a new JSON document.
Alternatively, you can parse existing JSON into an object model just like
with JsonDocument, but when you use JsonNode, the resulting model
is modifiable. So you could use it to load some JSON and modify it, as
Example 15-28 illustrates.

Example 15-28. Modifying JSON with JsonNode
JsonNode rootNode = JsonNode.Parse(json)!;
JsonNode mapNode = rootNode["map"]!;
mapNode["iceCream"] = 99;

This loads the JSON text in json into a JsonNode and then retrieves the
map property. (This example expects to work with JSON in the same form
as I’ve used in the preceding examples, with camelCased property names.)
So far this doesn’t do anything we couldn’t do with JsonDocument. But
the final line adds a new entry to the object in map. It’s this ability to
modify the document that makes JsonNode more powerful. So why do we
need JsonDocument if JsonNode is more powerful? The power comes
at a price: JsonNode is less efficient, so if you don’t need the extra
flexibility, you shouldn’t use it.

The main advantage of using either the read-only JsonDocument and
JsonElement or the writable JsonNode is that you don’t need to define
any types to model the data. They also make it easier to write code whose
behavior is driven by the structure of the data, because these APIs are able
to describe what they find. The read-only form is typically more efficient
than JsonSerializer, because it may enable you to cause fewer object
allocations when reading data from a JSON document.

Summary
The Stream class is an abstraction representing data as a sequence of
bytes. A stream can support reading, writing, or both, and may support
seeking to arbitrary offsets as well as straightforward sequential access.
TextReader and TextWriter provide strictly sequential reading and
writing of character data, abstracting away the character encoding. These
types may sit on top of a file, a network connection, or memory, or you
could implement your own versions of these abstract classes. The
FileStream class also provides some other filesystem access features,
but for full control, we also have the File and Directory classes. When
bytes and strings aren’t enough, .NET offers various serialization

mechanisms that can automate the mapping between an object’s state in
memory and a representation that can be written out to disk or sent over the
network or any other stream-like target; this representation can later be
turned back into an object of the same type and with equivalent state.

As you’ve seen, a few of the file and stream APIs offer asynchronous forms
that can help improve performance, particularly in highly concurrent
systems. The next chapter tackles concurrency, parallelism, and the task-
based pattern that the asynchronous forms of these APIs use.

1 You might have thought that the pound sign was #, but if, like me, you’re British, that’s just
not on. It would be like someone insisting on referring to @ as a dollar sign. Unicode’s
canonical name for # is number sign, and it also allows my preferred option, hash, as well as
octothorpe, crosshatch, and, regrettably, pound sign.

2 Just in case you’ve not come across the term, in little-endian representations, multibyte values
start with the lower-order bytes, so the value 0x1234 in 16-bit little-endian would be 0x34,
0x12, whereas the big-endian version would be 0x12, 0x34. Little-endian looks reversed, but
it’s the native format for Intel’s processors.

3 Some Unicode characters can take up to 4 bytes in UTF-8, so multiplying by three might
seem like it could underestimate. However, all such characters require two code units in UTF-
16. Any single char in .NET will never require more than 3 bytes in UTF-8.

4 Four overloads became obsolete when .NET 2.0 introduced a new way of representing OS
handles. The overloads that accept an IntPtr were deprecated at that point, replaced by new
ones taking a SafeFileHandle.

5 These all return a DateTime that is relative to the computer’s current time zone. Each of
these methods has an equivalent that returns the time relative to time zone zero (e.g.,
GetCreationTimeUtc).

6 This is not available on .NET Framework. There, the open source JSON.NET project,
available on the Newtonsoft website or via NuGet as Newtonsoft.Json, is a popular
choice.

https://oreil.ly/LpJfk

Chapter 16. Multithreading

Multithreading enables an application to execute several pieces of code
simultaneously. There are two common reasons for doing this. One is to
exploit the computer’s parallel processing capabilities—multicore CPUs are
now more or less ubiquitous, and to realize their full performance potential,
you’ll need to provide the CPU with multiple streams of work to give all of
the cores something useful to do. The other usual reason for writing
multithreaded code is to prevent progress from grinding to a halt when you
do something slow, such as reading from disk.

Multithreading is not the only way to solve that second problem—
asynchronous techniques can be preferable. C# has features for supporting
asynchronous work. Asynchronous execution doesn’t necessarily mean
multithreading, but the two are often related in practice, and I will be
describing some of the asynchronous programming models in this chapter.
However, this chapter focuses on the threading foundations. I will describe
the language-level support for asynchronous code in Chapter 17.

Threads
All the operating systems that .NET can run on allow each process to
contain multiple threads (although if you build to Web Assembly and run
code in the browser, that particular environment currently doesn’t support
creation of new threads). Each thread has its own stack, and the OS presents
the illusion that a thread gets a whole CPU hardware thread to itself. (See
the next sidebar, “Processors, Cores, and Hardware Threads”.) You can
create far more OS threads than the number of hardware threads your
computer provides, because the OS virtualizes the CPU, context switching
from one thread to another. The computer I’m using as I write this has 16
hardware threads, which is a reasonably generous quantity but some way

short of the 8,893 threads currently active across the various processes
running on the machine.

PROCESSORS, CORES, AND HARDWARE THREADS
A hardware thread is one piece of hardware capable of executing code.
Back in the early 2000s, one processor chip gave you one hardware
thread, and you got multiple hardware threads only in computers that
had multiple, physically separate CPUs plugged into separate sockets
on the motherboard. However, two inventions have made the
relationship between hardware and threads more complex: multicore
CPUs and hyperthreading.

With a multicore CPU, you effectively get multiple processors on a
single piece of silicon. This means that opening up your computer and
counting the number of processor chips doesn’t necessarily tell you how
many hardware threads you’ve got. But if you were to inspect the
CPU’s silicon with a suitable microscope, you’d see two or more
distinct processors next to each other on the chip.

Hyperthreading, also known as simultaneous multithreading (SMT),
complicates matters further. A hyperthreaded core is a single processor
that has two sets of certain parts. (It could be more than two, but
doubling seems most common.) So, although there might be only a
single part of the core capable of performing, say, floating-point
division, there will be two sets of registers. Each set of registers
includes an instruction pointer (IP) register that keeps track of where
execution has reached. Registers also contain the immediate working
state of the code, so by having two sets, a single core can run code from
two places at once—in other words, hyperthreading enables a single
core to provide two hardware threads. Since only certain parts of the
CPU are doubled up, two execution contexts have to share some
resources—they can’t both perform floating-point division operations
simultaneously, because there’s only one piece of hardware in the core
to do that. However, if one of the hardware threads wants to do some
division while another multiplies two numbers together, they will
typically be able to do so in parallel, because those operations are
performed by different areas of the core. Hyperthreading enables more

parts of a single CPU core to be kept busy simultaneously. It doesn’t
give you quite the same throughput as two full cores (because if the two
hardware threads both want to do the same kind of work at once, one of
them will have to wait), but it can often provide better throughput from
each core than would otherwise be possible.

In a hyperthreaded system, the total number of hardware threads
available is the number of cores multiplied by the number of
hyperthreaded execution units per core. For example, the Intel Core i9-
9900K processor has 8 cores with two-way hyperthreading, giving a
total of 16 hardware threads.

The CLR presents its own threading abstraction on top of OS threads. In
.NET Core and .NET, there will always be a direct relationship—each
Thread object corresponds directly to some particular underlying OS
thread. On .NET Framework, this relationship is not guaranteed to exist—
applications that use the CLR’s unmanaged hosting API to customize the
relationship between the CLR and its containing process can in theory cause
a CLR thread to move between different OS threads. In practice, this
capability was very rarely used, so even on .NET Framework, each CLR
thread will correspond to one OS thread in practice.

I will get to the Thread class shortly, but before writing multithreaded
code, you need to understand the ground rules for managing state when
using multiple threads.

Threads, Variables, and Shared State
Each CLR thread gets various thread-specific resources, such as the call
stack (which holds method arguments and some local variables). Because
each thread has its own stack, the local variables that end up there will be
local to the thread. Each time you invoke a method, you get a new set of its
local variables. Recursion relies on this, but it’s also important in
multithreaded code, because data that is accessible to multiple threads
requires much more care, particularly if that data changes. Coordinating

1

access to shared data is complex. I’ll be describing some of the techniques
for that in the section “Synchronization”, but it’s better to avoid the problem
entirely where possible, and the thread-local nature of the stack can be a
great help.

For example, consider a web-based application. Busy sites have to handle
requests from multiple users simultaneously, so you’re likely to end up in a
situation where a particular piece of code (e.g., the code for your site’s
home page) is being executed simultaneously on several different threads—
ASP.NET Core uses multithreading to be able to serve the same logical
page to multiple users. (Websites typically don’t just serve up the exact
same content, because pages are often tailored to particular users, so if
1,000 users ask to see the home page, it will run the code that generates that
page 1,000 times.) ASP.NET Core provides you with various objects that
your code will need to use, but most of these are specific to a particular
request. So, if your code is able to work entirely with those objects and with
local variables, each thread can operate completely independently. If you
need shared state (such as objects that are visible to multiple threads,
perhaps through a static field or property), life will get more difficult, but
local variables are usually straightforward.

Why only “usually”? Things get more complex if you use lambdas or
anonymous functions, because they make it possible to declare a variable in
a containing method and then use that in an inner method. This variable is
now available to two or more methods, and with multithreading, it’s
possible that these methods could execute concurrently. (As far as the CLR
is concerned, it’s not really a local variable anymore—it’s a field in a
compiler-generated class.) Sharing local variables across multiple methods
removes the guarantee of complete locality, so you need to take the same
sort of care with such variables as you would with more obviously shared
items, like static properties and fields.

Another important point to remember in multithreaded environments is the
distinction between a variable and the object it refers to. (This is an issue
only with reference type variables.) Although a local variable is accessible
only inside its declaring method, that variable may not be the only one that

refers to a particular object. Sometimes it will be—if you create the object
inside the method and never store it anywhere that would make it accessible
to a wider audience, then you have nothing to worry about. The
StringBuilder that Example 16-1 creates is only ever used within the
method that creates it.

Example 16-1. Object visibility and methods
public static string FormatDictionary<TKey, TValue>(
 IDictionary<TKey, TValue> input)
{
 var sb = new StringBuilder();
 foreach (var item in input)
 {
 sb.AppendFormat("{0}: {1}", item.Key, item.Value);
 sb.AppendLine();
 }

 return sb.ToString();
}

This code does not need to worry about whether other threads might be
trying to modify the StringBuilder. There are no nested methods here,
so the sb variable is truly local, and that’s the only thing that contains a
reference to the StringBuilder. (This relies on the fact that the
StringBuilder doesn’t sneakily store copies of its this reference
anywhere that other threads might be able to see.)

But what about the input argument? That’s also local to the method, but
the object it refers to is not: the code that calls FormatDictionary gets
to decide what input refers to. Looking at Example 16-1 in isolation, it’s
not possible to say whether the dictionary object to which it refers is
currently in use by other threads. The calling code could create a single
dictionary and then create two threads, and have one modify the dictionary
while the other calls this FormatDictionary method. This would cause
a problem: most dictionary implementations do not support being modified
on one thread at the same time as being used on some other thread. And
even if you were working with a collection that was designed to cope with

concurrent use, you’re often not allowed to modify a collection while an
enumeration of its contents is in progress (e.g., a foreach loop).

You might think that any collection designed to be used from multiple
threads simultaneously (a thread-safe collection, you might say) should
allow one thread to iterate over its contents while another modifies the
contents. If it disallows this, then in what sense is it thread safe? In fact, the
main difference between a thread-safe and a non-thread-safe collection in
this scenario is predictability: whereas a thread-safe collection might throw
an exception when it detects that this has happened, a non-thread-safe
collection does not guarantee to do anything in particular. It might crash, or
you might start getting perplexing results from the iteration, such as a single
entry appearing multiple times. It could do more or less anything because
you’re using it in an unsupported way. Sometimes, thread safety just means
that failure happens in a well-defined and predictable manner.

As it happens, the various collections in the
System.Collection.Concurrent namespace do in fact support
changes while enumeration is in progress without throwing exceptions.
However, for the most part they have a different API from the other
collection classes specifically to support concurrency, so they are not
always drop-in replacements.

There’s nothing Example 16-1 can do to ensure that it uses its input
argument safely in multithreaded environments, because it is at the mercy
of its callers. Concurrency hazards need to be dealt with at a higher level. In
fact, the term thread safe is potentially misleading, because it suggests
something that is not, in general, possible. Inexperienced developers often
fall into the trap of thinking that they are absolved of all responsibility for
thinking about threading issues in their code by just making sure that all the
objects they’re using are thread safe. This usually doesn’t work, because
while individual thread-safe objects will maintain their own integrity, that’s
no guarantee that your application’s state as a whole will be coherent.

To illustrate this, Example 16-2 uses the
ConcurrentDictionary<TKey, TValue> class from the

System.Collections.Concurrent namespace. Every operation
this class defines is thread safe in the sense that each will leave the object in
a consistent state and will produce the expected result given the collection’s
state prior to the call. However, this example contrives to use it in a non-
thread-safe fashion.

Example 16-2. Non-thread-safe use of a thread-safe collection
static string UseDictionary(ConcurrentDictionary<int, string> cd)
{
 cd[1] = "One";
 return cd[1];
}

This seems like it could not fail. (It also seems pointless; that’s just to show
how even a very simple piece of code can go wrong.) But if the dictionary
instance is being used by multiple threads (which seems likely, given that
we’ve chosen a type designed specifically for multithreaded use), it’s
entirely possible that in between setting a value for key 1 and trying to
retrieve it, some other thread will have removed that entry. If I put this code
into a program that repeatedly runs this method on several threads, but that
also has several other threads busily removing the very same entry, I
eventually see a KeyNotFoundException.

Concurrent systems need a top-down strategy to ensure system-wide
consistency. (This is why database management systems often use
transactions, which group sets of operations together as atomic units of
work that either succeed completely or have no effect at all. This atomic
grouping is a critical part of how transactions help to ensure system-wide
consistency of state.) Looking at Example 16-1, this means that it is the
responsibility of code that calls FormatDictionary to ensure that the
dictionary can be used freely for the duration of the method.

WARNING
Although calling code should guarantee that whatever objects it passes are safe to use
for the duration of a method call, you cannot in general assume that it’s OK to hold on
to references to your arguments for future use. Anonymous functions and delegates
make it easy to do this accidentally—if a nested method refers to its containing
method’s arguments, and if that nested method runs after the containing method returns,
it may no longer be safe to assume that you’re allowed to access the objects to which the
arguments refer. If you need to do this, you will need to document the assumptions
you’re making about when you can use objects, and inspect any code that calls the
method to make sure that these assumptions are valid.

Thread-Local Storage
Sometimes it can be useful to maintain thread-local state at a broader scope
than a single method. Various parts of the runtime libraries do this. For
example, the System.Transactions namespace defines an API for
using transactions with databases, message queues, and any other resource
managers that support them. It provides an implicit model where you can
start an ambient transaction, and any operations that support this will enlist
in it without you needing to pass any explicit transaction-related arguments.
(It also supports an explicit model, should you prefer that.) The
Transaction class’s static Current property returns the ambient
transaction for the current thread, or it returns null if the thread currently
has no ambient transaction in progress.

To support this sort of per-thread state, .NET offers the
ThreadLocal<T> class. Example 16-3 uses this to provide a wrapper
around a delegate that allows only a single call into the delegate to be in
progress on any one thread at any time.

Example 16-3. Using ThreadLocal<T>
class Notifier
{
 private readonly Action _callback;
 private readonly ThreadLocal<bool> _isCallbackInProgress =
new();

 public Notifier(Action callback)

 {
 _callback = callback;
 }

 public void Notify()
 {
 if (_isCallbackInProgress.Value)
 {
 throw new InvalidOperationException(
 "Notification already in progress on this thread");
 }

 try
 {
 _isCallbackInProgress.Value = true;
 _callback();
 }
 finally
 {
 _isCallbackInProgress.Value = false;
 }
 }
}

If the method that Notify calls back attempts to make another call to
Notify, this will block that attempt at recursion by throwing an exception.
However, because it uses a ThreadLocal<bool> to track whether a call
is in progress, this will allow simultaneous calls as long as each call
happens on a separate thread.

You get and set the value that ThreadLocal<T> holds for the current
thread through the Value property. The constructor is overloaded, and you
can pass a Func<T> that will be called back each time a new thread first
tries to retrieve the value to create a default initial value. (The initialization
is lazy—the callback won’t run every time a new thread starts. A
ThreadLocal<T> invokes the callback only the first time a thread
attempts to use the value.) There is no fixed limit to the number of
ThreadLocal<T> objects you can create.

ThreadLocal<T> also provides some support for cross-thread
communication. If you pass an argument of true to one of the constructor
overloads that accepts a bool, the object will maintain a collection

reporting the latest value stored for every thread, which is available through
its Values property. It provides this service only if you ask for it when
constructing the object, because it requires some additional housekeeping
work. Also, if you use a reference type as the type argument, enabling
tracking may mean that objects will be kept alive longer. Normally, any
reference that a thread stores in a ThreadLocal<T> will cease to exist
when the thread terminates, and if that reference was the only one keeping
an object reachable, the GC will then be able to reclaim its memory. But if
you enable tracking, all such references will remain reachable for as long as
the ThreadLocal<T> instance itself is reachable, because Values
reports values even for threads that have terminated.

There’s one thing you need to be careful about with thread-local storage. If
you create a new object for each thread, be aware that an application might
create a large number of threads over its lifetime, especially if you use the
thread pool (which is described in detail later). If the per-thread objects you
create are expensive, this might cause problems. Furthermore, if there are
any disposable per-thread resources, you will not necessarily know when a
thread terminates; the thread pool regularly creates and destroys threads
without telling you when it does so.

If you don’t need the automatic creation each time a new thread first uses
thread-local storage, you can instead just annotate a static field with the
[ThreadStatic] attribute. This is handled by the CLR: it effectively
means that each thread that accesses this field gets its own distinct field.
This can reduce the number of objects that need to be allocated. But be
careful: it’s possible to define a field initializer for such fields, but that
initializer will run only for the first thread to access the field. For other
threads using the same [ThreadStatic], the field will initially contain
the default zero-like value for the field’s type.

One last note of caution: be wary of thread-local storage (and any
mechanism based on it) if you plan to use the asynchronous language
features described in Chapter 17, because those make it possible for a single
invocation of a method to use multiple different threads as it progresses.
This would make it a bad idea for that sort of method to use ambient

transactions, or anything else that relies on thread-local state. Many .NET
features that you might think would use thread-local storage (e.g., the
ASP.NET Core framework’s static HttpContext.Current property,
which returns an object relating to the HTTP request that the current thread
is handling) turn out to associate information with something called the
execution context instead. An execution context is more flexible, because it
can hop across threads when required. I’ll be describing it later.

For the issues I’ve just discussed to be relevant, we’ll need to have multiple
threads. There are four main ways to use multithreading. In one, the code
runs in a framework that creates multiple threads on your behalf, such as
ASP.NET Core. Another is to use certain kinds of callback-based APIs. A
few common patterns for this are described in “Tasks” and “Other
Asynchronous Patterns”. But the two most direct ways to use threads are to
create new threads explicitly or to use the .NET thread pool.

The Thread Class
As I mentioned earlier, the Thread class (defined in the
System.Threading namespace) represents a CLR thread. You can
obtain a reference to the Thread object representing the thread that’s
executing your code with the Thread.CurrentThread property, but if
you’re looking to introduce some multithreading, you can construct a new
Thread object.

A new thread needs to know what code it should run when it starts, so you
must provide a delegate, and the thread will invoke the method the delegate
refers to when it starts. The thread will run until that method returns
normally, or allows an exception to propagate all the way to the top of the
stack (or the thread is forcibly terminated through any of the OS
mechanisms for killing threads or their containing processes). Example 16-
4 creates three threads to download the contents of three web pages
simultaneously.

Example 16-4. Creating threads
internal static class Program
{
 private static readonly HttpClient http = new();

 private static void Main(string[] args)
 {
 Thread t1 = new(MyThreadEntryPoint);
 Thread t2 = new(MyThreadEntryPoint);
 Thread t3 = new(MyThreadEntryPoint);

 t1.Start("https://endjin.com/");
 t2.Start("https://oreilly.com/");
 t3.Start("https://dotnet.microsoft.com/");
 }

 private static void MyThreadEntryPoint(object? arg)
 {
 string url = (string)arg!;

 Console.WriteLine($"Downloading {url}");
 var response = http.Send(new
HttpRequestMessage(HttpMethod.Get, url));
 using StreamReader r =
new(response.Content.ReadAsStream());
 string page = r.ReadToEnd();
 Console.WriteLine($"Downloaded {url}, length
{page.Length}");
 }
}

The Thread constructor is overloaded and accepts two delegate types. The
ThreadStart delegate requires a method that takes no arguments and
returns no value, but in Example 16-4, the MyThreadEntryPoint
method takes a single object argument, which matches the other delegate
type, ParameterizedThreadStart. This provides a way to pass an
argument to each thread, which is useful if you’re invoking the same
method on several different threads, as this example does. The thread will
not run until you call Start, and if you’re using the
ParameterizedThreadStart delegate type, you must call the
overload that takes a single object argument. I’m using this to make each
thread download from a different URL.

There are two more overloads of the Thread constructor, each adding an
int argument after the delegate argument. This int specifies the size of
stack for the thread. Current .NET implementations require stacks to be
contiguous in memory, making it necessary to preallocate address space for
the stack. If a thread exhausts this space, the CLR throws a
StackOverflowException. (You normally see those only when a bug
causes infinite recursion.) Without this argument, the CLR will use the
default stack size for the process. (This varies by OS; on Windows it will
usually be 1 MB. You can change it by setting the
DOTNET_DefaultStackSize environment variable. Note that it
interprets the value as a hexadecimal number.) It’s rare to need to change
this but not unheard of. If you have recursive code that produces very deep
stacks, you might need to run it on a thread with a larger stack. Conversely,
if you’re creating huge numbers of threads, you might want to reduce the
stack size to conserve resources, because the default of 1 MB is usually
considerably more than is really required. However, it’s usually not a great
idea to create such a large number of threads. So, in most cases, you will
create only a moderate number of threads and just use the constructors that
use the default stack size.

Notice that the Main method in Example 16-4 returns immediately after
starting the three threads. Despite this, the application continues to run—it
will run until all the threads finish. The CLR keeps the process alive until
there are no foreground threads running, where a foreground thread is
defined to be any thread that hasn’t explicitly been designated as a
background thread. If you want to prevent a particular thread from keeping
the process running, set its IsBackground property to true. (This
means that background threads may be terminated while they’re in the
middle of doing something, so you need to be careful about what kind of
work you do on these threads.)

Creating threads directly is not the only option. The thread pool provides a
commonly used alternative.

The Thread Pool
On most operating systems, it is relatively expensive to create and shut
down threads. If you need to perform a fairly short piece of work (such as
serving up a web page or some similarly brief operation), it would be a bad
idea to create a thread just for that job and to shut it down when the work
completes. There are two serious problems with this strategy: first, you may
end up expending more resources on the startup and shutdown costs than on
useful work; second, if you keep creating new threads as more work comes
in, the system may bog down under load—with heavy workloads, creating
ever more threads will tend to reduce throughput. This is because, in
addition to basic per-thread overheads such as the memory required for the
stack, the OS needs to switch regularly between runnable threads to enable
them all to make progress, and this switching has its own overheads.

To avoid these problems, .NET provides a thread pool. You can supply a
delegate that the runtime will invoke on a thread from the pool. If
necessary, it will create a new thread, but where possible, it will reuse one it
created earlier, and it might make your work wait in a queue if all the
threads created so far are busy. After your method runs, the CLR will not
normally terminate the thread; instead, the thread will stay in the pool,
waiting for other work items to amortize the cost of creating the thread over
multiple work items. It will create new threads if necessary, but it tries to
keep the thread count at a level that results in the number of runnable
threads matching the hardware thread count, to minimize switching costs.

WARNING
The thread pool always creates background threads, so if the thread pool is in the middle
of doing something when the last foreground thread in your process exits, the work will
not complete, because all background threads will be terminated at that point. If you
need to ensure that work being done on the thread pool completes, you must wait for
that to happen before allowing all foreground threads to finish.

Launching thread pool work with Task
The usual way to use the thread pool is through the Task class. This is part
of the Task Parallel Library (discussed in more detail in “Tasks”), but its
basic usage is pretty straightforward, as Example 16-5 shows.

Example 16-5. Running code on the thread pool with a Task
Task.Run(() => MyThreadEntryPoint("https://oreilly.com/"));

This queues the lambda for execution on the thread pool (which, when it
runs, just calls the MyThreadEntryPoint method from Example 16-4).
If a thread is available, it will start to run straightaway, but if not, it will
wait in a queue until a thread becomes available (either because some other
work item in progress completes or because the thread pool decides to add a
new thread to the pool).

There are other ways to use the thread pool, the most obvious of which is
through the ThreadPool class. Its QueueUserWorkItem method
works in a similar way to Start—you pass it a delegate and it will queue
the method for execution. This is a lower-level API—it does not provide
any direct way to handle completion of the work, nor to chain operations
together, so for most cases, the Task class is preferable.

Thread creation heuristics
The runtime adjusts the number of threads based on the workload you
present. The heuristics it uses are not documented and have changed across
releases of .NET, so you should not depend on the exact behavior I’m about
to describe; however, it is useful to know roughly what to expect.

If you give the thread pool only CPU-bound work, in which every method
you ask it to execute spends its entire time performing computations and
never blocks waiting for I/O to complete, you might end up with one thread
for each of the hardware threads in your system (although if the individual
work items take long enough, the thread pool might decide to allocate more
threads). For example, on the eight-core two-way hyperthreaded computer
I’m using as I write this, queuing up a load of CPU-intensive work items
initially causes the CLR to create 16 thread pool threads, and as long as the

work items complete about once a second, the number of threads mostly
stays at that level. (It occasionally goes over that because the runtime will
try adding an extra thread from time to time to see what effect this has on
throughput, and then it drops back down again.) But if the rate at which the
program gets through items drops, the CLR gradually increases the thread
count.

If thread pool threads get blocked (e.g., because they’re waiting for data
from disk or for a response over the network from a server), the CLR
increases the number of pool threads more quickly. Again, it starts off with
one per hardware thread, but when slow work items consume very little
processor time, it can add threads as frequently as twice a second.

In either case, the CLR will eventually stop adding threads. The exact
default limit varies in 32-bit processes, depending on the version of .NET,
although it’s typically on the order of 1,000 threads. In 64-bit mode, it
appears to default to 32,767. You can change this limit—the ThreadPool
class has a SetMaxThreads method that lets you configure different
limits for your process. You may run into other limitations that place a
lower practical limit. For example, each thread has its own stack that has to
occupy a contiguous range of virtual address space. By default, each thread
gets 1 MB of the process’s address space reserved for its stack, so by the
time you have 1,000 threads, you’ll be using 1 GB of address space for
stacks alone. Thirty-two-bit processes have only 4 GB of address, so you
might not have space for the number of threads you request. In any case,
1,000 threads is usually more than is helpful, so if it gets that high, this may
be a symptom of some underlying problem that you should investigate. For
this reason, if you call SetMaxThreads, it will normally be to specify a
lower limit—you may find that with some workloads, constraining the
number of threads improves throughput by reducing the level of contention
for system resources.

ThreadPool also has a SetMinThreads method. This lets you ensure
that the number of threads does not drop below a certain number. This can
be useful in applications that work most efficiently with some minimum
number of threads and that want to be able to operate at maximum speed

instantly, without waiting for the thread pool’s heuristics to adjust the thread
count.

Thread Affinity and SynchronizationContext
Some objects demand that you use them only from certain threads. This is
particularly common with UI code—the WPF and Windows Forms UI
frameworks require that UI objects be used from the thread on which they
were created. This is called thread affinity, and although it is most often a
UI concern, it can also crop up in interoperability scenarios—some COM
objects have thread affinity.

Thread affinity can make life awkward if you want to write multithreaded
code. Suppose you’ve carefully implemented a multithreaded algorithm that
can exploit all of the hardware threads in an end user’s computer,
significantly improving performance when running on a multicore CPU
compared to a single-threaded algorithm. Once the algorithm completes,
you may want to present the results to the end user. The thread affinity of
UI objects requires you to perform that final step on a particular thread, but
your multithreaded code may well produce its final results on some other
thread. (In fact, you will probably have avoided the UI thread entirely for
the CPU-intensive work, to make sure that the UI remained responsive
while the work was in progress.) If you try to update the UI from some
random worker thread, the UI framework will throw an exception
complaining that you’ve violated its thread affinity requirements. Somehow,
you’ll need to pass a message back to the UI thread so that it can display the
results.

The runtime libraries provide the SynchronizationContext class to
help in these scenarios. Its Current static property returns an instance of
the Synchronization Con text class that represents the context in
which your code is currently running. For example, in a WPF application, if
you retrieve this property while running on a UI thread, it will return an
object associated with that thread. You can store the object that Current
returns and use it from any thread anytime you need to perform further

work on the UI thread. Example 16-6 does this so that it can perform some
potentially slow work on a thread pool thread and then update the UI back
on the UI thread.

Example 16-6. Using the thread pool and then
SynchronizationContext
private void findButton_Click(object sender, RoutedEventArgs e)
{
 SynchronizationContext uiContext =
SynchronizationContext.Current!;

 Task.Run(() =>
 {
 string pictures =

Environment.GetFolderPath(Environment.SpecialFolder.MyPictures);
 var folder = new DirectoryInfo(pictures);
 FileInfo[] allFiles =
 folder.GetFiles("*.jpg", SearchOption.AllDirectories);
 FileInfo? largest =
 allFiles.OrderByDescending(f =>
f.Length).FirstOrDefault();

 if (largest is not null)
 {
 uiContext.Post(_ =>
 {
 long sizeMB = largest.Length / (1024 * 1024);
 outputTextBox.Text =
 $"Largest file ({sizeMB}MB) is
{largest.FullName}";
 },
 null);
 }
 });
}

This code handles a Click event for a button. (It happens to be a WPF
application, but SynchronizationContext works in exactly the same
way in other desktop UI frameworks, such as Windows Forms.) UI
elements raise their events on the UI thread, so when the first line of the
click handler retrieves the current SynchronizationContext, it will
get the context for the UI thread. The code then runs some work on a thread

pool thread via the Task class. The code looks at every picture in the user’s
Pictures folder, searching for the largest file, so this could take a while. It’s
a bad idea to perform slow work on a UI thread—UI elements that belong
to that thread cannot respond to user input while the UI thread is busy doing
something else. So pushing this into the thread pool is a good idea.

The problem with using the thread pool here is that once the work
completes, we’re on the wrong thread to update the UI. This code updates
the Text property of a text box, and we’d get an exception if we tried that
from a thread pool thread. So, when the work completes, it uses the
SynchronizationContext object it retrieved earlier and calls its
Post method. That method accepts a delegate, and it will arrange to invoke
that back on the UI thread. (Under the covers, it posts a custom message to
the Windows message queue, and when the UI thread’s main message
processing loop picks up that message, it will invoke the delegate.)

TIP
The Post method does not wait for the work to complete. There is a method that will
wait, called Send, but I would recommend not using it. Making a worker thread block
while it waits for the UI thread to do something can be risky, because if the UI thread is
currently blocked waiting for the worker thread to do something, the application will
deadlock. Post avoids this problem by enabling the worker thread to proceed
concurrently with the UI thread.

Example 16-6 retrieves SynchronizationContext.Current while
it’s still on the UI thread, before it starts the thread pool work. This is
important because this static property is context sensitive—it returns the
context for the UI thread only while you’re on the UI thread. (In fact, it’s
possible for each window to have its own UI thread in WPF, so it wouldn’t
be possible to have an API that returns the UI thread—there might be
several.) If you read this property from a thread pool thread, the context
object it returns will not post work to the UI thread.

The SynchronizationContext mechanism is extensible, so you can
derive your own type from it if you want, and you can call its static
SetSynchronizationContext method to make your context the
current context for the thread. This can be useful in unit testing scenarios—
it enables you to write tests to verify that objects interact with the
SynchronizationContext correctly without needing to create a real
UI.

ExecutionContext
The SynchronizationContext class has a cousin,
ExecutionContext. This provides a similar service, allowing you to
capture the current context and then use it to run a delegate sometime later
in the same context, but it differs in two ways. First, it captures different
things. Second, it uses a different approach for reestablishing the context. A
SynchronizationContext will often run your work on some
particular thread, whereas ExecutionContext will always use your
thread, and it just makes sure that all of the contextual information it has
captured is available on that thread. One way to think of the difference is
that SynchronizationContext does the work in an existing context,
whereas ExecutionContext brings the contextual information to you.

WARNING
Slightly confusingly, the implementation of ExecutionContext on .NET
Framework captures the current SynchonizationContext, so there’s a sense in
which the ExecutionContext is a superset of the SynchronizationContext.
However, ExecutionContext doesn’t use the captured
SynchronizationContext when it invokes your delegate. All it does is ensure
that if code executed via an ExecutionContext reads the
SynchonizationContext.Current property, it will get the
SynchronizationContext property that was current at the point when the
ExecutionContext was captured. This will not necessarily be the
SynchonizationContext that the thread is currently running in! This design flaw
was fixed in .NET Core.

You retrieve the current context by calling the
ExecutionContext.Capture method. The execution context does
not capture thread-local storage, but it does include any information in the
current logical call context. You can access this through the
CallContext class, which provides LogicalSetData and
LogicalGetData methods to store and retrieve name/value pairs, or
through the higher-level wrapper Async Lo cal<T>. This information is
usually associated with the current thread, but if you run code in a captured
execution context, it will make information from the logical context
available, even if that code runs on some other thread entirely.

.NET uses the ExecutionContext class internally whenever long-
running work that starts on one thread later ends up continuing on a
different thread (as happens with some of the asynchronous patterns
described later in this chapter). You may want to use the execution context
in a similar way if you write any code that accepts a callback that it will
invoke later, perhaps from some other thread. To do this, you call
Capture to grab the current context, which you can later pass to the Run
method to invoke a delegate. Example 16-7 shows ExecutionContext
at work.

Example 16-7. Using ExecutionContext
public class Defer
{
 private readonly Action _callback;
 private readonly ExecutionContext? _context;

 public Defer(Action callback)
 {
 _callback = callback;
 _context = ExecutionContext.Capture()!;
 }

 public void Run()
 {
 if (_context is null) { _callback(); return; }
 // When ExecutionContext.Run invokes the lambda we supply
as the 2nd
 // argument, it passes that lambda the value we supplied as
the 3rd

 // argument to Run. Here we're passing _callback, so the
lambda has
 // access to the Action we want to invoke. It would have
been simpler
 // to write "_ => _callback()", but the lambda would then
need to
 // capture 'this' to be able to access _callback, and that
capture
 // would cause an additional allocation.
 ExecutionContext.Run(_context, (cb) => ((Action)cb!)(),
_callback);
 }
}

In .NET Framework, a single captured ExecutionContext cannot be
used on multiple threads simultaneously. Sometimes you might need to
invoke multiple different methods in a particular context, and in a
multithreaded environment, you might not be able to guarantee that the
previous method has returned before calling the next. For this scenario,
ExecutionContext provides a CreateCopy method that generates a
copy of the context, enabling you to make multiple simultaneous calls
through equivalent contexts. In .NET Core and .NET,
ExecutionContext is immutable, meaning this restriction no longer
applies, and CreateCopy just returns its this reference.

Synchronization
Sometimes you will want to write multithreaded code in which multiple
threads have access to the same state. For example, in Chapter 5, I
suggested that a server could use a Dictionary<TKey, TValue> as
part of a cache to avoid duplicating work when it receives multiple similar
requests. While this sort of caching can offer significant performance
benefits in some scenarios, it presents a challenge in a multithreaded
environment. (And if you’re working on server code with demanding
performance requirements, you will most likely need more than one thread
to handle requests.) The Thread Safety section of the documentation for the
Dictionary<TKey, TValue> class says this:

A Dictionary<TKey, TValue> can support multiple readers
concurrently, as long as the collection is not modified. Even so,
enumerating through a collection is intrinsically not a thread-safe
procedure. In the rare case where an enumeration contends with write
accesses, the collection must be locked during the entire enumeration. To
allow the collection to be accessed by multiple threads for reading and
writing, you must implement your own synchronization.

This is better than we might hope for—the vast majority of types in the
runtime libraries simply don’t support multithreaded use of instances at all.
Most types support multithreaded use at the class level, but individual
instances must be used one thread at a time. Dictionary<TKey,
TValue> is more generous: it explicitly supports multiple concurrent
readers, which sounds good for our caching scenario. However, when
modifying a collection, not only must we ensure that we do not try to
change it from multiple threads simultaneously, but also we must not have
any read operations in progress while we do so.

The other generic collection classes make similar guarantees (unlike most
other classes in the library). For example, List<T>, Queue<T>,
Stack<T>, SortedDiction ary <TKey, TValue>, HashSet<T>,
and SortedSet<T> all support concurrent read-only use. (Again, if you
modify any instance of these collections, you must make sure that no other
threads are either modifying or reading from the same instance at the same
time.) Of course, you should always check the documentation before
attempting multithreaded use of any type. Be aware that the generic
collection interface types make no thread safety guarantees—although
List<T> supports concurrent readers, not all implementations of
IList<T> will. (For example, imagine an implementation that wraps
something potentially slow, such as the contents of a file. It might make
sense for this wrapper to cache data to make read operations faster. Reading
an item from such a list could change its internal state, so reads could fail
when performed simultaneously from multiple threads if the code did not
take steps to protect itself.)

2

If you can arrange never to have to modify a data structure while it is in use
from multithreaded code, the support for concurrent access offered by many
of the collection classes may be all you need. But if some threads will need
to modify shared state, you will need to coordinate access to that state. To
enable this, .NET provides various synchronization mechanisms that you
can use to ensure that your threads take it in turns to access shared objects
when necessary. In this section, I’ll describe the most commonly used ones.

Monitors and the lock Keyword
The first option to consider for synchronizing multithreaded use of shared
state is the Monitor class. This is popular because it is efficient, it offers a
straightforward model, and C# provides direct language support, making it
very easy to use. Example 16-8 shows a class that uses the lock keyword
(which in turn uses the Monitor class) anytime it either reads or modifies
its internal state. This ensures that only one thread will be accessing that
state at any one time.

Example 16-8. Protecting state with lock
public class SaleLog
{
 private readonly object _sync = new();

 private decimal _total;

 private readonly List<string> _saleDetails = new();

 public decimal Total
 {
 get
 {
 lock (_sync)
 {
 return _total;
 }
 }
 }

 public void AddSale(string item, decimal price)
 {
 string details = $"{item} sold at {price}";

 lock (_sync)
 {
 _total += price;
 _saleDetails.Add(details);
 }
 }

 public string[] GetDetails(out decimal total)
 {
 lock (_sync)
 {
 total = _total;
 return _saleDetails.ToArray();
 }
 }
}

To use the lock keyword, you provide a reference to an object and a block
of code. The C# compiler generates code that will cause the CLR to ensure
that no more than one thread is inside a lock block for that object at any
one time. Suppose you created a single instance of this SaleLog class, and
on one thread you called the AddSale method, while on another thread
you called GetDetails at the same time. Both threads will reach lock
statements, passing in the same _sync field. Whichever thread happens to
get there first will be allowed to run the block following the lock. The
other thread will be made to wait—it won’t be allowed to enter its lock
block until the first thread leaves its lock block.

The SaleLog class only ever uses any of its fields from inside a lock
block using the _sync argument. This ensures that all access to fields is
serialized (in the concurrency sense—that is, threads get to access fields
one at a time, rather than all piling in simultaneously). When the
GetDetails method reads from both the _total and _saleDetails
fields, it can be confident that it’s getting a coherent view—the total will be
consistent with the current contents of the list of sales details, because the
code that modifies these two pieces of data does so within a single lock
block. This means that updates will appear to be atomic from the point of
view of any other lock block using _sync.

It may look excessive to use a lock block even for the get accessor that
returns the total. However, decimal is a 128-bit value, so access to data of
this type is not intrinsically atomic—without that lock, it would be
possible for the returned value to be made up of a mixture of two or more
values that _total had at different times. (For example, the bottom 64 bits
might be from an older value than the top 64 bits.) This is often described as
a torn read. The CLR guarantees atomic reads and writes only for data
types whose size is no larger than 4 bytes, and also for references, even on a
platform where they are larger than 4 bytes. (It guarantees this only for
naturally aligned fields, but in C#, fields will always be aligned unless you
have deliberately misaligned them for interop purposes.)

A subtle but important detail of Example 16-8 is that whenever it returns
information about its internal state, it returns a copy. The Total property’s
type is decimal, which is a value type, and values are always returned as
copies. But when it comes to the list of entries, the GetDetails method
calls ToArray, which will build a new array containing a copy of the list’s
current contents. It would be a mistake to return the reference in
_saleDetails directly, because that would enable code outside of the
SalesLog class to access and modify the collection without using lock.
We need to ensure that all access to that collection is synchronized, and we
lose the ability to do that if our class hands out references to its internal
state.

TIP
If you write code that performs some multithreaded work that eventually comes to a
halt, it’s OK to share references to the state after the work has stopped. But if
multithreaded modifications to an object are ongoing, you need to ensure that all use of
that object’s state is protected.

The lock keyword accepts any object reference, so you might wonder why
I’ve created an object specially—couldn’t I have passed this instead?
That would have worked, but the problem is that your this reference is

not private—it’s the same reference by which external code uses your
object. Using a publicly visible feature of your object to synchronize access
to private state is imprudent; some other code could decide that it’s
convenient to use a reference to your object as the argument to some
completely unrelated lock blocks. In this case, it probably wouldn’t cause
a problem, but with more complex code, it could tie conceptually unrelated
pieces of concurrent behavior together in a way that might cause
performance problems or even deadlocks. Thus, it’s usually better to code
defensively and use something that only your code has access to as the
lock argument. Of course, I could have used the _saleDetails field
because that refers to an object that only my class has access to. However,
even if you code defensively, you should not assume that other developers
will, so in general, it’s safer to avoid using an instance of a class you didn’t
write as the argument for a lock, because you can never be certain that it
isn’t using its this reference for its own locking purposes.

The fact that you can use any object reference is a bit of an oddity in any
case. Most of .NET’s synchronization mechanisms use an instance of some
distinct type as the point of reference for synchronization. (For example, if
you want reader/writer locking semantics, you use an instance of the
ReaderWriterLockSlim class, not just any old object.) The Monitor
class (which is what lock uses) is an exception that dates back to an old
requirement for a degree of compatibility with Java (which has a similar
locking primitive). This is not relevant to modern .NET development, so
this feature is now just a historical peculiarity. Using a distinct object whose
only job is to act as a lock argument adds minimal overhead (compared to
the costs of locking in the first place) and tends to make it easier to see how
synchronization is being managed.

NOTE
You cannot use a value type as an argument for lock—C# prevents this, and with good
reason. The compiler performs an implicit conversion to object on the lock
argument, which for reference types doesn’t require the CLR to do anything at runtime.
But when you convert a value type to a reference of type object, a box needs to be
created. That box would be the argument to lock, and that would be a problem,
because you get a new box every time you convert a value to an object reference. So,
each time you ran a lock, it would get a different object, meaning there would be no
synchronization in practice. This is why the compiler prevents you from trying.

How the lock keyword expands
Each lock block turns into code that does three things: first, it calls
Monitor.Enter, passing the argument you provided to lock. Then it
attempts to run the code in the block. Finally, it will usually call
Monitor.Exit once the block finishes. But it’s not entirely
straightforward, thanks to exceptions. The code will still call
Monitor.Exit if the code you put in the block throws an exception, but
it needs to handle the possibility that Monitor.Enter itself threw, which
would mean that the thread does not own the lock and should therefore not
call Monitor.Exit. Example 16-9 shows what the compiler makes of
the lock block in the GetDetails method in Example 16-8.

Example 16-9. How lock blocks expand
bool lockWasTaken = false;
object temp = _sync;
try
{
 Monitor.Enter(temp, ref lockWasTaken);
 {
 total = _total;
 return _saleDetails.ToArray();
 }
}
finally
{
 if (lockWasTaken)
 {
 Monitor.Exit(temp);

 }
}

Monitor.Enter is the API that does the work of discovering whether
some other thread already has the lock, and if so, making the current thread
wait. If this returns at all, it normally succeeds. (It might deadlock, in which
case it will never return.) There is a small possibility of failure caused by an
exception, e.g., due to running out of memory. That would be fairly
unusual, but the generated code takes it into account nonetheless—this is
the purpose of the slightly roundabout-looking code for the
lockWasTaken variable. (In practice, the compiler will make that a
hidden variable without an accessible name, by the way. I’ve named it to
show what’s happening here.) The Monitor.Enter method guarantees
that acquisition of the lock will be atomic with updating the flag indicating
whether the lock was taken, ensuring that the finally block will attempt
to call Exit if and only if the lock was acquired.

Monitor.Exit tells the CLR that we no longer need exclusive access to
whatever resources we’re synchronizing access to, and if any other threads
are waiting inside Monitor.Enter for the object in question, this will
enable one of them to proceed. The compiler puts this inside a finally
block to ensure that whether you exit from the block by running to the end,
returning from the middle, or throwing an exception, the lock will be
released.

The fact that the lock block calls Monitor.Exit on an exception is a
double-edged sword. On the one hand, it reduces the chances of deadlock
by ensuring that locks are released on failure. On the other hand, if an
exception occurs while you’re in the middle of modifying some shared
state, the system may be in an inconsistent state; releasing locks will allow
other threads access to that state, possibly causing further problems. In
some situations, it might have been better to leave locks locked in the case
of an exception—a deadlocked process might do less damage than one that
plows on with corrupt state. A more robust strategy is to write code that
guarantees consistency in the face of exceptions, either by rolling back any
changes it has made if an exception prevents a complete set of updates or

by arranging to change state in an atomic way (e.g., by putting the new state
into a whole new object and substituting that for the previous one only once
the updated object is fully initialized). But that’s beyond what the compiler
can automate for you.

Waiting and notification
The Monitor class can do more than just ensure that threads take it in
turns. It provides a way for threads to sit and wait for a notification from
some other thread. If a thread has acquired the monitor for a particular
object, it can call Monitor.Wait, passing in that object. This has two
effects: it releases the monitor and causes the thread to block. It will block
until some other thread calls Monitor.Pulse or PulseAll for the
same object; a thread must have the monitor to be able to call either of these
methods. (Wait, Pulse, and PulseAll all throw an exception if you
call them while not holding the relevant monitor.)

If a thread calls Pulse, this enables one thread waiting in Wait to wake
up. Calling PulseAll enables all of the threads waiting on that object’s
monitor to run. In either case, Monitor.Wait reacquires the monitor
before returning, so even if you call PulseAll, the threads will wake up
one at a time—a second thread cannot emerge from Wait until the first
thread to do so relinquishes the monitor. In fact, no threads can return from
Wait until the thread that called Pulse or PulseAll relinquishes the
lock.

Example 16-10 uses Wait and Pulse to provide a wrapper around a
Queue<T> that causes the thread that retrieves items from the queue to
wait if the queue is empty. (This is for illustration only—if you want this
sort of queue, you don’t have to write your own. Use the built-in
BlockingCollection<T> or the types in System.Thread ing
.Channels.)

Example 16-10. Wait and Pulse
public class MessageQueue<T>
{
 private readonly object _sync = new();

 private readonly Queue<T> _queue = new();

 public void Post(T message)
 {
 lock (_sync)
 {
 bool wasEmpty = _queue.Count == 0;
 _queue.Enqueue(message);
 if (wasEmpty)
 {
 Monitor.Pulse(_sync);
 }
 }
 }

 public T Get()
 {
 lock (_sync)
 {
 while (_queue.Count == 0)
 {
 Monitor.Wait(_sync);
 }
 return _queue.Dequeue();
 }
 }
}

This example uses the monitor in two ways. It uses it through the lock
keyword to ensure that only one thread at a time uses the Queue<T> that
holds queued items. But it also uses waiting and notification to enable the
thread that consumes items to block efficiently when the queue is empty,
and for any thread that adds new items to the queue to wake up the blocked
reader thread.

Timeouts
Whether you are waiting for a notification or just attempting to acquire the
lock, it’s possible to specify a timeout, indicating that if the operation
doesn’t succeed within the specified time, you would like to give up. For
lock acquisition, you use a different method, TryEnter, but when waiting
for notification, you just use a different overload. (There’s no compiler

support for this, so you won’t be able to use the lock keyword.) In both
cases, you can pass either an int representing the maximum time to wait,
in milliseconds, or a TimeSpan value. Both return a bool indicating
whether the operation succeeded.

You could use this to avoid deadlocking the process, but if your code does
fail to acquire a lock within the timeout, this leaves you with the problem of
deciding what to do about that. If your application is unable to acquire a
lock it needs, then it can’t just do whatever work it was going to do
regardless. Termination of the process may be the only realistic option,
because deadlock is usually a symptom of a bug, so if it occurs, your
process may already be in a compromised state. That said, some developers
take a less-than-rigorous approach to lock acquisition and may regard
deadlock as being normal. In this case, it might be viable to abort whatever
operation you were trying and either retry the work later or just log a
failure, abandon this particular operation, and carry on with whatever else
the process was doing. But that may be a risky strategy.

SpinLock
SpinLock presents a similar logical model to the Monitor class’s
Enter and Exit methods. (It does not support waiting and notification.)
It is a value type, so in some circumstances, it can reduce the number of
objects that need to be allocated to support locking—Monitor requires a
heap-based object. However, it is also simpler: it only uses a single strategy
for handling contention, whereas Monitor starts with the same strategy as
SpinLock, then after a while it will switch to one with higher initial
overhead, but that is more efficient if long waits are involved.

When you call either Enter method (Monitor or SpinLock), if the
lock is available, it will be acquired very quickly—the cost is typically a
handful of CPU instructions. If the lock is already held by another thread,
the CLR sits in a loop that polls the lock (i.e., it spins), waiting for it to be
released. If the lock is only ever held for a very short length of time, this
can be a very efficient strategy, because it avoids getting the OS involved

and is extremely fast in the case where the lock is available. Even when
there is contention, spinning can be the most effective strategy on a
multicore or multi-CPU system, because if the lock is only ever held for a
very short duration (e.g., only for as long as it takes to add two decimals
together), the thread will not have to spin for long before the lock becomes
available again.

Where Monitor and SpinLock differ is that Monitor will eventually
give up on spinning, falling back to using the OS scheduler. This will have a
cost equivalent to executing many thousands (possibly even hundreds of
thousands) of CPU instructions, which is why Monitor starts off using
much the same approach as SpinLock. However, if the lock remains
unavailable for long, spinning is inefficient—even spinning for just a few
milliseconds will involve spinning millions of times on modern CPUs, at
which point running thousands of instructions to be able to suspend the
thread efficiently looks like a better bet. (Spinning is also problematic on
single-core systems, because spinning relies on the thread holding the lock
to be making progress.)

SpinLock doesn’t have a fallback strategy. Unlike Monitor, it will spin
until either it successfully acquires the lock or the timeout (if you specified
one) elapses. For this reason, the documentation recommends that you
should not use a SpinLock if you do certain things while holding the lock,
including doing anything else that might block (e.g., waiting for I/O to
complete) or calling other code that might do the same. It also recommends
against calling a method through a mechanism where you can’t be certain
which code will run (e.g., through an interface, a virtual method, or a
delegate), or even allocating memory. If you’re doing anything remotely
nontrivial, it is better to stick with Monitor. However, access to a
decimal is sufficiently simple that it might be suitable for protecting with
a SpinLock, as Example 16-11 does.

Example 16-11. Protecting access to a decimal with SpinLock
public class DecimalTotal
{
 private decimal _total;

3

 private SpinLock _lock;

 public decimal Total
 {
 get
 {
 bool acquiredLock = false;
 try
 {
 _lock.Enter(ref acquiredLock);
 return _total;
 }
 finally
 {
 if (acquiredLock)
 {
 _lock.Exit();
 }
 }
 }
 }

 public void Add(decimal value)
 {
 bool acquiredLock = false;
 try
 {
 _lock.Enter(ref acquiredLock);
 _total += value;
 }
 finally
 {
 if (acquiredLock)
 {
 _lock.Exit();
 }
 }
 }
}

We have to write considerably more code than with lock due to the lack of
compiler support. It might not be worth the effort—since Monitor spins
to start with, it is likely to have similar performance, so the only benefit
here is that we’ve avoided allocating an extra heap object to perform
locking with. (SpinLock is a struct, so it lives inside the

DecimalTotal object’s heap block.) You should use a SpinLock only
if you can demonstrate through profiling that under realistic workloads it
performs better than a monitor.

Reader/Writer Locks
The ReaderWriterLockSlim class provides a different locking model
than the one that Monitor and SpinLock present. With
ReaderWriterLockSlim, when acquiring a lock, you specify whether
you are a reader or a writer. The lock allows multiple threads to become
readers simultaneously. However, when a thread asks to acquire the lock as
a writer, the lock will temporarily block any further threads that try to read,
and it waits for all threads that were already reading to release their locks
before granting access to the thread that wants to write. Once the writer
releases its lock, any threads that were waiting to read are allowed back in.
This enables the writer thread to get exclusive access but means that when
no writing is occurring, readers can all proceed in parallel.

WARNING
There is also a ReaderWriterLock class. You should not use this, because it has
performance issues even when there is no contention for the lock, and it also makes
suboptimal choices when both reader and writer threads are waiting to acquire the lock.
The newer ReaderWriterLockSlim class has been around for a very long time
(since .NET 3.5) and is recommended over the older class in all scenarios. The old class
remains purely for backward compatibility.

This may sound like a good fit with many of the collection classes built into
.NET. As I described earlier, they often support multiple concurrent reader
threads but require that modification be done exclusively by one thread at a
time and that no readers be active while modifications are made. However,
you should not necessarily make this lock your first choice when you
happen to have a mixture of readers and writers.

Despite the performance improvements that the “slim” lock made over its
predecessor, it still takes longer to acquire this lock than it does to enter a
monitor. If you plan to hold the lock only for a very short duration, it may
be better just to use a monitor—the theoretical improvement offered by
greater concurrency may be outweighed by the extra work required to
acquire the lock in the first place. Even if you are holding the lock for a
significant length of time, reader/writer locks offer benefits only if updates
just happen occasionally. If you have a more or less constant stream of
threads all wanting to modify the data, you are unlikely to see any
performance improvement.

As with all performance-motivated choices, if you are considering using a
Reader Wri terLockSlim instead of the simpler alternative of an
ordinary monitor, you should measure performance under a realistic
workload with both alternatives to see what impact, if any, the change has.

Event Objects
The native API for Windows, Win32, has always offered a synchronization
primitive called an event. From a .NET perspective, this name is a bit
unfortunate, because it defines the term to mean something else entirely, as
Chapter 9 discussed. In this section, when I refer to an event, I mean the
synchronization primitive, unless I explicitly qualify it as a .NET event.

The ManualResetEvent class provides a mechanism where one thread
can wait for a notification from another thread. This works differently than
the Monitor class’s Wait and Pulse. For one thing, you do not need to
be in possession of a monitor or other lock to be able to wait for or signal an
event. Second, the Monitor class’s pulse methods only do anything if at
least one other thread is blocked in Monitor.Wait for that object—if
nothing was waiting, then it’s as though the pulse never occurred. But a
ManualResetEvent remembers its state—once signaled, it won’t return
to its unsignaled state unless you manually reset it by calling Reset (hence
the name). This makes it useful for scenarios where some thread A cannot
proceed until some other thread B has done some work that will take an

unpredictable amount of time to complete. Thread A might have to wait, but
it’s possible that thread B will have finished the work by the time A checks.
Example 16-12 uses this technique to perform some overlapping work.

Example 16-12. Waiting for work to complete with ManualResetEvent
static void LogFailure(string message, string mailServer)
{
 var email = new SmtpClient(mailServer);

 using (var emailSent = new ManualResetEvent(false))
 {
 object sync = new();
 bool tooLate = false; // Prevent call to Set after a
timeout
 email.SendCompleted += (_, _) => // (Event arguments unused
here)
 {
 lock(sync)
 {
 if (!tooLate) { emailSent.Set(); }
 }
 };
 email.SendAsync("logger@example.com",
"sysadmin@example.com",
 "Failure Report", "An error occurred: " + message,
null);

 LogPersistently(message);

 if (!emailSent.WaitOne(TimeSpan.FromMinutes(1)))
 {
 LogPersistently("Timeout sending email for error: " +
message);
 }

 lock (sync)
 {
 tooLate = true;
 }
 }
}

This method sends an error report to a system administrator by email using
the SmtpClient class from the System.Net.Mail namespace. It also
calls an internal method (not shown here) called LogPersistently to

record the failure in a local logging mechanism. Since these are both
operations that could take some time, the code sends the email
asynchronously—the SendAsync method returns immediately, and the
class raises a .NET event once the email has been sent. This enables the
code to get on with the call to LogPersistently while the email is
being sent.

Having logged the message, the method waits for the email to go out before
returning, which is where the ManualResetEvent comes in. By passing
false to the constructor, I’ve put the event into an initial unsignaled state.
But in the handler for the email SendCompleted .NET event, I call the
synchronization event’s Set method, which will put it into the signaled
state. (In production code, I’d also check the .NET event handler’s
argument to see if there was an error, but I’ve omitted that here because it’s
not relevant to the point I’m illustrating.)

Finally, I call WaitOne, which will block until the event is signaled. The
SmtpClient might do its job so quickly that the email has already gone
by the time my call to LogPersistently returns. But that’s OK—in
that case, WaitOne returns immediately, because the
ManualResetEvent stays signaled once you call Set. So it doesn’t
matter which piece of work finishes first—the persistent logging or sending
the email. In either case, WaitOne will let the thread continue when the
email has been sent. (For the background on this method’s curious name,
see the next sidebar, “WaitHandle”.)

WAITHANDLE
In Windows implementations of .NET, ManualResetEvent is a
wrapper around a Win32 event object. There are several other
synchronization classes that are also wrappers around underlying OS
synchronization primitives: AutoResetEvent, Mutex, and
Sempahore. These all derive from a common base class,
WaitHandle. (On non-Windows .NET implementations, the runtime
libraries just implement equivalent behavior where directly analogous
OS primitives are not available.)

A WaitHandle can be in one of two states: signaled or not signaled.
The exact meaning of this varies from one primitive to the next. A
ManualReset event becomes signaled when you call Set (and it
stays in the signaled state until explicitly unset). A Mutex is in the
signaled state only if no thread currently possesses it. Despite the
variations in interpretation, waiting for a WaitHandle will always
block if it is not signaled and will not block if it is signaled.

With Win32 synchronization objects, you can either wait for a single
item to become signaled or you can wait on multiple objects, either
until any of them is signaled or until all of them are. The WaitHandle
class defines WaitOne, WaitAny, and WaitAll methods
corresponding to these three ways of waiting. With primitives where a
successful wait has the side effect of acquiring ownership (exclusively
in the case of Mutex, or partially with Semaphore), there can be a
problem with attempting to wait on multiple objects—if two threads
both attempt to acquire the same objects but do so in a different order,
deadlock will ensue if these attempts overlap. But WaitAll deals with
that—the order in which you specify the items does not matter, because
it acquires them atomically—it will not allow any of the waits to
succeed until they can all succeed simultaneously. (Of course, if a
single thread makes a second call to WaitAll without first releasing
all objects acquired in an earlier call, the door will still be open to

deadlock. WaitAll helps only if you can acquire everything you need
in a single step.)

WaitAll does not work on a thread that is using COM’s STA mode
because of a limitation in the underlying Windows API that it depends
on. As I described in Chapter 14, if your program’s entry point is
annotated with [STAThread], it will be using this mode, as will any
thread that hosts UI elements.

You can also use a WaitHandle in conjunction with the thread pool.
The ThreadPool class has a RegisterWaitForSingleObject
method that accepts any WaitHandle and invokes the callback you
supply when the handle becomes signaled. As I’ll discuss later, this can
be a bad idea for certain kinds of WaitHandle-derived types, such as
Mutex.

There’s also an AutoResetEvent. As soon as a single thread has
returned from waiting for such an event, it automatically reverts to the
unsignaled state. Thus, calling Set on this event will allow at most one
thread through. If you call Set once while no threads are waiting, the event
will remain set, so unlike Monitor.Pulse, the notification will not be
lost. However, the event does not maintain a count of the number of
outstanding sets—if you call Set twice while no threads are waiting for the
event, it will still allow only the first thread through, resetting immediately.

Both of these event types derive only indirectly from WaitHandle,
through the EventWaitHandle base class. You can use this directly, and
it lets you specify manual or automatic resetting with a constructor
argument. But what’s more interesting about EventWaitHandle is that
it lets you work across process boundaries (on Windows only). The
underlying Win32 event objects can be given names, and if you know the
name of an event created by another process, you can open it by passing the
name when constructing an EventWaitHandle. (If no event with the
name you specify exists yet, your process will be the one that creates it.) No
equivalent to named events exist on Unix, so you will get a

PlatformNotSupportedException if you try to create one in those
environments, although single-process use is supported, so you are free to
use these types as long as you don’t attempt to specify a name.

There is also a ManualResetEventSlim class. However, unlike the
nonslim reader/writer, ManualResetEvent has not been superseded by
its slim successor because only the older type supports cross-process use.
The ManualResetEventSlim class’s main benefit is that if your code
needs to wait only for a very short time, it can be more efficient because it
will poll (much like a SpinLock) for a while. This saves it from having to
use relatively expensive OS scheduler services. However, it will eventually
give up and fall back to a more heavyweight mechanism. (Even in this case,
it’s marginally more efficient, because it doesn’t need to support cross-
process operation, so it uses a more lightweight mechanism.) There is no
slim version of the automatic event, because automatic reset events are not
all that widely used.

Barrier
In the preceding section, I showed how you can use an event to coordinate
concurrent work, enabling one thread to wait until something else has
happened before proceeding. The runtime libraries offer a class that can
handle similar kinds of coordination but with slightly different semantics.
The Barrier class can handle multiple participants and can also support
multiple phases, meaning that threads can wait for one another several
times as work progresses. Barrier is symmetric—whereas in Example
16-12, the event handler calls Set while another thread calls WaitOne,
with a Barrier, all participants call the SignalAndWait method,
which effectively combines the set and wait into one operation.

When a participant calls SignalAndWait, the method will block until all
of the participants have called it, at which point they will all be unblocked
and free to continue. The Barrier knows how many participants to
expect, because you pass the count as a constructor argument.

Multiphase operation simply involves going around again. Once the final
participant calls SignalAndWait, releasing the rest, if any thread calls
SignalAndWait a second time, it will block just like before, until all the
others call it a second time. The CurrentPhaseNumber tells you how
many times this has occurred so far.

The symmetry makes Barrier a less suitable solution than
ManualResetEvent in Example 16-12, because in that case, only one of
the threads really needs to wait. There’s no benefit in making the
SendComplete event handler wait for the persistent log update to finish
—only one of the participants cares when work is complete.
ManualResetEvent supports only a single participant, but that’s not
necessarily a reason to use Barrier. If you want event-style asymmetry
with multiple participants, there’s another approach: countdowns.

CountdownEvent
The CountdownEvent class is similar to an event, but it allows you to
specify that it must be signaled some particular number of times before it
allows waiting threads through. The constructor takes an initial count
argument, and you can increase the count at any time by calling
AddCount. You call the Signal method to reduce the count; by default,
it will reduce it by one, but there’s an overload that lets you reduce it by a
specified number.

The Wait method blocks until the count reaches zero. If you want to
inspect the current count to see how far there is to go, you can read the
CurrentCount property.

Semaphores
Another count-based system that is widely used in concurrent systems is
known as a semaphore. Windows has native support for this, and .NET’s
Semaphore class was originally designed as a wrapper for it. Like the
event wrappers, Semaphore derives from WaitHandle, and on non-

Windows platforms, the behavior is emulated. Whereas a
CountdownEvent lets through waiting threads only once the count gets
to zero, a Semaphore starts blocking threads only when the count gets to
zero. You could use this if you wanted to ensure that no more than a
particular number of threads were performing certain work simultaneously.

Because Semaphore derives from WaitHandle, you call the WaitOne
method to wait. This blocks only if the count is already zero. It decrements
the count by one when it returns. You increment the count by calling
Release. You specify the initial count as a constructor argument, and you
must also supply a maximum count—if a call to Release attempts to set
the count above the maximum, it will throw an exception.

As with events, Windows supports the cross-process use of semaphores, so
you can optionally pass a semaphore name as a constructor argument. This
will open an existing semaphore or create a new one if a semaphore with
the specified name does not yet exist.

There’s also a SemaphoreSlim class. Like
ManualResetEventSlim, this offers a performance benefit in scenarios
where threads will not normally have to block for long. SemaphoreSlim
offers two ways to decrement the count. Its Wait method works much like
the Semaphore class’s WaitOne, but it also offers WaitAsync, which
returns a Task that completes once the count is nonzero (and it decrements
the count as it completes the task). This means you do not need to block a
thread while you wait for the semaphore to become available. Moreover, it
means you can use the await keyword described in Chapter 17 to
decrement a semaphore.

Mutex
Windows defines a mutex synchronization primitive for which .NET
provides a wrapper class, Mutex. The name is short for “mutually
exclusive,” because only one thread at a time can be in possession of a
mutex—if thread A owns the mutex, thread B cannot, and vice versa, for
example. This is also exactly what the lock keyword does for us through

the Monitor class, but Mutex offers two advantages. It offers cross-
process support: as with other cross-process synchronization primitives, you
can pass in a name when you construct a mutex. (And unlike all the others,
this type supports naming even on Unix-based platforms.) And with Mutex
you can wait for multiple objects in a single operation.

NOTE
The ThreadPool.RegisterWaitForSingleObject method does not work for
a mutex, because Win32 requires mutex ownership to be tied to a particular thread, and
the inner workings of the thread pool mean that RegisterWaitForSingleObject
is unable to determine which thread pool thread handles the callback with the mutex.

You acquire a mutex by calling WaitOne, and if some other thread owns
the mutex at the time, WaitOne will block until that thread calls
ReleaseMutex. Once WaitOne returns successfully, you own the
mutex. You must release the mutex from the same thread on which you
acquired it.

There is no “slim” version of the Mutex class. We already have a low-
overhead equivalent, because all .NET objects have the innate ability to
provide lightweight mutual exclusion, thanks to Monitor and the lock
keyword.

Interlocked
The Interlocked class is a little different than the other types I’ve
described so far in this section. It supports concurrent access to shared data,
but it is not a synchronization primitive. Instead, it defines static methods
that provide atomic forms of various simple operations.

For example, it provides Increment, Decrement, and Add methods,
with overloads supporting int and long values. (These are all similar—
incrementing or decrementing are just addition by 1 or −1.) Addition
involves reading a value from some storage location, calculating a modified

value, and storing that back in the same storage location, and if you use
normal C# operators to do this, things can go wrong if multiple threads try
to modify the same location simultaneously. If the value is initially 0, and
some thread reads that value and then another thread also reads the value, if
both then add 1 and store the result back, they will both end up writing back
1—two threads attempted to increment the value, but it went up only by
one. The Interlocked form of these operations prevents this sort of
overlap.

Interlocked also offers various methods for swapping values. The
Exchange method takes two arguments: a reference to a value and a
value. This returns the value currently in the location referred to by the first
argument and also overwrites that location with the value supplied as a
second argument, and it performs these two steps as a single atomic
operation. There are overloads supporting int, uint, long, ulong,
object, float, double, and a type called IntPtr, which represents
an unmanaged pointer. There is also a generic Exchange<T>, where T
can be any reference type.

There is also support for conditional exchange, with the
CompareExchange method. This takes three values—as with
Exchange, it takes a reference to some variable you wish to modify, and
the value you want to replace it with, but it also takes a third argument: the
value you think is already in the storage location. If the value in the storage
location does not match the expected value, this method will not change the
storage location. (It still returns whatever value was in that storage location,
whether it modifies it or not.) It’s actually possible to implement the other
Interlocked operations I’ve described in terms of this one. Example
16-13 uses it to implement an interlocked increment operation.

Example 16-13. Using CompareExchange
static int InterlockedIncrement(ref int target)
{
 int current, newValue;
 do
 {
 current = target;

 newValue = current + 1;
 }
 while (Interlocked.CompareExchange(ref target, newValue,
current)
 != current);
 return newValue;
}

The pattern would be the same for other operations: read the current value,
calculate the value with which to replace it, and then replace it only if the
value doesn’t appear to have changed in the meantime. If the value changes
in between fetching the current value and replacing it, go around again. You
need to be a little bit careful here—even if the CompareExchange
succeeds, it’s possible that other threads modified the value twice between
your reading the value and updating it, with the second update putting
things back how they were before the first. With addition and subtraction,
that doesn’t really matter, because it doesn’t affect the outcome, but in
general, you should not presume too much about what a successful update
signifies. If you’re in doubt, it’s often better to stick with one of the more
heavyweight synchronization mechanisms.

The simplest Interlocked operation is the Read method. This takes a
ref long and reads the value atomically with respect to any other
operations on the same variable that you perform through Interlocked.
This enables you to read 64-bit values safely—in general, the CLR does not
guarantee that 64-bit reads will be atomic. (In a 64-bit process, they
normally will be, but if you want atomicity on 32-bit architectures, you
need to use Interlocked.Read.) There are no overloads for 32-bit
values, because reading and writing those is always atomic.

The operations supported by Interlocked correspond to the atomic
operations that most CPUs can support more or less directly. (Some CPU
architectures support all the operations innately, while others support only
the compare and exchange, building everything else up out of that. But in
any case, these operations are at most a few instructions.) This means they
are reasonably efficient. They are considerably more costly than performing
equivalent noninterlocked operations with ordinary code, because atomic

CPU instructions need to coordinate across all CPU cores (and across all
CPU chips in computers that have multiple physically separate CPUs
installed) to guarantee atomicity. Nonetheless, they incur a fraction of the
cost you pay when a lock statement ends up blocking the thread at the OS
level.

These sorts of operations are sometimes described as lock free. This is not
entirely accurate—the computer does acquire locks very briefly at a fairly
low level in the hardware. Atomic read-modify-write operations effectively
acquire an exclusive lock on the computer’s memory for two bus cycles.
However, no OS locks are acquired, the scheduler does not need to get
involved, and the locks are held for an extremely short duration—often for
just one machine code instruction. More significantly, the highly specialized
and low-level form of locking used here does not permit holding onto one
lock while waiting to acquire another—code can lock only one thing at a
time. This means that this sort of operation will not deadlock. However, the
simplicity that rules out deadlocks cuts both ways.

The downside of interlocked operations is that the atomicity applies only to
extremely simple operations. It’s very hard to build more complex logic in a
way that works correctly in a multithreaded environment using just
Interlocked. It’s easier and considerably less risky to use the higher-
level synchronization primitives, because those make it fairly easy to
protect more complex operations rather than just individual calculations.
You would typically use Interlocked only in extremely performance-
sensitive work, and even then, you should measure carefully to verify that
it’s having the effect you hope—code such as Example 16-13 could in
theory loop any number of times before eventually completing, so it could
end up costing you more than you expect.

One of the biggest challenges with writing correct code when using low-
level atomic operations is that you may encounter problems caused by the
way CPU caches work. Work done by one thread may not become visible
instantly to other threads, and in some cases, memory access may not
necessarily occur in the order that your code specifies. Using higher-level
synchronization primitives sidesteps these issues by enforcing certain

ordering constraints, but if you decide instead to use Interlocked to
build your own synchronization mechanisms, you will need to understand
the memory model that .NET defines for when multiple threads access the
same memory simultaneously, and you will typically need to use either the
MemoryBarrier method defined by the Interlocked class or the
various methods defined by the Volatile class to ensure correctness.
This is beyond the scope of this book, and it’s also a really good way to
write code that looks like it works but turns out to go wrong under heavy
load (i.e., when it probably matters most), so these sorts of techniques are
rarely worth the cost. Stick with the other mechanisms I’ve discussed in this
chapter unless you really have no alternative.

Lazy Initialization
When you need an object to be accessible from multiple threads, if it’s
possible for that object to be immutable (i.e., its fields never change after
construction), you can often avoid the need for synchronization. It is always
safe for multiple threads to read from the same location simultaneously—
trouble sets in only if the data needs to change. However, there is one
challenge: when and how do you initialize the shared object? One solution
might be to store a reference to the object in a static field initialized from a
static constructor or a field initializer—the CLR guarantees to run the static
initialization for any class just once. However, this might cause the object to
be created earlier than you want. If you perform too much work in static
initialization, this can have an adverse effect on how long it takes your
application to start running.

You might want to wait until the object is first needed before initializing it.
This is called lazy initialization. This is not particularly hard to achieve—
you can just check a field to see if it’s null and initialize it if not, using
lock to ensure that only one thread gets to construct the value. However,
this is an area in which developers seem to have a remarkable appetite for
showing how clever they are, with the potentially undesirable corollary of
demonstrating that they’re not as clever as they think they are.

The lock keyword works fairly efficiently, but it’s possible to do better by
using Interlocked. However, the subtleties of memory access
reordering on multiprocessor systems make it easy to write code that runs
quickly, looks clever, and doesn’t always work. To try to avert this recurring
problem, .NET provides two classes to perform lazy initialization without
using lock or other potentially expensive synchronization primitives. The
easiest to use is Lazy<T>.

Lazy<T>
The Lazy<T> class provides a Value property of type T, and it will not
create the instance that Value returns until the first time something reads
the property. By default, Lazy<T> will use the no-arguments constructor
for T, but you can supply your own method for creating the instance.

Lazy<T> is able to handle race conditions for you. In fact, you can
configure the level of multithreaded protection you require. Since lazy
initialization can also be useful in single-threaded environments, you can
disable multithreaded support entirely (by passing either false or
LazyThreadSafetyMode.None as a constructor argument). But for
multithreaded environments, you can choose between the other two modes
in the LazyThreadSafetyMode enumeration.

These determine what happens if multiple threads all try to read the Value
property for the first time more or less simultaneously.
PublicationOnly does not attempt to ensure that only one thread
creates an object—it only applies any synchronization at the point at which
a thread finishes creating an object. The first thread to complete
construction or initialization gets to supply the object, and the ones
produced by any other threads that had started initialization are all
discarded. Once a value is available, all further attempts to read Value will
just return that.

If you choose ExecutionAndPublication, only a single thread will
be allowed to attempt construction. That may seem less wasteful, but
PublicationOnly offers a potential advantage: because it avoids

holding any locks during initialization, you are less likely to introduce
deadlock bugs if the initialization code itself attempts to acquire any locks.
PublicationOnly also handles errors differently. If the first
initialization attempt throws an exception, other threads that had begun a
construction attempt are given a chance to complete, whereas with
ExecutionAndPublication, if the one and only attempt to initialize
fails, the exception is retained and will be thrown each time any code reads
Value.

LazyInitializer
The other class supporting lazy initialization is LazyInitializer. This
is a static class, and you use it entirely through its static generic methods. It
is marginally more complex to use than Lazy<T>, but it avoids the need to
allocate an extra object in addition to the lazily allocated instance you
require. Example 16-14 shows how to use it.

Example 16-14. Using LazyInitializer
public class Cache<T>
{
 private static Dictionary<string, T>? _d;

 public static IDictionary<string, T> Dictionary =>
 LazyInitializer.EnsureInitialized(ref _d);
}

If the field is null, the EnsureInitialized method constructs an
instance of the argument type—Dictionary<string, T>, in this
case. Otherwise, it will return the value already in the field. There are some
other overloads. You can pass a callback, much as you can to Lazy<T>.
You can also pass a ref bool argument, which it will inspect to discover
whether initialization has already occurred (and it sets this to true when it
performs initialization).

A static field initializer would have given us the same once-and-once-only
initialization but might have ended up running far earlier in the process’s
lifetime. In a more complex class with multiple fields, static initialization
might even cause unnecessary work, because it happens for the entire class,

so you might end up constructing objects that don’t get used. This could
increase the amount of time it takes for an application to start up.
LazyInitializer lets you initialize individual fields as and when they
are first used, ensuring that you do only work that is needed.

Other Class Library Concurrency Support
The System.Collections.Concurrent namespace defines various
collections that make more generous guarantees in the face of
multithreading than the usual collections, meaning you may be able to use
them without needing any other synchronization primitives. Take care,
though—as always, even though individual operations may have well-
defined behavior in a multithreaded world, that doesn’t necessarily help you
if the operation you need to perform involves multiple steps. You may still
need coordination at a broader scope to guarantee consistency. But in some
situations, the concurrent collections may be all you need.

Unlike the nonconcurrent collections, ConcurrentDictionary,
ConcurrentBag, ConcurrentStack, and ConcurrentQueue all
support modification of their contents even while enumeration (e.g., with a
foreach loop) of those contents is in progress. The dictionary provides a
live enumerator, in the sense that if values are added or removed while
you’re in the middle of enumerating, the enumerator might show you some
of the added items and it might not show you the removed items. It makes
no firm guarantees, not least because with multithreaded code, when two
things happen on two different threads, it’s not always entirely clear which
happened first—the laws of relativity mean that it may depend on your
point of view.

This means that it’s possible for an enumerator to seem to return an item
after that item was removed from the dictionary. The bag, stack, and queue
take a different approach: their enumerators all take a snapshot and iterate
over that, so a foreach loop will see a set of contents that is consistent
with what was in the collection at some point in the past, even though it
may since have changed.

As I already mentioned in Chapter 5, the concurrent collections present
APIs that have similarities to their nonconcurrent counterparts but with
some additional members to support atomic addition and removal of items.
For example, Concurrent Dic tionary offers a GetOrAdd method
that returns an existing entry if one exists and adds a new entry otherwise.

Another part of the runtime libraries that can help you deal with
concurrency without needing to make explicit use of synchronization
primitives is Rx (the subject of Chapter 11). It offers various operators that
can combine multiple asynchronous streams together into a single stream.
These manage concurrency issues for you—remember that any single
observable will provide observers with items one at a time.

Rx takes the necessary steps to ensure that it stays within these rules even
when it combines inputs from numerous individual streams that are all
producing items concurrently. As long as all the sources stick to the rules,
Rx will never ask an observer to deal with more than one thing at a time.

The System.Threading.Channels NuGet package offers types that
support producer/consumer patterns, in which one or more threads generate
data, while other threads consume that data. You can choose whether
channels are buffered, enabling producers to get ahead of consumers, and if
so, by how much. (The Blocking Col lection<T> in
System.Collections.Concurrent also offers this kind of service.
However, it is less flexible, and it does not support the await keyword
described in Chapter 17.)

Finally, in multithreaded scenarios it is worth considering the immutable
collection classes, which I described in Chapter 5. These support concurrent
access from any number of threads, and because they are immutable, the
question of how to handle concurrent write access never arises. Obviously,
immutability imposes considerable constraints, but if you can find a way to
work with these types (and remember, the built-in string type is
immutable, so you already have some experience of working with
immutable data), they can be very useful in some concurrent scenarios.

Tasks
Earlier in this chapter, I showed how to use the Task class to launch work
in the thread pool. This class is more than just a wrapper for the thread pool.
Task and the related types that form the Task Parallel Library (TPL) can
handle a wider range of scenarios. Tasks are particularly important because
C#’s asynchronous language features (which are the topic of Chapter 17)
are able to work with these directly. A great many APIs in the runtime
libraries offer task-based asynchronous operation.

Although tasks are the preferred way to use the thread pool, they are not
just about multithreading. The basic abstractions are more flexible than that.

The Task and Task<T> Classes
There are two classes at the heart of the TPL: Task and a class that derives
from it, Task<T>. The Task base class represents some work that may
take some time to complete. Task<T> extends this to represent work that
produces a result (of type T) when it completes. (The nongeneric Task
does not produce any result. It’s the asynchronous equivalent of a void
return type.) Notice that these are not concepts that necessarily involve
threads.

Most I/O operations can take a while to complete, and in most cases, the
runtime libraries provide task-based APIs for them. Example 16-15 uses an
asynchronous method to fetch the content of a web page as a string. Since it
cannot return the string immediately—it might take a while to download the
page—it returns a task instead.

Example 16-15. Task-based web download
var w = new HttpClient();
string url = "https://endjin.com/";
Task<string> webGetTask = w.GetStringAsync(url);

NOTE
Most task-based APIs follow a naming convention in which they end in Async, and if
there’s a corresponding synchronous API, it will have the same name but without the
Async suffix. For example, the Stream class in System.IO, which provides access
to streams of bytes, has a Write method to write bytes to a stream, and that method is
synchronous (i.e., it waits until it finishes its work before returning). It also offers a
WriteAsync method. This does the same as Write, but because it’s asynchronous, it
returns without waiting for its work to complete. It returns a Task to represent the
work; this convention is called the Task-based Asynchronous Pattern (TAP).

That GetStringAsync method does not wait for the download to
complete, so it returns almost immediately. To perform the download, the
computer has to send a message to the relevant server, and then it must wait
for a response. Once the request is on its way, there’s no work for the CPU
to do until the response comes in, meaning that this operation does not need
to involve a thread for the majority of the time that the request is in
progress. So this method does not wrap some underlying synchronous
version of the API in a call to Task.Run. In fact, HttpClient doesn’t
even have synchronous equivalents of most of its operations. And with
classes that offer I/O APIs in both forms, such as Stream, the synchronous
versions are often wrappers around a fundamentally asynchronous
implementation: when you call a blocking API to perform I/O, it will
typically perform an asynchronous operation under the covers and then just
block the calling thread until that work completes. And even in cases where
it’s nonasynchronous all the way down to the OS—e.g., the FileStream
can use nonasynchronous operating system file APIs to implement Read
and Write—I/O in the OS kernel is typically asynchronous in nature.

So, although the Task and Task<T> classes make it very easy to produce
tasks that work by running methods on thread pool threads, they are also
able to represent fundamentally asynchronous operations that do not require
the use of a thread for most of their duration. Although it’s not part of the
official terminology, I describe this kind of operation as a threadless task, to
distinguish it from tasks that run entirely on thread pool threads.

ValueTask and ValueTask<T>
Task and Task<T> are pretty flexible, and not just because they can
represent both thread-based and threadless operations. As you’ll see, they
offer several mechanisms for discovering when the work they represent
completes, including the ability to combine multiple tasks into one.
Multiple threads can all wait on the same task simultaneously. You can
write caching mechanisms that repeatedly hand out the same task, even
long after the task completes. This is all very convenient, but it means that
these task types also have some overheads. For more constrained cases,
.NET defines less flexible ValueTask and ValueTask<T> types that
are more efficient in certain circumstances.

The most important difference between these types and their ordinary
counterparts is that ValueTask and ValueTask<T> are value types.
This is significant in performance-sensitive code because it can reduce the
number of objects that code allocates, reducing the amount of time an
application spends performing garbage collection work. You might be
thinking that the context switching costs typically involved with concurrent
work are likely to be high enough that the cost of an object allocation will
be the least of your concerns when dealing with asynchronous operations.
And while this is often true, there’s one very important scenario where the
GC overhead of Task<T> can be problematic: operations that sometimes
run slowly but usually don’t.

It is very common for I/O APIs to perform buffering to reduce the number
of calls into the OS. If you write a few bytes into a Stream, it will
typically put those into a buffer and wait until either you’ve written enough
data to make it worth sending it to the OS or you’ve explicitly called
Flush. And it’s also common for reads to be buffered—if you read a single
byte from a file, the OS will typically have to read an entire sector from the
drive (usually at least 4 KB), and that data usually gets saved somewhere in
memory so that when you ask for the second byte, no more I/O needs to
happen. The practical upshot is that if you write a loop that reads data from
a file in relatively small chunks (e.g., one line of text at a time), the majority

of read operations will complete straightaway because the data being read
has already been fetched.

In these cases where the overwhelming majority of calls into asynchronous
APIs complete immediately, the GC overheads of creating task objects can
become significant. This is why ValueTask and ValueTask<T> were
introduced. (These are built into .NET Core, .NET, and .NET Standard 2.1.
On .NET Framework, you can get them via the
System.Threading.Tasks.Extensions NuGet package.) These
make it possible for potentially asynchronous operations to complete
immediately without needing to allocate any objects. In cases where
immediate completion is not possible, these types end up being wrappers
for Task or Task<T> objects, at which point the overheads return, but in
cases where only a small fraction of calls need to do that, these types can
offer significant performance boosts, particularly in code that uses the low-
allocation techniques described in Chapter 18.

The nongeneric ValueTask is rarely used, because asynchronous
operations that produce no result can just return the
Task.CompletedTask static property, which provides a reusable task
that is already in the completed state, avoiding any GC overhead. But tasks
that need to produce a result generally can’t reuse existing tasks. (There are
some exceptions: the runtime libraries will often use cached precompleted
tasks for Task<bool>, because there are only two possible outcomes. But
for Task<int>, there’s no practical way to maintain a list of
precompleted tasks for every possible result.)

These value task types have some constraints. They are single use: unlike
Task and Task<T>, you must not store these types in a dictionary or a
Lazy<T> to provide a cached asynchronous value. It is an error to attempt
to retrieve the Result of a ValueTask<T> before it has completed. It is
also an error to retrieve the Result more than once. In general, you should
use a ValueTask or ValueTask<T> with exactly one await operation
(as described in Chapter 17) and then never use it again. (Alternatively, if
necessary, you can escape these restrictions by calling its AsTask method

to obtain a full Task, or Task<T> with all the corresponding overheads,
at which point you should not do anything more with the value task.)

Because the value type tasks were introduced many years after the TPL first
appeared, class libraries often use Task<T> where you might expect to see
a ValueTask<T>. For example, the Stream class’s ReadAsync
methods are all prime candidates, but because most of those were defined
long before ValueTask<T> existed, they mostly return Task<T>. The
recently added overload that accepts a Memory<byte> instead of a
byte[] does return a ValueTask<T>, though, and more generally,
where APIs have been augmented to add support for the new memory-
efficient techniques described in Chapter 18, these will usually return
ValueTask<T>. And if you’re in a performance-sensitive world where
the GC overhead of a task is significant, you will likely want to be using
those techniques in any case.

Task creation options
Instead of using Task.Run, you can get more control over certain aspects
of a new thread-based task by creating it with the StartNew method of
either Task.Factory or Task<T>.Factory, depending on whether
your task needs to return a result. Some overloads of StartNew take an
argument of the enum type TaskCreationOptions, which provides
some control over how the TPL schedules the task.

The PreferFairness flag asks to run the task after any tasks that have
already been scheduled. By default, the thread pool normally runs the most
recently added tasks first (a last-in, first-out, or LIFO, policy) because this
tends to make more efficient use of the CPU cache.

The LongRunning flag warns the TPL that the task may run for a long
time. By default, the TPL’s scheduler optimizes for relatively short work
items—anything up to a few seconds. This flag indicates that the work
might take longer than that, in which case the TPL may modify its
scheduling. If there are too many long-running tasks, they might use up all
the threads, and even though some of the queued work items might be for

much shorter pieces of work, those will still take a long time to finish,
because they’ll have to wait in line behind the slow work before they can
even start. But if the TPL knows which items are likely to run quickly and
which are likely to be slower, it can prioritize them differently to avoid such
problems.

The other TaskCreationOptions settings relate to parent/child task
relationships and schedulers, which I’ll describe later.

Task status
A task goes through a number of states in its lifetime, and you can use the
Task class’s Status property to discover where it has gotten to. This
returns a value of the enum type TaskStatus. If a task completes
successfully, the property will return the enumeration’s
RanToCompletion value. If the task fails, it will be Faulted. If you
cancel a task using the technique shown in “Cancellation”, the status will
then be Canceled.

There are several variations on a theme of “in progress,” of which
Running is the most obvious—it means that some thread is currently
executing the task. A task representing I/O doesn’t typically require a thread
while it is in progress, so it never enters that state—it starts in the
WaitingForActivation state and then typically transitions directly to
one of the three final states (RanToCompletion, Faulted, or
Canceled). A thread-based task can also be in this
WaitingForActivation state but only if something is preventing it
from running, which would typically happen if you set it up to run only
when some other task completes (which I’ll show how to do shortly). A
thread-based task may also be in the WaitingToRun state, which means
that it’s in a queue waiting for a thread pool thread to become available. It’s
possible to establish parent/child relationships between tasks, and a parent
that has already finished but that created some child tasks that are not yet
complete will be in the WaitingForChildrenToComplete state.

Finally, there’s the Created state. You don’t see this very often, because it
represents a thread-based task that you have created but have not yet asked
to run. You’ll never see this with a task created using the task factory’s
StartNew method, or with Task.Run, but you will see this if you
construct a new Task directly.

The level of detail in the TaskStatus property may be too much most of
the time, so the Task class defines various simpler bool properties. If you
want to know only whether the task has no more work to do (and don’t care
whether it succeeded, failed, or was canceled), there’s the IsCompleted
property. If you want to check for failure or cancellation, use IsFaulted
or IsCanceled.

Retrieving the result
Suppose you’ve got a Task<T>, either from an API that provides one or by
creating a thread-based task that returns a value. If the task completes
successfully, you are likely to want to retrieve its result, which you can get
from the Result property. So the task created by Example 16-15 makes
the web page content available in webGetTask.Result.

If you try to read the Result property before the task completes, it will
block your thread until the result is available. (If you have a plain Task,
which does not return a result, and you would like to wait for that to finish,
you can just call Wait instead.) If the operation then fails, Result throws
an exception (as does Wait), although that is not as straightforward as you
might expect, as I will discuss in “Error Handling”.

WARNING
You should avoid using Result on an uncompleted task. In some scenarios, it risks
deadlock. This is particularly common in desktop applications, because certain work
needs to happen on particular threads, and if you block a thread by reading the Result
of an incomplete task, you might prevent the task from completing. Even if you don’t
deadlock, blocking on Result can cause performance issues by hogging thread pool
threads that might otherwise have been able to get on with useful work. And reading
Result in an uncompleted ValueTask<T> is not permitted.

In most cases, it is far better to use C#’s asynchronous language features to
retrieve the result. These are the subject of the next chapter, but as a
preview, Example 16-16 shows how you could use this to get the result of
the task that fetches a web page. (You’ll need to apply the async keyword
in front of the method declaration to be able to use the await keyword.)

Example 16-16. Getting a task’s results with await
string pageContent = await webGetTask;

This may not look like an exciting improvement on simply writing
webGetTask.Result, but as I’ll show in Chapter 17, this code is not
quite what it seems—the C# compiler restructures this statement into a
callback-driven state machine that enables you to get the result without
blocking the calling thread. (If the operation hasn’t finished, the thread
returns to the caller, and the remainder of the method runs later when the
operation completes.)

But how are the asynchronous language features able to make this work—
how can code discover when a task has completed? Result or Wait let
you just sit and wait for that to happen, blocking the thread, but that rather
defeats the purpose of using an asynchronous API in the first place. You
will normally want to be notified when the task completes, and you can do
this with a continuation.

Continuations
Tasks provide various overloads of a method called ContinueWith. This
creates a new thread-based task that will execute when the task on which
you called Contin ue With finishes (whether it does so successfully or
with failure or cancellation). Example 16-17 uses this on the task created in
Example 16-15.

Example 16-17. A continuation
webGetTask.ContinueWith(t =>
{
 string webContent = t.Result;
 Console.WriteLine("Web page length: " + webContent.Length);
});

A continuation task is always a thread-based task (regardless of whether its
antecedent task was thread-based, I/O-based, or something else). The task
gets created as soon as you call ContinueWith but does not become
runnable until its antecedent task completes. (It starts out in the
WaitingForActivation state.)

NOTE
A continuation is a task in its own right—ContinueWith returns either a Task<T>
or Task, depending on whether the delegate you supply returns a result. You can set up
a continuation for a continuation if you want to chain together a sequence of operations.

The method you provide for the continuation (such as the lambda in
Example 16-17) receives the antecedent task as its argument, and I’ve used
this to retrieve the result. I could also have used the webGetTask
variable, which is in scope from the containing method, as it refers to the
same task. However, by using the argument, the lambda in Example 16-17
doesn’t use any variables from its containing method, which enables the
compiler to produce slightly more efficient code—it doesn’t need to create
an object to hold shared variables, and it can reuse the delegate instance it
creates because it doesn’t have to create a context-specific one for each call.

This means I could also easily separate this out into an ordinary noninline
method, if I felt that would make the code easier to read.

You might be thinking that there’s a possible problem in Example 16-17:
What if the download completes extremely quickly so that webGetTask
has already completed before the code manages to attach the continuation?
In fact, that doesn’t matter—if you call ContinueWith on a task that has
already completed, it will still run the continuation. It just schedules it
immediately. You can attach as many continuations as you like. All the
continuations you attach before the task completes will be scheduled for
execution when it does complete. And any that you attach after the task has
completed will be scheduled immediately.

By default, a continuation task will be scheduled for execution on the thread
pool like any other task. However, there are some things you can do to
change how it runs.

Some overloads of ContinueWith take an argument of the enum type
Task Conti nua tionOptions, which controls how (and whether) your
task is scheduled. This includes all of the same options that are available
with TaskCreationOptions but adds some others specific to
continuations.

You can specify that the continuation should run only in certain
circumstances. For example, the OnlyOnRanToCompletion flag will
ensure that the continuation runs only if the antecedent task succeeds. There
are similar OnlyOnFaulted and OnlyOn Can celed flags.
Alternatively, you can specify NotOnRanToCompletion, which means
that the continuation will run only if the task either faults or is canceled.

NOTE
You can create multiple continuations for a single task. So you could set up one to
handle the success case and another one to handle failures.

You can also specify ExecuteSynchronously. This indicates that the
continuation should not be scheduled as a separate work item. Normally,
when a task completes, any continuations for that task will be scheduled for
execution and will have to wait until the normal thread pool mechanisms
pick the work items out of the queue and execute them. (This won’t take
long if you use the default options—unless you specify
PreferFairness, the LIFO operation the thread pool uses for tasks
means that the most recently scheduled items run first.) However, if your
completion does only the tiniest amount of work, the overhead of
scheduling it as a completely separate item may be overkill. So
ExecuteSynchronously lets you piggyback the completion task on
the same thread pool work item that ran the antecedent—the TPL will run
this kind of continuation immediately after the antecedent finishes before
returning the thread to the pool. You should use this option only if the
continuation will run quickly.

The LazyCancellation option handles a tricky situation that can occur
if you make tasks cancelable (as described later in “Cancellation”) and you
are using continuations. If you cancel a task, any continuations will, by
default, become runnable instantly. If the task being canceled was itself set
up as a continuation for another task that hadn’t yet finished, and if it has a
continuation of its own, as Example 16-18 shows, this can have a mildly
surprising effect.

Example 16-18. Cancellation and chained continuations
private static void ShowContinuations()
{
 Task op = Task.Run(DoSomething);
 var cs = new CancellationTokenSource();
 Task onDone = op.ContinueWith(
 _ => Console.WriteLine("Never runs"),
 cs.Token);
 Task andAnotherThing = onDone.ContinueWith(
 _ => Console.WriteLine("Continuation's continuation"));
 cs.Cancel();
}

static void DoSomething()
{

 Thread.Sleep(1000);
 Console.WriteLine("Initial task finishing");
}

This creates a task that will call DoSomething, followed by a cancelable
continuation for that task (the Task in onDone), and then a final task
(andAnotherThing) that is a continuation for the first continuation. This
code cancels almost immediately, which is almost certain to happen before
the first task completes. The effect of this is that the final task runs before
the first completes. The final andAnotherThing task becomes runnable
when onDone completes, even if that completion was due to onDone
being canceled. Since there was a chain here—andAnotherThing is a
continuation for onDone, which is a continuation for op—it is a bit odd
that andAnotherThing ends up running before op has finished.
LazyCancellation changes the behavior so that the first continuation
will not be deemed to have completed until its antecedent completes,
meaning that the final continuation will run only after the first task has
finished.

There’s another mechanism for controlling how tasks execute: you can
specify a scheduler.

Schedulers
All thread-based tasks are executed by a TaskScheduler. By default,
you’ll get the TPL-supplied scheduler that runs work items via the thread
pool. However, there are other kinds of schedulers, and you can even write
your own.

The most common reason for selecting a nondefault scheduler is to handle
thread affinity requirements. The TaskScheduler class’s static
FromCurrentSynchroniza tion Context method returns a
scheduler based on the current synchronization context for whichever
thread you call the method from. This scheduler will execute all work via
that synchronization context. So, if you call
FromCurrentSynchronizationContext from a UI thread, the

resulting scheduler can be used to run tasks that can safely update the UI.
You would typically use this for a continuation—you can run some task-
based asynchronous work and then hook up a continuation that updates the
UI when that work is complete. Example 16-19 shows this technique in use
in the codebehind file for a window in a WPF application.

Example 16-19. Scheduling a continuation on the UI thread
public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 private static readonly HttpClient w = new();
 private readonly TaskScheduler _uiScheduler =
 TaskScheduler.FromCurrentSynchronizationContext();

 private void FetchButtonClicked(object sender, RoutedEventArgs
e)
 {
 string url = "https://endjin.com/";
 Task<string> webGetTask = w.GetStringAsync(url);

 webGetTask.ContinueWith(t =>
 {
 string webContent = t.Result;
 outputTextBox.Text = webContent;
 },
 _uiScheduler);
 }
}

This uses a field initializer to obtain the scheduler—the constructor for a UI
element runs on the UI thread, so this will get a scheduler for the
synchronization context for the UI thread. A click handler then downloads a
web page using the HttpClient class’s GetStringAsync. This runs
asynchronously, so it won’t block the UI thread, meaning that the
application will remain responsive while the download is in progress. The
method sets up a continuation for the task using an overload of
ContinueWith that takes a TaskScheduler. This ensures that when
the task that gets the content completes, the lambda passed to

ContinueWith runs on the UI thread, so it’s safe for it to access UI
elements.

TIP
While this works perfectly well, the await keyword described in the next chapter
provides a more straightforward solution to this particular problem.

The runtime libraries provide three built-in kinds of schedulers. There’s the
default one that uses the thread pool, and the one I just showed that uses a
synchronization context. The third is provided by a class called
ConcurrentExclusiveSchedulerPair, and as the name suggests,
this provides two schedulers, which it makes available through properties.
The ConcurrentScheduler property returns a scheduler that will run
tasks concurrently much like the default scheduler. The
ExclusiveScheduler property returns a scheduler that can be used to
run tasks one at a time, and it will temporarily suspend the other scheduler
while it does so. (This is reminiscent of the reader/writer synchronization
semantics I described earlier in the chapter—it allows exclusivity when
required but concurrency the rest of the time.)

Error Handling
A Task object indicates when its work has failed by entering the
Faulted state. There will always be at least one exception associated with
failure, but the TPL allows composite tasks—tasks that contain a number of
subtasks. This makes it possible for multiple failures to occur, and the root
task will report them all. Task defines an Exception property, and its
type is AggregateException. You may recall from Chapter 8 that as
well as inheriting the InnerException property from the base
Exception type, AggregateException defines an
InnerExceptions property that returns a collection of exceptions. This

is where you will find the complete set of exceptions that caused the task to
fault. (If the task was not a composite task, there will usually be just one.)

If you attempt to get the Result property or call Wait on a faulted task, it
will throw the same AggregateException as it would return from the
Exception property. A faulted task remembers whether you have used at
least one of these members, and if you have not yet done so, it considers the
exception to be unobserved. The TPL uses finalization to track faulted tasks
with unobserved exceptions, and if you allow such a task to become
unreachable, the TaskScheduler will raise its static
UnobservedTaskException event. This gives you one last chance to
do something about the exception, after which it will be lost.

Custom Threadless Tasks
Many I/O-based APIs return threadless tasks. You can do the same if you
want. The TaskCompletionSource<T> class provides a way to create
a Task<T> that does not have an associated method to run on the thread
pool and instead completes when you tell it to. There’s no nongeneric
TaskCompletionSource, but there doesn’t need to be. Task<T>
derives from Task, so you can just pick any type argument. By convention,
most developers use TaskCompletionSource<object?> when they
don’t need to provide a return value.

Suppose you’re using a class that does not provide a task-based API, and
you’d like to add a task-based wrapper. The SmtpClient class I used in
Example 16-12 supports the older event-based asynchronous pattern but not
the task-based one. Example 16-20 uses that API in conjunction with
TaskCompletionSource<object?> to provide a task-based
wrapper. (And, yes, there are two spellings of Canceled/ Cancelled in
there. The TPL consistently uses Canceled, but older APIs exhibit more
variety.)

Example 16-20. Using TaskCompletionSource<T>
public static class SmtpAsyncExtensions
{

 public static Task SendTaskAsync(this SmtpClient mailClient,
string from,
 string recipients, string subject,
string body)
 {
 var tcs = new TaskCompletionSource<object?>();

 void CompletionHandler(object s, AsyncCompletedEventArgs e)
 {
 // Check this is the notification for our SendAsync.
 if (!object.ReferenceEquals(e.UserState, tcs)) {
return; }
 mailClient.SendCompleted -= CompletionHandler;
 if (e.Canceled)
 {
 tcs.SetCanceled();
 }
 else if (e.Error != null)
 {
 tcs.SetException(e.Error);
 }
 else
 {
 tcs.SetResult(null);
 }
 };

 mailClient.SendCompleted += CompletionHandler;
 mailClient.SendAsync(from, recipients, subject, body, tcs);

 return tcs.Task;
 }
}

The SmtpClient notifies us that the operation is complete by raising an
event. The handler for this event first checks that the event corresponds to
our call to SendAsync and not some other operation that may have
already been in progress. It then detaches itself (so that it doesn’t run a
second time if something uses that same SmtpClient for further work).
Then it detects whether the operation succeeded, was canceled, or failed,
and calls the SetResult, SetCanceled, or SetException method,
respectively, on the TaskCompletionSource<object>. This will
cause the task to transition into the relevant state and will also take care of
running any continuations attached to that task. The completion source

makes the threadless Task object it creates available through its Task
property, which this method returns.

Parent/Child Relationships
If a thread-based task’s method creates a new thread-based task, then by
default, there will be no particular relationship between those tasks.
However, one of the Task Crea tionOptions flags is
AttachedToParent, and if you set this, the newly created task will be a
child of the task currently executing. The significance of this is that the
parent task won’t report completion until all its children have completed.
(Its own method also needs to complete, of course.) If any children fault,
the parent task will fault, and it will include all the children’s exceptions in
its own AggregateException.

You can also specify the AttachedToParent flag for a continuation. Be
aware that this does not make it a child of its antecedent task. It will be a
child of whichever task was running when ContinueWith was called to
create the continuation.

NOTE
Threadless tasks (e.g., most tasks representing I/O) often cannot be made children of
another task. If you’re creating one yourself through a
TaskCompletionSource<T>, you can do it because that class has a constructor
overload that accepts a TaskCreation Op tions. However, the majority of .NET
APIs that return tasks do not provide a way to request that the task be a child.

Parent/child relationships are not the only way of creating a task whose
outcome is based on multiple other items.

Composite Tasks
The Task class has static WhenAll and WhenAny methods. Each of these
has overloads that accept either a collection of Task objects or a collection

of Task<T> objects as the only argument. The WhenAll method returns
either a Task or a Task<T[]> that completes only when all of the tasks
provided in the argument have completed (and in the latter case, the
composite task produces an array containing each of the individual tasks’
results). The WhenAny method returns a Task<Task> or
Task<Task<T>> that completes as soon as the first task completes,
providing that task as the result.

As with a parent task, if any of the tasks that make up a task produced with
WhenAll fail, the exceptions from all of the failed tasks will be available
in the composite task’s AggregateException. (WhenAny does not
report errors. It completes as soon as the first task completes, and you must
inspect that to discover if it failed.)

You can attach a continuation to these tasks, but there’s a slightly more
direct route. Instead of creating a composite task with WhenAll or
WhenAny and then calling ContinueWith on the result, you can just call
the ContinueWhenAll or Continue WhenAny method of a task
factory. Again, these take a collection of Task or Task<T>, but they also
take a method to invoke as the continuation.

Other Asynchronous Patterns
Although the TPL provides the preferred mechanism for exposing
asynchronous APIs, .NET had been around for almost a decade before it
was added, so you will come across older approaches. The longest
established form is the Asynchronous Programming Model (APM). This
was introduced in .NET 1.0, so it is widely implemented, but its use is now
discouraged. With this pattern, methods come in pairs: one to start the work
and a second to collect the results when it is complete. Example 16-21
shows just such a pair from the Stream class in the System.IO
namespace, and it also shows the corresponding synchronous method.
(Code written today should use a task-based WriteAsync instead.)

Example 16-21. An APM pair and the corresponding synchronous method
public virtual IAsyncResult BeginWrite(byte[] buffer, int offset,
int count,
 AsyncCallback callback, object state)...
public virtual void EndWrite(IAsyncResult asyncResult)...

public abstract void Write(byte[] buffer, int offset, int count)...

Notice that the first three arguments of the BeginWrite method are
identical to those of the Write method. In the APM, the BeginXxx
method takes all of the inputs (i.e., any normal arguments and any ref
arguments but not out arguments, should any be present). The EndXxx
method provides any outputs, which means the return value, any ref
arguments (because those can pass information either in or out), and any
out arguments.

The BeginXxx method also takes two additional arguments: a delegate of
type AsyncCallback, which will be invoked when the operation
completes, and an argument of type object that accepts any object you
would like to associate with the operation (or null if you have no use for
this). This method also returns an IAsync Re sult, which represents the
asynchronous operation.

When your completion callback gets invoked, you can call the EndXxx
method, passing in the same IAsyncResult object returned by the
BeginXxx method, and this will provide the return value if there is one. If
the operation failed, the EndXxx method will throw an exception.

You can wrap APIs that use the APM with a Task. The TaskFactory
objects provided by Task and Task<T> provide FromAsync methods to
which you can pass a pair of delegates for the BeginXxx and EndXxx
methods, and you also pass any arguments that the BeginXxx method
requires. This will return a Task or Task<T> that represents the
operation.

Another common older pattern is the Event-based Asynchronous Pattern
(EAP). You’ve seen an example in this chapter—it’s what the
SmtpClient uses. With this pattern, a class provides a method that starts

the operation and a corresponding event that it raises when the operation
completes. The method and event usually have related names, such as
SendAsync and SendCompleted. An important feature of this pattern
is that the method captures the synchronization context and uses that to
raise the event, meaning that if you use an object that supports this pattern
in UI code, it effectively presents a single-threaded asynchronous model.
This makes it much easier to use than the APM, because you don’t need to
write any extra code to get back onto the UI thread when asynchronous
work completes.

There’s no automated mechanism for wrapping the EAP in a task, but as I
showed in Example 16-20, it’s not particularly hard to do.

There’s one more common pattern used in asynchronous code: the
awaitable pattern supported by the C# asynchronous language features (the
async and await keywords). As I showed in Example 16-16, you can
consume a TPL task directly with these features, but the language does not
recognize Task directly, and it’s possible to await things other than tasks.
You can use the await keyword with anything that implements a particular
pattern. I will show this in Chapter 17.

Cancellation
.NET defines a standard mechanism for canceling slow operations.
Cancelable operations take an argument of the type
CancellationToken, and if you set this into a canceled state, the
operation will stop early if possible instead of running to completion.

The CancellationToken type itself does not offer any methods to
initiate cancellation—the API is designed so that you can tell operations
when you want them to be canceled without giving them power to cancel
whatever other operations you have associated with the same
CancellationToken. The act of cancellation is managed through a
separate object, CancellationTokenSource. As the name suggests,
you can use this to get hold of any number of CancellationToken

instances. If you call the CancellationTokenSource object’s
Cancel method, that sets all of the associated CancellationToken
instances into a canceled state.

Some of the synchronization mechanisms I described earlier can be passed
a CancellationToken. (The ones that derive from WaitHandle
cannot, because the underlying Windows primitives do not support .NET’s
cancellation model. Monitor also does not support cancellation, but many
newer APIs do.) It’s also common for task-based APIs to take a cancellation
token, and the TPL itself also offers overloads of the StartNew and
ContinueWith methods that take them. If the task has already started to
run, there’s nothing the TPL can do to cancel it, but if you cancel a task
before it begins to run, the TPL will take it out of the scheduled task queue
for you. If you want to be able to cancel your task after it starts running,
you’ll need to write code in the body of your task that inspects the
CancellationToken and abandons the work if its
IsCancellationRequested property is true.

Cancellation support is not ubiquitous, because it’s not always possible.
Some operations simply cannot be canceled. For example, once a message
has been sent out over the network, you can’t unsend it. Some operations
allow work to be canceled up until some point of no return has been
reached. (If a message is queued up to be sent but hasn’t actually been sent,
then it might not be too late to cancel, for example.) This means that even
when cancellation is offered, it might not do anything. So, when you use
cancellation, you need to be prepared for it not to work.

Parallelism
The runtime libraries include some classes that can work with collections of
data concurrently on multiple threads. There are three ways to do this: the
Parallel class, Parallel LINQ, and TPL Dataflow.

The Parallel Class
The Parallel class offers four static methods: For, ForEach,
ForEachAsync, and Invoke. The last of those takes an array of
delegates and executes all of them, potentially in parallel. (Whether it
decides to use parallelism depends on various factors such as the number of
hardware threads the computer has, how heavily loaded the system is, and
how many items you want it to process.) The For and ForEach methods
mimic the C# loop constructs of the same names, but they will also
potentially execute iterations in parallel. ForEachAsync, which is new in
.NET 6.0, also mimics a foreach, but it provides better support for
asynchronous operation, including the ability to work with an
IAsyncEnumerable<T> (like await foreach) or for each iteration
to perform asynchronous operations (equivalent to using await in the
body of a foreach loop).

Example 16-22 illustrates the use of Parallel.For in code that
performs a convolution of two sets of samples. This is a highly repetitive
operation commonly used in signal processing. (In practice, a fast Fourier
transform offers a more efficient way to perform this work unless the
convolution kernel is small, but the complexity of that code would have
obscured the main subject here, the Parallel class.) It produces one
output sample for each input sample. Each output sample is produced by
calculating the sum of a series of pairs of values from the two inputs,
multiplied together. For large data sets, this can be time consuming, so it is
the sort of work you might want to speed up by spreading it across multiple
processors. Each individual output sample’s value can be calculated
independently of all the others, so it is a good candidate for parallelization.

Example 16-22. Parallel convolution
static float[] ParallelConvolution(float[] input, float[] kernel)
{
 float[] output = new float[input.Length];
 Parallel.For(0, input.Length, i =>
 {
 float total = 0;
 for (int k = 0; k < Math.Min(kernel.Length, i + 1); ++k)

 {
 total += input[i - k] * kernel[k];
 }
 output[i] = total;
 });

 return output;
}

The basic structure of this code is very similar to a pair of nested for
loops. I’ve simply replaced the outer for loop with a call to
Parallel.For. (I’ve not attempted to parallelize the inner loop—if you
make each individual step trivial, Parallel.For will spend more of its
time in housekeeping work than it does running your code.)

The first argument, 0, sets the initial value of the loop counter, and the
second sets the upper limit. The final argument is a delegate that will be
invoked once for each value of the loop counter, and the calls will occur
concurrently if the Parallel class’s heuristics tell it that this is likely to
produce a speedup as a result of the work running in parallel. Running this
method with large data sets on a multicore machine causes all of the
available hardware threads to be used to full capacity.

It may be possible to get better performance by partitioning the work in
more cache-friendly ways—naive parallelization can give the impression of
high performance by maxing out all your CPU cores while delivering
suboptimal throughput. However, there is a trade-off between complexity
and performance, and the simplicity of the Parallel class can often
provide worthwhile wins for relatively little effort.

Parallel LINQ
Parallel LINQ is a LINQ provider that works with in-memory information,
much like LINQ to Objects. The System.Linq namespace makes this
available as an extension method called AsParallel defined for any
IEnumerable<T> (by the Parallel Enumera ble class). This returns
a ParallelQuery<T>, which supports the usual LINQ operators.

Any LINQ query built this way provides a ForAll method, which takes a
delegate. When you call this, it invokes the delegate for all of the items that
the query produces, and it will do so in parallel on multiple threads where
possible.

TPL Dataflow
TPL Dataflow is a runtime library feature that lets you construct a graph of
objects that perform some kind of processing on information that flows
through them. You can tell the TPL which of these nodes needs to process
information sequentially and which are happy to work on multiple blocks of
data simultaneously. You push data into the graph, and the TPL will then
manage the process of providing each node with blocks to process, and it
will attempt to optimize the level of parallelism to match the resources
available on your computer.

The dataflow API is in the System.Threading.Tasks.Dataflow
namespace. (It’s built into .NET Core and .NET; on .NET Framework
you’ll need to add a reference to a NuGet package, also called
System.Threading.Tasks.Dataflow.) It is large and complex and
could have a whole chapter to itself. Sadly, this makes it beyond the scope
of this book. I mention it because it’s worth being aware of for certain kinds
of work.

Summary
Threads provide the ability to execute multiple pieces of code
simultaneously. On a computer with multiple CPU execution units (i.e.,
multiple hardware threads), you can exploit this potential for parallelism by
using multiple software threads. You can create new software threads
explicitly with the Thread class, or you can use either the thread pool or a
parallelization mechanism, such as the Parallel class or Parallel LINQ,
to determine automatically how many threads to use to run the work your
application supplies. If multiple threads need to use and modify shared data

structures, you will need to use the synchronization mechanisms offered by
.NET to ensure that the threads can coordinate their work correctly.

Threads can also provide a way to execute multiple concurrent operations
that do not need the CPU the whole time (e.g., waiting for a response from
an external service), but it is often more efficient to perform such work with
asynchronous APIs (where available). The Task Parallel Library (TPL)
provides abstractions that are useful for both kinds of concurrency. It can
manage multiple work items in the thread pool, with support for combining
multiple operations and handling potentially complex error scenarios, and
its Task abstraction can also represent inherently asynchronous operations.
The next chapter describes C# language features that greatly simplify
working with tasks.

1 I’m using the word state here broadly. I just mean information stored in variables and objects.

2 At the time of this writing, the documentation does not offer read-only thread safety
guarantees for HashSet<T> and SortedSet<T>. Nonetheless, I have been assured by
Microsoft that these also support concurrent reads.

3 On machines with just one hardware thread, when SpinLock enters its loop, it tells the OS
scheduler that it wants to yield control of the CPU so that other threads (hopefully including
the one that currently has the lock) can make progress. SpinLock sometimes does this even
on multicore systems to avoid some subtle problems that excessive spinning can cause.

Chapter 17. Asynchronous
Language Features

C# provides language-level support for using and implementing
asynchronous methods. Asynchronous APIs are often the most efficient way
to use certain services. For example, most I/O is handled asynchronously
inside the OS kernel, because most peripherals, such as disk controllers or
network adapters, are able to do the majority of their work autonomously.
They need the CPU to be involved only at the start and end of each
operation.

Although many of the services offered by operating systems are
intrinsically asynchronous, developers often choose to use them through
synchronous APIs (i.e., ones that do not return until the work is complete).
This can waste resources, because they block the thread until the I/O
completes. Threads have overheads, and if you’re aiming to get the best
performance in a highly concurrent application (e.g., a web app serving
large numbers of users), it’s usually best to have a relatively small number
of OS threads. Ideally, your application would have no more OS threads
than you have hardware threads, but that’s optimal only if you can ensure
that threads only ever block when there’s no outstanding work for them to
do. (Chapter 16 described the difference between OS threads and hardware
threads.) The more threads that get blocked inside synchronous API calls,
the more threads you’ll need to handle your workload, reducing efficiency.
In performance-sensitive code, asynchronous APIs are useful, because
instead of wasting resources by forcing a thread to sit and wait for I/O to
complete, a thread can kick off the work and then do something else
productive in the meantime.

The problem with asynchronous APIs is that they can be significantly more
complex to use than synchronous ones, particularly if you need to
coordinate multiple related operations and deal with errors. This was often

why developers chose the less efficient synchronous alternatives back in the
days before any mainstream programming languages provided built-in
support. In 2012, C# and Visual Basic brought such features out of the
research labs, and since then many other popular languages have added
analogous features (most notably JavaScript, which acquired a very similar-
looking syntax in 2016). The asynchronous features in C# make it possible
to write code that uses efficient asynchronous APIs while retaining most of
the simplicity of code that uses simpler synchronous APIs.

These language features are also useful in some scenarios in which
maximizing throughput is not the primary performance goal. With client-
side code, it’s important to avoid blocking the UI thread to maintain
responsiveness, and asynchronous APIs provide one way to do that. The
language support for asynchronous code can handle thread affinity issues,
which greatly simplifies the job of writing highly responsive UI code.

Asynchronous Keywords: async and await
C# presents its support for asynchronous code through two keywords:
async and await. The first of these is not meant to be used on its own.
You put the async keyword in a method’s declaration, and this tells the
compiler that you intend to use asynchronous features in the method. If this
keyword is not present, you are not allowed to use the await keyword.

This is arguably redundant—the compiler produces an error if you attempt
to use await without async. If it knows when a method’s body is trying
to use asynchronous features, why do we need to tell it explicitly? There are
two reasons. First, as you’ll see, these features radically change the
behavior of the code the compiler generates, so it’s useful for anyone
reading the code to see a clear indication that the method behaves
asynchronously. Second, await wasn’t always a keyword in C#, so
developers were once free to use it as an identifier. Perhaps Microsoft could
have designed the grammar for await so that it acts as a keyword only in
very specific contexts, enabling you to continue to use it as an identifier in
all other scenarios, but the C# team decided to take a slightly more coarse-

grained approach: you cannot use await as an identifier inside an async
method, but it’s a valid identifier anywhere else.

NOTE
The async keyword does not change the signature of the method. It determines how
the method is compiled, not how it is used.

The program entry point is an interesting case. Normally, the Main method
returns either void or int, but you can also return either a Task or
Task<int>. The .NET runtime doesn’t support asynchronous entry
points, so if you use either of these task return types, the C# compiler will
generate a hidden method that acts as the real entry point, which calls your
asynchronous Main and then blocks until the task it returns completes. This
makes it possible to make the Main method of a C# program async
(although the compiler will generate the wrapper when you use these return
types even if you don’t make the method async). If you use C# 10.0’s top-
level statements to avoid having to declare Main explicitly, there’s no place
to put the async keyword or a return type, so this is the one case where the
compiler deduces whether a method is asynchronous from whether you use
await. It bases the program entry point’s return type on whether you
return anything.

So the async keyword simply declares your intention to use the await
keyword. (While you mustn’t use await without async, it’s not an error
to apply the async keyword to a method that doesn’t use await.
However, it would serve no purpose, so the compiler will generate a
warning if you do this.) Example 17-1 shows a fairly typical example. This
uses the HttpClient class to request just the headers for a particular
resource (using the standard HEAD verb that the HTTP protocol defines for
this purpose). It then displays the results in a UI control—this method is
part of the codebehind for a UI that includes a TextBox named
headerListTextBox.

Example 17-1. Using async and await when fetching HTTP headers
// Note: as you'll see later, async methods usually should not be
void
private async void FetchAndShowHeaders(string url,
IHttpClientFactory cf)
{
 using (HttpClient w = cf.CreateClient())
 {
 var req = new HttpRequestMessage(HttpMethod.Head, url);
 HttpResponseMessage response =
 await w.SendAsync(req,
HttpCompletionOption.ResponseHeadersRead);

 headerListTextBox.Text = response.Headers.ToString();
 }
}

This code contains a single await expression, shown in bold. You use the
await keyword in an expression that may take some time to produce a
result, and it indicates that the remainder of the method should not execute
until that operation is complete. This sounds a lot like what a blocking,
synchronous API does, but the difference is that an await expression does
not block the thread—this code is not quite what it seems.

The HttpClient class’s SendAsync method returns a
Task<HttpResponseMessage>, and you might be wondering why we
wouldn’t just use its Result property. As you saw in Chapter 16, if the
task is not complete, this property blocks the thread until the result is
available (or the task fails, in which case it will throw an exception instead).
However, this is a dangerous thing to do in a UI application: if you block
the UI thread by trying to read the Result of an incomplete task, you will
prevent progress of any operations that need to run on that thread. Since a
lot of the work that UI applications do needs to happen on the UI thread,
blocking that thread in this way more or less guarantees that deadlock will
occur sooner or later, causing the application to freeze. So don’t do that!

Although the await expression in Example 17-1 does something that is
logically similar to reading Result, it works very differently. If the task’s
result is not available immediately, the await keyword does not make the

thread wait, despite what its name suggests. Instead, it causes the containing
method to return. You can use a debugger to verify that
FetchAndShowHeaders returns immediately. For example, if I call that
method from the button click event handler shown in Example 17-2, I can
put a breakpoint on the Debug.WriteLine call in that handler and
another breakpoint on the code in Example 17-1 that will update the
headerListTextBox.Text property.

Example 17-2. Calling the asynchronous method
private void fetchHeadersButton_Click(object sender,
RoutedEventArgs e)
{
 FetchAndShowHeaders("https://endjin.com/", this.clientFactory);
 Debug.WriteLine("Method returned");
}

Running this in the debugger, I find that the code hits the breakpoint on the
last statement of Example 17-2 before it hits the breakpoint on the final
statement of Example 17-1. In other words, the section of Example 17-1
that follows the await expression runs after the method has returned to its
caller. Evidently, the compiler is somehow arranging for the remainder of
the method to be run via a callback that occurs once the asynchronous
operation completes.

NOTE
Visual Studio’s debugger plays some tricks when you debug asynchronous methods to
enable you to step through them as though they were normal methods. This is usually
helpful, but it can sometimes conceal the true nature of execution. The debugging steps I
just described were contrived to defeat Visual Studio’s attempts to be clever and instead
to reveal what is really happening.

Notice that the code in Example 17-1 expects to run on the UI thread
because it modifies the text box’s Text property toward the end.
Asynchronous APIs do not necessarily guarantee to notify you of
completion on the same thread on which you started the work—in fact,
most won’t. Despite this, Example 17-1 works as intended, so as well as

converting half of the method to a callback, the await keyword is
handling thread affinity issues for us.

The C# compiler evidently performs some major surgery on your code each
time you use the await keyword. In older versions of C#, if you wanted to
use this asynchronous API and then update the UI, you would need to have
written something like Example 17-3. This uses a technique I showed in
Chapter 16: it sets up a continuation for the task returned by SendAsync,
using a TaskScheduler to ensure that the continuation’s body runs on
the UI thread.

Example 17-3. Manual asynchronous coding
private void OldSchoolFetchHeaders(string url, IHttpClientFactory
cf)
{
 HttpClient w = cf.CreateClient();
 var req = new HttpRequestMessage(HttpMethod.Head, url);

 var uiScheduler =
TaskScheduler.FromCurrentSynchronizationContext();
 w.SendAsync(req, HttpCompletionOption.ResponseHeadersRead)
 .ContinueWith(sendTask =>
 {
 try
 {
 HttpResponseMessage response = sendTask.Result;
 headerListTextBox.Text =
response.Headers.ToString();
 }
 finally
 {
 w.Dispose();
 }
 },
 uiScheduler);
}

This is a reasonable way to use the TPL directly, and it has a similar effect
to Example 17-1, although it’s not an exact representation of how the C#
compiler transforms the code. As I’ll show later, await uses a pattern that
is supported by, but does not require, Task or Task<T>. It also generates
code that handles early completion (where the task has already finished by

the time you’re ready to wait for it) far more efficiently than Example 17-3.
But before I show the details of what the compiler does, I want to illustrate
some of the problems it solves for you, which is best done by showing the
kind of code you might have written back before this language feature
existed.

My current example is pretty simple, because it involves only one
asynchronous operation, but aside from the two steps I’ve already discussed
—setting up some kind of completion callback and ensuring that it runs on
the correct thread—I’ve also had to deal with the using statement that was
in Example 17-1. Example 17-3 can’t use the using keyword, because we
want to dispose the HttpClient object only after we’ve finished with it.
Calling Dispose shortly before the outer method returns would not work,
because we need to be able to use the object when the continuation runs,
and that will typically happen a fair bit later. So I need to create the object
in one method (the outer one) and then dispose of it in a different method
(the nested one). And because I’m calling Dispose by hand, it’s now my
problem to deal with exceptions, so I’ve had to wrap all of the code I
moved into the callback with a try block and call Dispose in a
finally block. (In fact, I’ve not even done a comprehensive job—in the
unlikely event that either the HttpRequestMessage constructor or the
call that retrieves the task scheduler were to throw an exception, the
HttpClient would not get disposed. I’m handling only the case where
the HTTP operation itself fails.)

Example 17-3 has used a task scheduler to arrange for the continuation to
run via the SynchronizationContext that was current when the
work started. This ensures that the callback occurs on the correct thread to
update the UI. The await keyword can take care of that for us.

Execution and Synchronization Contexts
When your program’s execution reaches an await expression for an
operation that doesn’t complete immediately, the code generated for that
await will ensure that the current execution context has been captured. (It

1

might not have to do much—if this is not the first await to block in this
method, and if the context hasn’t changed since, it will have been captured
already.) When the asynchronous operation completes, the remainder of
your method will be executed through the execution context.

As I described in Chapter 16, the execution context handles certain
contextual information that needs to flow when one method invokes another
(even when it does so indirectly). But there’s another kind of context that
we may be interested in, particularly when writing UI code: the
synchronization context (which was also described in Chapter 16).

While all await expressions capture the execution context, the decision of
whether to flow synchronization context as well is controlled by the type
being awaited. If you await for a Task, the synchronization context will
also be captured by default. Tasks are not the only thing you can await,
and I’ll describe how types can support await in the section “The await
Pattern”.

Sometimes, you might want to avoid getting the synchronization context
involved. If you want to perform asynchronous work starting from a UI
thread, but you have no particular need to remain on that thread, scheduling
every continuation through the synchronization context is unnecessary
overhead. If the asynchronous operation is a Task or Task<T> (or the
equivalent value types, ValueTask or ValueTask<T>), you can declare
that you don’t want this by calling the ConfigureAwait method passing
false. This returns a different representation of the asynchronous
operation, and if you await that instead of the original task, it will ignore
the current Syn chr oni zat ion Con text if there is one. (There’s no
equivalent mechanism for opting out of the execution context.) Example
17-4 shows how to use this.

Example 17-4. ConfigureAwait
private async void OnFetchButtonClick(object sender,
RoutedEventArgs e)
{
 using (HttpClient w = this.clientFactory.CreateClient())
 using (Stream f = File.Create(fileTextBox.Text))

2

 {
 Task<Stream> getStreamTask =
w.GetStreamAsync(urlTextBox.Text);
 Stream getStream = await
getStreamTask.ConfigureAwait(false);

 Task copyTask = getStream.CopyToAsync(f);
 await copyTask.ConfigureAwait(false);
 }
}

This code is a click handler for a button, so it initially runs on a UI thread. It
retrieves the Text property from a couple of text boxes. Then it kicks off
some asynchronous work—fetching the content for a URL and copying the
data into a file. It does not use any UI elements after fetching those two
Text properties, so it doesn’t matter if the remainder of the method runs on
some separate thread. By passing false to ConfigureAwait and
waiting on the value it returns, we are telling the TPL that we are happy for
it to use whatever thread is convenient to notify us of completion, which in
this case will most likely be a thread pool thread. This will enable the work
to complete more efficiently and more quickly, because it avoids getting the
UI thread involved unnecessarily after each await.

Not all asynchronous APIs return Task or Task<T>. For example, various
asynchronous APIs introduced to Windows as part of UWP (an API for
building desktop and tablet applications) return an
IAsyncOperation<T> instead of Task<T>. This is because UWP is
not .NET-specific, and it has its own runtime-independent representation for
asynchronous operations that can also be used from C++ and JavaScript.
This interface is conceptually similar to TPL tasks, and it supports the await
pattern, meaning you can use await with these APIs. However, it does not
provide Con fig ure Awa it. If you want to do something similar to
Example 17-4 with one of these APIs, you can use the AsTask extension
method that wraps an IAsyncOperation<T> as a Task<T>, and you
can call ConfigureAwait on that task instead.

TIP
If you are writing libraries, then in most cases you should call
ConfigureAwait(false) anywhere you use await. This is because continuing
via the synchronization context can be expensive, and in some cases it can introduce the
possibility of deadlock occurring. The only exceptions are when you are doing
something that positively requires the synchronization context to be preserved, or you
know for certain that your library will only ever be used in application frameworks that
do not set up a synchronization context. (E.g., ASP.NET Core applications do not use
synchronization contexts, so it generally doesn’t matter whether or not you call
ConfigureAwait(false) in those.)

Example 17-1 contained just one await expression, and even that turned
out to be fairly complex to reproduce with classic TPL programming.
Example 17-4 contains two, and achieving equivalent behavior without the
aid of the await keyword would require rather more code, because
exceptions could occur before the first await, after the second, or
between, and we’d need to call Dispose on the HttpClient and
Stream in any of those cases (as well as in the case where no exception is
thrown). However, things can get considerably more complex than that
once flow control gets involved.

Multiple Operations and Loops
Suppose that instead of fetching headers, or just copying the HTTP
response body to a file, I wanted to process the data in the body. If the body
is large, retrieving it is an operation that could require multiple, slow steps.
Example 17-5 fetches a web page gradually.

Example 17-5. Multiple asynchronous operations
private async void FetchAndShowBody(string url, IHttpClientFactory
cf)
{
 using (HttpClient w = cf.CreateClient())
 {
 Stream body = await w.GetStreamAsync(url);
 using (var bodyTextReader = new StreamReader(body))
 {

 while (!bodyTextReader.EndOfStream)
 {
 string? line = await
bodyTextReader.ReadLineAsync();
 bodyTextBox.AppendText(line);
 bodyTextBox.AppendText(Environment.NewLine);
 await Task.Delay(TimeSpan.FromMilliseconds(10));
 }
 }
 }
}

This now contains three await expressions. The first kicks off an HTTP
GET request, and that operation will complete when we get the first part of
the response, but the response might not be complete yet—there may be
several megabytes of content to come. This code presumes that the content
will be text, so it wraps the Stream object that comes back in a
StreamReader, which presents the bytes in a stream as text. It then uses
that wrapper’s asynchronous ReadLineAsync method to read text a line
at a time from the response. Because data tends to arrive in chunks, reading
the first line may take a while, but the next few calls to this method will
probably complete immediately, because each network packet we receive
will typically contain multiple lines. But if the code can read faster than
data arrives over the network, eventually it will have consumed all the lines
that appeared in the first packet, and it will then take a while before the next
line becomes available. So the calls to ReadLineAsync will return some
tasks that are slow and some that complete immediately. The third
asynchronous operation is a call to Task.Delay. I’ve added this to slow
things down so that I can see the data arriving gradually in the UI.
Task.Delay returns a Task that completes after the specified delay, so
this provides an asynchronous equivalent to Thread.Sleep.
(Thread.Sleep blocks the calling thread, but await Task.Delay
introduces a delay without blocking the thread.)

3

NOTE
I’ve put each await expression in a separate statement, but this is not a requirement.
It’s perfectly legal to write expressions of the form (await t1) + (await t2).
(You can omit the parentheses if you like, because await has higher precedence than
addition; I prefer the visual emphasis they provide here.)

I’m not going to show you the complete pre-async equivalent of Example
17-5, because it would be enormous, but I’ll describe some of the problems.
First, we’ve got a loop with a body that contains two await blocks. To
produce something equivalent with Task and callbacks means building
your own loop constructs, because the code for the loop ends up being split
across three methods: the one that starts the loop running (which would be
the nested method acting as the continuation callback for
GetStreamAsync) and the two callbacks that handle the completion of
ReadLineAsync and Task.Delay. You can solve this by having a
local method that starts a new iteration and calling that from two places: the
point at which you want to start the loop and again in the Task.Delay
continuation to kick off the next iteration. Example 17-6 shows this
technique, but it illustrates just one aspect of what we’re expecting the
compiler to do for us; it is not a complete alternative to Example 17-5.

Example 17-6. An incomplete manual asynchronous loop
private void IncompleteOldSchoolFetchAndShowBody(
 string url, IHttpClientFactory cf)
{
 HttpClient w = cf.CreateClient();
 var uiScheduler =
TaskScheduler.FromCurrentSynchronizationContext();
 w.GetStreamAsync(url).ContinueWith(getStreamTask =>
 {
 Stream body = getStreamTask.Result;
 var bodyTextReader = new StreamReader(body);

 StartNextIteration();

 void StartNextIteration()
 {
 if (!bodyTextReader.EndOfStream)

 {

bodyTextReader.ReadLineAsync().ContinueWith(readLineTask =>
 {
 string? line = readLineTask.Result;

 bodyTextBox.AppendText(line);

bodyTextBox.AppendText(Environment.NewLine);

 Task.Delay(TimeSpan.FromMilliseconds(10))
 .ContinueWith(
 _ => StartNextIteration(),
uiScheduler);
 },
 uiScheduler);
 }
 };
 },
 uiScheduler);
}

This code works after a fashion, but it doesn’t even attempt to dispose any
of the resources it uses. There are several places in which failure could
occur, so we can’t just put a single using block or try/finally pair in
to clean things up. And even without that additional complication, the code
is barely recognizable—it’s not obvious that this is attempting to perform
the same basic operations as Example 17-5. With proper error handling, it
would be completely unreadable. In practice, it would probably be easier to
take a different approach entirely, writing a class that implements a state
machine to keep track of where the work has gotten to. That will probably
make it easier to produce code that operates correctly, but it’s not going to
make it any easier for someone reading your code to understand that what
they’re looking at is really little more than a loop at heart.

No wonder so many developers used to prefer synchronous APIs. But C#
lets us write asynchronous code that has almost exactly the same structure
as the synchronous equivalent, giving us all of the performance and
responsiveness benefits of asynchronous code without the pain. That’s the
main benefit of async and await in a nutshell.

Consuming and producing asynchronous sequences
Example 17-5 showed a while loop, and as you’d expect, you’re free to
use other kinds of loops such as for and foreach in async methods.
However, foreach can introduce a subtle problem: What happens if the
collection you iterate over needs to perform slow operations? This doesn’t
arise for collection types such as arrays or HashSet<T>, where all the
collection’s items are already in memory, but what about the
IEnumerable<string> returned by File.ReadLines? That’s an
obvious candidate for asynchronous operation, but in practice, it will just
block your thread each time it needs to wait for more data to arrive from
storage. And that’s because the pattern expected by foreach doesn’t
support asynchronous operation. The heart of the problem is that the
method foreach will call to move to the next item—it expects the
enumerator (often, but not always an implementation of
IEnumerator<T>) to provide a MoveNext method with a signature like
the one shown in Example 17-7.

Example 17-7. The non-async-friendly IEnumerator.MoveNext
bool MoveNext();

If more items are forthcoming but are not yet available, collections have no
choice but to block the thread, not returning from MoveNext until the data
arrives. Fortunately, C# recognizes a variation on this pattern. The runtime
libraries define a pair of types, shown in Example 17-8 (first introduced in
Chapter 5), that embody this new pattern. As with the synchronous
IEnumerable<T>, foreach doesn’t strictly require these exact types.
Anything offering members of the same signature will work.

Example 17-8. IAsyncEnumerable<T> and
IAsyncEnumerator<T>
public interface IAsyncEnumerable<out T>
{
 IAsyncEnumerator<T> GetAsyncEnumerator(
 CancellationToken cancellationToken = default);
}

public interface IAsyncEnumerator<out T> : IAsyncDisposable

4

{
 T Current { get; }

 ValueTask<bool> MoveNextAsync();
}

Conceptually this is identical to the synchronous pattern: an asynchronous
foreach will ask the collection object for an enumerator and will
repeatedly ask it to advance to the next item, executing the loop body with
the value returned by Current each time until the enumerator indicates
that there are no more items. The main difference is that the synchronous
MoveNext has been replaced by MoveNextAsync, which returns an
awaitable ValueTask<T>. (The IAsyncEnumerable<T> interface
also provides support for passing in a cancellation token. An asynchronous
foreach won’t use that itself directly, but you can use this indirectly
through the WithCancellation extension method for
IAsyncEnumerable<T>.)

To consume an enumerable source that implements this pattern, you must
put the await keyword in front of the foreach. C# can also help you to
implement this pattern: Chapter 5 showed how you can use the yield
keyword in an iterator method to implement IEnumerable<T>, but you
can also return an IAs ync Enu mer abl e<T>. Example 17-9 shows both
implementation and consumption of IAsyncEnumerable<T> in action.

Example 17-9. Consuming and producing asynchronous enumerables
await foreach (string line in ReadLinesAsync(args[0]))
{
 Console.WriteLine(line);
}

static async IAsyncEnumerable<string> ReadLinesAsync(string path)
{
 using (var bodyTextReader = new StreamReader(path))
 {
 while (!bodyTextReader.EndOfStream)
 {
 string? line = await bodyTextReader.ReadLineAsync();
 if (line is not null) { yield return line; }
 }

 }
}

Since this language support makes creating and using
IAsyncEnumerable<T> very similar to working with
IEnumerable<T>, you might be wondering whether there are
asynchronous versions of the various LINQ operators described in Chapter
10. Unlike LINQ to Objects, IAsyncEnumerable<T> implementations
are not in the parts of the runtime libraries built into .NET or .NET
Standard, but Microsoft does supply a suitable NuGet package. If you add a
reference to the System.Linq.Async package, the usual using
System.Linq; declaration will make all the LINQ operators available
on IAsyncEnumerable<T> expressions.

While we’re looking at asynchronous equivalents of widely implemented
types, we should look at IAsyncDisposable.

Asynchronous disposal
As Chapter 7 described, the IDisposable interface is implemented by
types that need to perform some sort of cleanup promptly, such as closing
an open handle, and there is language support in the form of using
statements. But what if the cleanup involves potentially slow work, such as
flushing data out to disk? .NET Core 3.1, .NET, and .NET Standard 2.1
provide the IAsyncDisposable interface for this scenario. As Example
17-10 shows, you can put the await keyword in front of a using
statement to consume an asynchronously disposable resource. (You can also
put await in front of a using declaration.)

Example 17-10. Consuming and implementing IAsyncDisposable
await using (DiagnosticWriter w = new(@"c:\temp\log.txt"))
{
 await w.LogAsync("Test");
}

class DiagnosticWriter : IAsyncDisposable
{
 private StreamWriter? _sw;

 public DiagnosticWriter(string path)
 {
 _sw = new StreamWriter(path);
 }

 public Task LogAsync(string message)
 {
 if (_sw is null)
 { throw new
ObjectDisposedException(nameof(DiagnosticWriter)); }
 return _sw.WriteLineAsync(message);
 }

 public async ValueTask DisposeAsync()
 {
 if (_sw != null)
 {
 await LogAsync("Done");
 await _sw.DisposeAsync();
 _sw = null;
 }
 }
}

NOTE
Although the await keyword appears in front of the using statement, the potentially
slow operation that it awaits happens when execution leaves the using statement’s
block. This is unavoidable since using statements and declarations effectively hide the
call to Dispose.

Example 17-10 also shows how to implement IAsyncDisposable.
Whereas the synchronous IDisposable defines a single Dispose
method, its asynchronous counterpart defines a single DisposeAsync
method that returns a ValueTask. This enables us to annotate the method
with async. An await using statement will ensure that the task
returned by DisposeAsync completes at the end of its block before
execution continues. You may have noticed that we’ve used a few different
return types for async methods. Iterators are a special case, just as they are

in synchronous code, but what about these methods that return various task
types?

Returning a Task
Any method that uses await could itself take a certain amount of time to
run, so as well as being able to call asynchronous APIs, you will usually
also want to present an asynchronous public face. The C# compiler enables
methods marked with the async keyword to return an object that
represents the asynchronous work in progress. Instead of returning void,
you can return a Task, or you can return a Task<T>, where T is any type.
This enables callers to discover the status of the work your method
performs, the opportunity to attach continuations, and if you use Task<T>,
a way to get the result. Alternatively, you can return the value type
equivalents, ValueTask and ValueTask<T>. Returning any of these
means that if your method is called from another async method, it can use
await to wait for your method to complete and, if applicable, to collect its
result.

Returning a task is almost always preferable to void when using async
because with a void return type, there’s no way for callers to know when
your method has really finished, or to discover when it throws an exception.
(Asynchronous methods can continue to run after returning—in fact, that’s
the whole point—so by the time you throw an exception, the original caller
will probably not be on the stack.) By returning a task object, you provide
the compiler with a way to make exceptions available and, where
applicable, a way to provide a result.

Returning a task is so trivially easy that there’s very little reason not to. To
modify the method in Example 17-5 to return a task, I only need to make a
single change. I make the return type Task instead of void, as shown in
Example 17-11, and the rest of the code can remain exactly the same.

Example 17-11. Returning a Task
private async Task FetchAndShowBody(string url, IHttpClientFactory
cf)

// ...as before

The compiler automatically generates the code required to produce a Task
object (or a ValueTask, if you use that as your return type) and set it into
a completed or faulted state when the method either returns or throws an
exception. A return type of Task is the asynchronous equivalent of void,
since the Task produces no result when it completes (which is why we
don’t need to add a return statement to this method even though it now
has a return type of Task). And if you want to return a result from your
task, that’s also easy. Make the return type Task<T> or ValueTask<T>,
where T is your result type, and then you can use the return keyword as
though your method were a normal, non-async method, as Example 17-12
shows.

Example 17-12. Returning a Task<T>
public static async Task<string?> GetServerHeader(
 string url, IHttpClientFactory cf)
{
 using (HttpClient w = cf.CreateClient())
 {
 var request = new HttpRequestMessage(HttpMethod.Head, url);
 HttpResponseMessage response = await w.SendAsync(
 request, HttpCompletionOption.ResponseHeadersRead);

 string? result = null;
 IEnumerable<string>? values;
 if (response.Headers.TryGetValues("Server", out values))
 {
 result = values.FirstOrDefault();
 }
 return result;
 }
}

This fetches HTTP headers asynchronously in the same way as Example
17-1, but instead of displaying the results, this picks out the value of the
first Server: header and makes that the result of the Task<string?>
that this method returns. (It needs to be a nullable string because the header
might not be present.) As you can see, the return statement just returns a
string?, even though the method’s return type is Task<string?>.

The compiler generates code that completes the task and arranges for that
string to be the result. With either a Task or Task<T> return type, the
generated code produces a task similar to the kind you would get using
Task Com ple tio nSo urc e<T>, as described in Chapter 16.

NOTE
Just as the await keyword can use any asynchronous method that fits a particular
pattern (described later), C# offers the same flexibility when it comes to implementing
an asynchronous method. You are not limited to Task, Task<T>, ValueTask, and
ValueTask<T>. You can return any type that meets two conditions: it must be
annotated with the AsyncMethodBuilder attribute, identifying a class that the
compiler can use to manage the progress and completion of the task, and it must also
offer a GetAwaiter method that returns a type implementing the
ICriticalNotifyCompletion interface.

There’s very little downside to returning one of the built-in task types.
Callers are not obliged to do anything with it, so your method will be just as
easy to use as a void method but with the added advantage that a task is
available to callers that want one. About the only reason for returning void
would be if some external constraint forces your method to have a
particular signature. For example, most event handlers are required to have
a return type of void—that’s why some of my earlier examples did it. But
unless you are forced to use it, void is not a recommended return type for
an asynchronous method.

Applying async to Nested Methods
In the examples shown so far, I have applied the async keyword to
ordinary methods. You can also use it on anonymous functions (either
anonymous methods or lambdas) and local functions. For example, if
you’re writing a program that creates UI elements programmatically, you
may find it convenient to attach event handlers written as lambdas, and you
might want to make some of those asynchronous, as Example 17-13 does.

Example 17-13. An asynchronous lambda
okButton.Click += async (s, e) =>
{
 using (HttpClient w = this.clientFactory.CreateClient())
 {
 infoTextBlock.Text = await
w.GetStringAsync(uriTextBox.Text);
 }
};

NOTE
This has nothing to do with asynchronous delegate invocation, the now-deprecated
technique I mentioned in Chapter 9 for using the thread pool that used to be popular
before anonymous methods and the TPL provided better alternatives.

The await Pattern
The majority of the asynchronous APIs that support the await keyword
will return a TPL task of some kind. However, C# does not absolutely
require this. It will await anything that implements a particular pattern.
Moreover, although Task supports this pattern, the way it works means
that the compiler uses tasks in a slightly different way than you would when
using the TPL directly—this is partly why I said earlier that the code
showing task-based asynchronous equivalents to await-based code did not
represent exactly what the compiler does. In this section, I’m going to show
how the compiler uses tasks and other types that support await to better
illustrate how it really works.

I’ll create a custom implementation of the await pattern to show what the
C# compiler expects. Example 17-14 shows an asynchronous method,
UseCustomAsync, that uses this custom implementation. It assigns the
result of the await expression into a string, so it clearly expects the
asynchronous operation to produce a string as its output. It calls a
method, CustomAsync, which returns our implementation of the pattern

(which will be shown later in Example 17-15). As you can see, this is not a
Task<string>.

Example 17-14. Calling a custom awaitable implementation
static async Task UseCustomAsync()
{
 string result = await CustomAsync();
 Console.WriteLine(result);
}

public static MyAwaitableType CustomAsync()
{
 return new MyAwaitableType();
}

The compiler expects the await keyword’s operand to be a type that
provides a method called GetAwaiter. This can be an ordinary instance
member or an extension method. (So it is possible to make await work
with a type that does not support it innately by defining a suitable extension
method.) This method must return an object or value, known as an awaiter,
that does three things.

First, the awaiter must provide a bool property called IsCompleted.
The code that the compiler generates for the await uses this to discover
whether the operation has already finished. In situations where no slow
work needs to be done (e.g., when a call to ReadAsync on a Stream can
be handled immediately with data that the stream already has in a buffer), it
would be a waste to set up a callback. So await avoids creating an
unnecessary delegate if the IsCompleted property returns true, and it
will just continue straight on with the remainder of the method.

The compiler also requires a way to get the result once the work is
complete, so the awaiter must have a GetResult method. Its return type
defines the result type of the operation—it will be the type of the await
expression. (If there is no result, the return type is void. GetResult still
needs to be present, because it is responsible for throwing exceptions if the
operation fails.) Since Example 17-14 assigns the result of the await into
a variable of type string, the GetResult method of the awaiter

returned by the MyAwaitableType class’s GetAwaiter must be
string (or some type implicitly convertible to string).

Finally, the compiler needs to be able to supply a callback. If
IsCompleted returns false, indicating that the operation is not yet
complete, the code generated for the await expression will create a
delegate that will run the rest of the method. It needs to be able to pass that
to the awaiter. (This is similar to passing a delegate to a task’s
ContinueWith method.) For this, the compiler requires not just a method
but also an interface. You are required to implement
INotifyCompletion, and there’s an optional interface that it’s
recommended you also implement where possible called
ICriticalNotifyCompletion. These do similar things: each defines
a single method (OnCompleted and UnsafeOnCompleted,
respectively) that takes a single Action delegate, and the awaiter must
invoke this delegate once the operation completes. The distinction between
these two interfaces and their corresponding methods is that the first
requires the awaiter to flow the current execution context to the target
method, whereas the latter does not. The .NET runtime libraries features
that the C# compiler uses to help build asynchronous methods always flow
the execution context for you, so the generated code typically calls
UnsafeOnCompleted where available to avoid flowing it twice. (If the
compiler used OnCompleted, the awaiter would flow context too.)
However, on .NET Framework, you’ll find that security constraints may
prevent the use of UnsafeOnCompleted. (.NET Framework had a
concept of untrusted code. Code from potentially untrustworthy origins—
perhaps because it was downloaded from the internet—would be subject to
various constraints. This concept was dropped in .NET Core, but various
vestiges remain, such as this design detail of asynchronous operations.)
Because UnsafeOnCompleted does not flow execution context,
untrusted code must not be allowed to call it, because that would provide a
way to bypass certain security mechanisms. .NET Framework
implementations of UnsafeOnCompleted provided for the various task
types are marked with the SecurityCriticalAttribute, which

means that only fully trusted code can call it. We need OnCompleted so
that partially trusted code is able to use the awaiter.

Example 17-15 shows the minimum viable implementation of the awaiter
pattern. This is oversimplified, because it always completes synchronously,
so its OnCompleted method doesn’t do anything. If you use the await
keyword on an instance of My Awa ita ble Type, the code that the C#
compiler generates will never call OnCompleted. The await pattern
requires that OnCompleted is only called if IsCompleted returns
false, and, in this example, IsCompleted always returns true. This
is why I’ve made OnCompleted throw an exception. However, although
this example is unrealistically simple, it will serve to illustrate what await
does.

Example 17-15. An excessively simple await pattern implementation
public class MyAwaitableType
{
 public MinimalAwaiter GetAwaiter()
 {
 return new MinimalAwaiter();
 }

 public class MinimalAwaiter : INotifyCompletion
 {
 public bool IsCompleted => true;

 public string GetResult() => "This is a result";

 public void OnCompleted(Action continuation)
 {
 throw new NotImplementedException();
 }
 }
}

With this code in place, we can see what Example 17-14 will do. It will call
Get Awai ter on the MyAwaitableType instance returned by the
CustomAsync method. Then it will test the awaiter’s IsCompleted
property, and if it’s true (which it will be), it will run the rest of the
method immediately. The compiler doesn’t know IsCompleted will

always be true in this case, so it generates code to handle the false
case. This will create a delegate that, when invoked, will run the rest of the
method and pass that delegate to the waiter’s OnCompleted method. (I’ve
not provided UnsafeOnCompleted here, so it is forced to use
OnCompleted.) Example 17-16 shows code that does all of this.

Example 17-16. A very rough approximation of what await does
static void ManualUseCustomAsync()
{
 var awaiter = CustomAsync().GetAwaiter();
 if (awaiter.IsCompleted)
 {
 TheRest(awaiter);
 }
 else
 {
 awaiter.OnCompleted(() => TheRest(awaiter));
 }
}

private static void TheRest(MyAwaitableType.MinimalAwaiter awaiter)
{
 string result = awaiter.GetResult();
 Console.WriteLine(result);
}

I’ve split the method into two pieces, because the C# compiler avoids
creating a delegate in the case where IsCompleted is true, and I
wanted to do the same. However, this is not quite what the C# compiler
does—it also manages to avoid creating an extra method for each await
statement, but this means it has to create considerably more complex code.
In fact, for methods that just contain a single await, it introduces rather
more overhead than Example 17-16. However, once the number of await
expressions starts to increase, the complexity pays off, because the compiler
does not need to add any further methods. Example 17-17 shows something
closer to what the compiler does.

Example 17-17. A slightly closer approximation to how await works
private class ManualUseCustomAsyncState
{
 private int state;

 private MyAwaitableType.MinimalAwaiter? awaiter;

 public void MoveNext()
 {
 if (state == 0)
 {
 awaiter = CustomAsync().GetAwaiter();
 if (!awaiter.IsCompleted)
 {
 state = 1;
 awaiter.OnCompleted(MoveNext);
 return;
 }
 }
 string result = awaiter!.GetResult();
 Console.WriteLine(result);
 }
}

static void ManualUseCustomAsync()
{
 var s = new ManualUseCustomAsyncState();
 s.MoveNext();
}

This is still simpler than the real code, but it shows the basic strategy: the
compiler generates a nested type that acts as a state machine. This has a
field (state) that keeps track of where the method has got to so far, and it
also contains fields corresponding to the method’s local variables (just the
awaiter variable in this example). When an asynchronous operation does
not block (i.e., its IsCompleted returns true immediately), the method
can just continue to the next part, but once it encounters an operation that
needs some time, it updates the state variable to remember where it is
and then uses the relevant awaiter’s OnCompleted method. Notice that
the method it asks to be called on completion is the same one that is already
running: MoveNext. And this continues to be the case no matter how
many awaits you need to perform—every completion callback invokes
the same method; the class simply remembers how far it had already gotten,
and the method picks up from there. That way, no matter how many times
an await blocks, it never needs to create more than one delegate.

I won’t show the real generated code. It is borderline unreadable, because it
contains a lot of unspeakable identifiers. (Remember from Chapter 3 that
when the C# compiler needs to generate items with identifiers that must not
collide with or be directly visible to our code, it creates a name that the
runtime considers legal but that is not legal in C#; this is called an
unspeakable name.) Moreover, the compiler-generated code uses various
helper classes from the System.Runtime.CompilerServices
namespace that are intended for use only from asynchronous methods to
manage things like determining which of the completion interfaces the
awaiter supports and handling the related execution context flow. Also, if
the method returns a task, there are additional helpers to create and update
that. But when it comes to understanding the nature of the relationship
between an awaitable type and the code the compiler produces for an
await expression, Example 17-17 gives a fair impression.

Error Handling
The await keyword deals with exceptions much as you’d hope it would: if
an asynchronous operation fails, the exception emerges from the await
expression that was consuming that operation. The general principle that
asynchronous code can be structured in the same way as ordinary
synchronous code continues to apply in the face of exceptions, and the
compiler does whatever work is required to make that possible.

Example 17-18 contains two asynchronous operations, one of which occurs
in a loop. This is similar to Example 17-5. It does something a bit different
with the content it fetches, but most importantly, it returns a task. This
provides a place for an error to go if any of the operations should fail.

Example 17-18. Multiple potential points of failure
private static async Task<string> FindLongestLineAsync(
 string url, IHttpClientFactory cf)
{
 using (HttpClient w = cf.CreateClient())
 {
 Stream body = await w.GetStreamAsync(url);
 using (var bodyTextReader = new StreamReader(body))

 {
 string longestLine = string.Empty;
 while (!bodyTextReader.EndOfStream)
 {
 string? line = await
bodyTextReader.ReadLineAsync();
 if (line is not null && longestLine.Length >
line.Length)
 {
 longestLine = line;
 }
 }
 return longestLine;
 }
 }
}

Exceptions are potentially challenging with asynchronous operations
because by the time a failure occurs, the method call that originally started
the work is likely to have returned. The FindLongestLineAsync
method in this example will usually return as soon as it executes the first
await expression. (It’s possible that it won’t—if HTTP caching is in use,
or if the IHttpClientFactory returns a client configured as a fake that
never makes any real requests, this operation could succeed immediately.
But typically, that operation will take some time, causing the method to
return.) Suppose this operation succeeds and the rest of the method starts to
run, but partway through the loop that retrieves the body of the response,
the computer loses network connectivity. This will cause one of the
operations started by ReadLineAsync to fail.

An exception will emerge from the await for that operation. There is no
exception handling in this method, so what should happen next? Normally,
you’d expect the exception to start working its way up the stack, but what’s
above this method on the stack? It almost certainly won’t be the code that
originally called it—remember, the method will usually return as soon as it
hits the first await, so at this stage, we’re running as a result of being
called back by the awaiter for the task returned by ReadLineAsync.
Chances are, we’ll be running on some thread from the thread pool, and the

code directly above us in the stack will be part of the task awaiter. This
won’t know what to do with our exception.

But the exception does not propagate up the stack. When an exception goes
unhandled in an async method that returns a task, the compiler-generated
code catches it and puts the task returned by that method into a faulted state
(which will in turn mean that anything that was waiting for that task can
now continue). If the code that called FindLongestLineAsync is
working directly with the TPL, it will be able to see the exception by
detecting that faulted state and retrieving the task’s Exception property.
Alternatively, it can either call Wait or fetch the task’s Result property,
and in either case, the task will throw an AggregateException
containing the original exception. But if the code calling
FindLongestLineAsync uses await on the task we return, the
exception gets rethrown from that. From the calling code’s point of view, it
looks just like the exception emerged as it would normally, as Example 17-
19 shows.

Example 17-19. Handling exceptions from await
try
{
 string longest = await FindLongestLineAsync(
 "http://192.168.22.1/", this.clientFactory);
 Console.WriteLine("Longest line: " + longest);
}
catch (HttpRequestException x)
{
 Console.WriteLine("Error fetching page: " + x.Message);
}

This is almost deceptively simple. Remember that the compiler performs
substantial restructuring of the code around each await, and the execution
of what looks like a single method may involve multiple calls in practice.
So preserving the semantics of even a simple exception handling block like
this (or related constructs, such as a using statement) is nontrivial. If you
have ever attempted to write equivalent error handling for asynchronous
work without the help of the compiler, you’ll appreciate how much C# is
doing for you here.

NOTE
The await does not rethrow the AggregateException provided by the task’s
Exception property. It rethrows the original exception. This enables async methods
to handle the error in the same way synchronous code would.

Validating Arguments
There’s one potentially surprising aspect of the way C# automatically
reports exceptions through the task your asynchronous method returns. It
means that code such as that in Example 17-20 doesn’t do what you might
expect.

Example 17-20. Potentially surprising argument validation
public async Task<string> FindLongestLineAsync(string url)
{
 ArgumentNullException.ThrowIfNull(url);
 ...

Inside an async method, the compiler treats all exceptions in the same
way: none are allowed to pass up the stack as they would with a normal
method, and they will always be reported by faulting the returned task. This
is true even of exceptions thrown before the first await. In this example,
the argument validation happens before the method does anything else, so at
that stage, we will still be running on the original caller’s thread. You might
have thought that an argument exception thrown by this part of the code
would propagate directly back to the caller. In fact, the caller will see a
nonexceptional return, producing a task that is in a faulted state.

If the calling method immediately calls await on the return task, this
won’t matter much—it will see the exception in any case. But some code
may choose not to wait immediately, in which case it won’t see the
argument exception until later. For simple argument validation exceptions
where the caller has clearly made a programming error, you might expect
code to throw an exception immediately, but this code doesn’t do that.

NOTE
If it’s not possible to determine whether a particular argument is valid without
performing slow work, you will not be able to throw immediately if you want a truly
asynchronous method. In that case, you would need to decide whether you would rather
have the method block until it can validate all arguments or have argument exceptions
be reported via the returned task instead of being thrown immediately.

Most async methods work this way, but suppose you want to throw this
kind of exception straightaway (e.g., because it’s being called from code
that does not immediately await the result, and you’d like to discover the
problem as soon as possible). The usual technique is to write a normal
method that validates the arguments before calling an async method that
does the work, and to make that second method either private or local. (You
would have to do something similar to perform immediate argument
validation with iterators too, incidentally. Iterators were described in
Chapter 5.) Example 17-21 shows such a public wrapper method and the
start of the method it calls to do the real work.

Example 17-21. Validating arguments for async methods
public static Task<string> FindLongestLineAsync(string url)
{
 ArgumentNullException.ThrowIfNull(url);
 return FindLongestLineCore(url);

 static async Task<string> FindLongestLineCore(string url)
 {
 ...
 }
}

Because the public method is not marked with async, any exceptions it
throws will propagate directly to the caller. But any failures that occur once
the work is underway in the local method will be reported through the task.

I’ve chosen to forward the url argument to the local method. I didn’t have
to, because a local method can access its containing method’s variables.
However, relying on that causes the compiler to create a type to hold the

locals to share them across the methods. Where possible, it will make this a
value type, passing it by reference to the inner type, but in cases where the
inner method’s scope might outlive the outer method, it can’t do that. And
since the local method here is async, it is likely to continue to run long
after the outer method’s stack frame no longer exists, so this would cause
the compiler to create a reference type just to hold that url argument. By
passing the argument in, we avoid this (and I’ve marked the method as
static to indicate that this is my intent—this means the compiler will
produce an error if I inadvertently use anything from the outer method in
the local one). The compiler will probably still have to generate code that
creates an object to hold on to local variables in the inner method during
asynchronous execution, but at least we’ve avoided creating more objects
than necessary.

Singular and Multiple Exceptions
As Chapter 16 showed, the TPL defines a model for reporting multiple
errors—a task’s Exception property returns an
AggregateException. Even if there is only a single failure, you still
have to extract it from its containing AggregateException. However,
if you use the await keyword, it does this for you—as you saw in
Example 17-19, it retrieves the first exception in the InnerExceptions
and rethrows that.

This is handy when the operation can produce only a single failure—it
saves you from having to write additional code to handle the aggregate
exception and then dig out the contents. (If you’re using a task returned by
an async method, it will never contain more than one exception.)
However, it does present a problem if you’re working with composite tasks
that can fail in multiple ways simultaneously. For example,
Task.WhenAll takes a collection of tasks and returns a single task that
completes only when all its constituent tasks complete. If some of them
complete by failing, you’ll get an AggregateException that contains
multiple errors. If you use await with such an operation, it will throw only
the first of those exceptions back to you.

The usual TPL mechanisms—the Wait method or the Result property—
provide the complete set of errors (by throwing the
AggregateException itself instead of its first inner exception), but
they both block the thread if the task is not yet complete. What if you want
the efficient asynchronous operation of await, which uses threads only
when there’s something for them to do, but you still want to see all the
errors? Example 17-22 shows one approach.

Example 17-22. Throwless awaiting followed by Wait
static async Task CatchAll(Task[] ts)
{
 try
 {
 var t = Task.WhenAll(ts);
 await t.ContinueWith(
 x => {},
 TaskContinuationOptions.ExecuteSynchronously);
 t.Wait();
 }
 catch (AggregateException all)
 {
 Console.WriteLine(all);
 }
}

This uses await to take advantage of the efficient nature of asynchronous
C# methods, but instead of calling await on the composite task itself, it
sets up a continuation. A continuation can complete successfully when its
antecedent completes, regardless of whether the antecedent succeeded or
failed. This continuation has an empty body, so there’s nothing to go wrong,
which means that the await will not throw here. The call to Wait will
throw an AggregateException if anything failed, enabling the catch
block to see all of the exceptions. And because we call Wait only after the
await completes, we know the task is already finished, so the call will not
block.

The one downside of this is that it ends up setting up a whole extra task just
so we can wait without hitting an exception. I’ve configured the
continuation to execute synchronously, so this will avoid scheduling a

second piece of work via the thread pool, but there’s still a somewhat
unsatisfactory waste of resources here. A messier but more efficient
approach would be to use await in the usual way but to write an exception
handler that checks to see if there were other exceptions, as shown in
Example 17-23.

Example 17-23. Looking for additional exceptions
static async Task CatchAll(Task[] ts)
{
 Task? t = null;
 try
 {
 t = Task.WhenAll(ts);
 await t;
 }
 catch (Exception first)
 {
 Console.WriteLine(first);

 if (t?.Exception?.InnerExceptions.Count > 1)
 {
 Console.WriteLine("I've found some more:");
 Console.WriteLine(t.Exception);
 }
 }
}

This avoids creating an extra task, but the downside is that the exception
handling looks a little odd.

Concurrent Operations and Missed Exceptions
The most straightforward way to use await is to do one thing after
another, just as you would with synchronous code. Although doing work
strictly sequentially may not sound like it takes full advantage of the
potential of asynchronous code, it does make much more efficient use of the
available threads than the synchronous equivalent, and it also works well in
client-side UI code, leaving the UI thread free to respond to input even
while work is then in progress. However, you might want to go further.

It is possible to kick off multiple pieces of work simultaneously. You can
call an asynchronous API, and instead of using await immediately, you
can store the result in a variable and then start another piece of work before
waiting for both. Although this is a viable technique, and might reduce the
overall execution time of your operations, there’s a trap for the unwary,
shown in Example 17-24.

Example 17-24. How not to run multiple concurrent operations
static async Task GetSeveral(IHttpClientFactory cf)
{
 using (HttpClient w = cf.CreateClient())
 {
 w.MaxResponseContentBufferSize = 2_000_000;

 Task<string> g1 = w.GetStringAsync("https://endjin.com/");
 Task<string> g2 = w.GetStringAsync("https://oreilly.com");

 // BAD!
 Console.WriteLine((await g1).Length);
 Console.WriteLine((await g2).Length);
 }
}

This fetches content from two URLs concurrently. Having started both
pieces of work, it uses two await expressions to collect the results of each
and to display the lengths of the resulting strings. If the operations succeed,
this will work, but it doesn’t handle errors well. If the first operation fails,
the code will never get as far as executing the second await. This means
that if the second operation also fails, nothing will look at the exception it
throws. Eventually, the TPL will detect that the exception has gone
unobserved, which will result in the UnobservedTaskException
event being raised. (Chapter 16 discussed the TPL’s unobserved exception
handling.) The problem is that this will happen only very occasionally—it
requires both operations to fail in quick succession—so it’s something that
would be very easy to miss in testing.

You could avoid this with careful exception handling—you could catch any
exceptions that emerge from the first await before going on to execute the
second, for example. Alternatively, you could use Task.WhenAll to wait

for all the tasks as a single operation—this will produce a faulted task with
an AggregateException if anything fails, enabling you to see all
errors. Of course, as you saw in the preceding section, multiple failures of
this kind are awkward to deal with when you’re using await. But if you
want to launch multiple asynchronous operations and have them all in flight
simultaneously, you’re going to need more complex code to coordinate the
results than you would do when performing work sequentially. Even so, the
await and async keywords still make life much easier.

Summary
Asynchronous operations do not block the thread from which they are
invoked. This can make them more efficient than synchronous APIs, which
is particularly important on heavily loaded machines. It also makes them
suitable for use on the client side, because they enable you to perform long-
running work without causing the UI to become unresponsive. Without
language support, asynchronous operations can be complex to use correctly,
particularly when handling errors across multiple related operations. C#’s
await keyword enables you to write asynchronous code in a style that
looks just like normal synchronous code. It gets a little more complex if you
want a single method to manage multiple concurrent operations, but even if
you write an asynchronous method that does things strictly in order, you
will get the benefits of making much more efficient use of threads in a
server application—it will be able to support more simultaneous users,
because each individual operation uses fewer resources—and on the client
side, you’ll get the benefit of a more responsive UI.

Methods that use await must be marked with the async keyword and
should usually return one of Task, Task<T>, ValueTask, or
ValueTask<T>. (C# allows a void return type, but you would normally
use this only when you have no choice.) The compiler will arrange for this
task to complete successfully once your method returns, or to complete with
a fault if your method fails at any point in its execution. Because await
can consume any Task or Task<T>, this makes it easy to split

asynchronous logic across multiple methods, because a high-level method
can await a lower-level async method. Usually, the work eventually
ends up being performed by some task-based API, but it doesn’t have to be,
because await only demands a certain pattern—it will accept any
expression on which you can invoke a GetWaiter method to obtain a
suitable type.

1 This example is a bit contrived so that I can illustrate how using works in async methods.
Disposing an HttpClient obtained from an IHttpClientFactory is normally optional,
and in cases where you new up an HttpClient directly, it’s better to hang on to it and reuse
it, as discussed in “Optional Disposal”.

2 As it happens, Example 17-3 does this too, because the TPL captures the execution context for
us.

3 Strictly speaking, I should inspect the HTTP response headers to discover the encoding, and
configure the StreamReader with that. Instead, I’m letting it detect the encoding, which
will work well enough for demonstration purposes.

4 These are available in .NET Core 3.1, .NET, and .NET Standard 2.1. With .NET Framework,
you will need to use the Microsoft.Bcl.AsyncInterfaces NuGet package.

Chapter 18. Memory Efficiency

As Chapter 7 described, the CLR is able to perform automatic memory
management thanks to its garbage collector (GC). This comes at a price:
when a CPU spends time on garbage collection, that stops it from getting on
with more productive work. On laptops and phones, GC work drains power
from the battery. In a cloud computing environment where you may be
paying for CPU time based on consumption, extra work for the CPU
corresponds directly to increased costs. More subtly, on a computer with
many cores, spending too much time in the GC can dramatically reduce
throughput, because many of the cores may end up blocked, waiting for the
GC to complete before they can proceed.

In many cases, these effects will be small enough not to cause visible
problems. However, when certain kinds of programs experience heavy load,
GC costs can come to dominate the overall execution time. In particular, if
you write code that performs relatively simple but highly repetitive
processing, GC overhead can have a substantial impact on throughput.

To give you an example of the kinds of improvements that can sometimes
be possible, early versions of Microsoft’s ASP.NET Core web server
framework frequently ran into hard limits due to GC overhead. To enable
.NET applications to break through these barriers, C# introduced various
features that can enable dramatic reductions in the number of allocations.
Fewer allocations means fewer blocks of memory for the GC to recover, so
this translates directly to lower GC overhead. When ASP.NET Core first
started making extensive use of these features, performance improved
across the board, but for the simplest performance benchmark, known as
plaintext (part of the TechEmpower suite of web performance tests), this
release improved the request handling rate by over 25%.

In some specialized scenarios, the differences can be more dramatic. In
2019, I worked on a project that processed diagnostic information from a
broadband provider’s networking equipment (in the form of RADIUS

packets). Adopting the techniques described in this chapter boosted the rate
at which a single CPU core in our system could process the messages from
around 300,000/s to about 7 million/s.

There is a price to pay, of course: these GC-efficient techniques add
significant complication to your code. And the payoff won’t always be so
large—although the first ASP.NET Core release to be able to use these
features improved over the previous version on all benchmarks, only the
simplest shows a 25% boost, and most improved more modestly. The
practical improvement will really depend on the nature of your workload,
and for some applications you might find that applying these techniques
delivers no measurable improvement. So before you even consider using
them, you should use performance monitoring tools to find out how much
time your code spends in the GC. If it’s only a few percent, then you might
not be able to realize order-of-magnitude improvements. But if testing
suggests that there’s room for significant improvement, the next step is to
ask whether the techniques in this chapter are likely to help. So let’s start by
exploring exactly how these new techniques can help you reduce GC
overhead.

(Don’t) Copy That
The way to reduce GC overhead is to allocate less memory on the heap.
And the most important technique for minimizing allocations is to avoid
making copies of data. For example, consider the URL
http://example.com/books/1323?edition=6&format=pdf. There are several
elements of interest in here, such as the protocol (http), the hostname
(example.com), or the query string. The latter has its own structure: it is
a sequence of name/value pairs. The obvious way to work with a URL in
.NET is to use the System.Uri type, as Example 18-1 shows.

Example 18-1. Deconstructing a URL
var uri = new Uri("http://example.com/books/1323?
edition=6&format=pdf");
Console.WriteLine(uri.Scheme);
Console.WriteLine(uri.Host);

Console.WriteLine(uri.AbsolutePath);
Console.WriteLine(uri.Query);

It produces the following output:

http
example.com
/books/1323
?edition=6&format=pdf

This is convenient, but by getting the values of these four properties, we
have forced the Uri to provide four string objects in addition to the
original one. You could imagine a smart implementation of Uri that
recognized certain standard values for Scheme, such as http, and that
always returned the same string instance for these instead of allocating new
ones, but for all the other parts, it’s likely to have to allocate new strings on
the heap.

There is another way. Instead of creating new string objects for each
section, we could take advantage of the fact that all of the information we
want was already in the string containing the whole URL. There’s no need
to copy each section into a new string, when instead we can just keep track
of the position and lengths of the relevant sections within the string. Instead
of creating a string for each section, we would need just two numbers. And
since we can represent numbers using value types (e.g., int or, for very
long strings, long), we don’t need any additional objects on the heap
beyond the single string with the full URL. For example, the scheme
(http) is at position 0 and has length 4. Figure 18-1 shows each of the
elements by their offset and position within the string.

Figure 18-1. URL substrings

This works, but already we can see the first problem with working this way:
it is somewhat awkward. Instead of representing, say, the Host with a
convenient string object, which is easily understood and readily
inspected in the debugger, we now have a pair of numbers, and as
developers, we now have to remember which string they point into. It’s not
rocket science, but it makes it slightly harder to understand our code, and
easier to introduce bugs. But there’s a payoff: instead of five strings (the
original URL and the four properties), we just have one. And if you’re
trying to process millions of events each second, that could easily be worth
the effort.

Obviously this technique would work for a more fine-grained structure too.
The offset and position (25, 4) locates the text 1323 in this URL. We
might want to parse that as an int. But at this point we run into the second
problem with this style of working: it is not widely supported in .NET
libraries. The usual way to parse text into an int is to use the int type’s
static Parse or TryParse methods. Unfortunately, these do not provide
overloads that accept a position or offset within a string. They require a
string containing only the number to be parsed. This means you end up
writing code such as Example 18-2.

Example 18-2. Defeating the point of the exercise by using Substring
string uriString = "http://example.com/books/1323?
edition=6&format=pdf";
int id = int.Parse(uriString.Substring(25, 4));

This works, but by using Substring to go from our (offset, length)
representation back to the plain string that int.Parse wants, we’ve
allocated a new string. The whole point of this exercise was to reduce
allocations, so this doesn’t seem like progress. One solution might be for
Microsoft to go through the entire .NET API surface area, adding overloads
that accept offset and length parameters in any situation where we might
want to work with something in the middle of something else (either a
substring, as in this example, or perhaps a subrange of an array). In fact,
there are examples of this already: the Stream API for working with byte
streams has various methods that accept a byte[] array, and also offset

and length arguments to indicate exactly which part of the array you want to
work with.

However, there’s one more problem with this technique: it is inflexible
about the type of container that the data lives in. Microsoft could add an
overload to int.Parse that takes a string, an offset, and a length, but
it would only be able to parse data inside a string. What if the data
happens to be in a char[]? In that case, you’d have to convert it to a
string first, at which point we’re back to additional allocations.
Alternatively, every API that wants to support this approach would need
multiple overloads to support all the containers that anyone might want to
use, each potentially requiring a different implementation of the same basic
method.

More subtly, what if the data you have is currently in memory that’s not on
the CLR’s heap? This is a particularly important question when it comes to
the performance of servers that accept requests over the network (e.g., a
web server). Sometimes it is not possible to arrange for data received by a
network card to be delivered directly into memory on .NET’s heap. Also,
some forms of interprocess communication involve arranging for the OS to
map a particular region of memory into two different processes’ address
spaces. The .NET heap is local to the process and cannot use such memory.

C# has always supported use of external memory through unsafe code,
which supports raw unmanaged pointers that work in a similar way to
pointers in the C and C++ languages. However, there are a couple of
problems with these. First, they would add yet another entry to the list of
overloads that everything would need to support in a world where we can
parse data in place. Second, code using pointers cannot pass .NET’s type
safety verification rules. This means it becomes possible to make certain
kinds of programming errors that are normally impossible in C#. It may
also mean that the code will not be allowed to run in certain scenarios, since
the loss of type safety would enable unsafe code to bypass certain security
constraints.

To summarize, it has always been possible to reduce allocations and
copying in .NET by working with offsets and lengths and either a reference
to a containing string or array or an unmanaged pointer to memory, but
there was considerable room for improvement on these fronts:

Convenience

Wide support across .NET APIs

Unified, safe handling of the following:

Strings

Arrays

Unmanaged memory

.NET offers a type that addresses all three points: Span<T>. (See the next
sidebar, “Support Across Language and Runtime Versions”, for more
information on how the features described in this chapter relate to C#
language and .NET runtime versions.)

SUPPORT ACROSS LANGUAGE AND RUNTIME
VERSIONS

Span<T> is built into .NET and .NET Core and is available to any
library that targets .NET Standard 2.1. You can also use it on .NET
Framework via a NuGet package, System.Memory, but be aware that
this package has some limitations.

First, although this NuGet package adds Span<T> and related types, it
cannot modify existing libraries. To fulfill the “wide support across
.NET APIs” requirement, Microsoft added numerous methods to the
.NET Core and .NET runtime libraries. For example, new overloads of
int.TryParse accept ReadOnlySpan<char> as an alternative to
string. The System.Memory NuGet package can’t add new static
methods to int, so these new methods are not available in .NET
Framework.

Second, this package provides a slightly different implementation than
the one you will get when running the exact same code on .NET Core
or .NET. These newer runtimes recognize Span<T> and related types
and provide special optimizations. This is critical to the high
performance offered by the features discussed in this chapter. The latest
version of the .NET Framework at the time of writing (version 4.8)
lacks the Span<T> optimizations, and Microsoft has no plans to add
them in future versions because the .NET Framework is superseded by
.NET. Code using these techniques works correctly on .NET
Framework, but if you want to reap the full performance benefits of
these techniques, you’ll need to run on .NET.

Representing Sequential Elements with
Span<T>
The System.Span<T> value type represents a sequence of elements of
type T stored contiguously in memory. Those elements can live inside an
array, a string, a managed block of memory allocated in a stack frame, or
unmanaged memory. Let’s look at how Span<T> addresses each of the
requirements enumerated in the preceding section.

A Span<T> encapsulates three things: a pointer or reference to the
containing memory (e.g., the string or array), the position of the data
within that memory, and its length. To access the contents of a span, you
use it much as you would an array, as Example 18-3 shows. This makes it
much more convenient to use than ad hoc techniques in which you define a
couple of int variables and have to remember what they refer to.

Example 18-3. Iterating over a Span<int>
static int SumSpan(ReadOnlySpan<int> span)
{
 int sum = 0;
 for (int i = 0; i < span.Length; ++i)
 {
 sum += span[i];
 }
 return sum;
}

Since a Span<T> knows its own length, its indexer checks that the index is
in range, just as the built-in array type does. And if you are running on
.NET Core or .NET, the performance is very similar to using a built-in
array. This includes the optimizations that detect certain loop patterns—for
example, the CLR will recognize the preceding code as a loop that iterates
over the entire contents, enabling it to generate code that doesn’t need to
check that the index is in range each time around the loop. In some cases it
is even able to generate code that uses the vector-oriented instructions
available in some CPUs to accelerate the loop. (On .NET Framework,

1

Span<T> is a little slower than an array, because its CLR does not include
the optimizations that were added in .NET Core to support Span<T>.)

You may have noticed that the method in Example 18-3 takes a
ReadOnlySpan<T>. This is a close relative of Span<T>, and there is an
implicit conversion enabling you to pass any Span<T> to a method that
takes a ReadOnlySpan<T>. The read-only form enables a method to
declare clearly that it will only read from the span, and not write to it. (This
is enforced by the fact that the read-only form’s indexer offers just a get
accessor, and no set.)

TIP
Whenever you write a method that works with a span and that does not mean to modify
it, you should use ReadOnlySpan<T>.

There are implicit conversions from the various supported containers to
Span<T> (and also to ReadOnlySpan<T>). This enables Example 18-4
to pass an array to the SumSpan method.

Example 18-4. Passing an int[] as a ReadOnlySpan<int>
Console.WriteLine(SumSpan(new int[] { 1, 2, 3 }));

Of course, we’ve gone and allocated an array on the heap there, so this
particular example defeats the whole point of using spans, but if you
already have an array on hand, this is a useful technique. Span<T> also
works with stack-allocated arrays, as Example 18-5 shows. (The
stackalloc keyword enables you to create an array in memory allocated
on the current stack frame.)

Example 18-5. Passing a stack-allocated array as a
ReadOnlySpan<int>
Span<int> numbers = stackalloc int[] { 1, 2, 3 };
Console.WriteLine(SumSpan(numbers));

Normally, C# won’t allow you to use stackalloc outside of code
marked as unsafe. The keyword allocates memory on the current
method’s stack frame, and it does not create a real array object. Arrays are
reference types, so they must live on the GC heap. A stackalloc
expression produces a pointer type, because it produces plain memory
without the usual .NET object headers. In this case, it would be an int*.
You can only use pointer types directly in unsafe code blocks. However, the
compiler makes an exception to this rule if you assign the pointer produced
by a stackalloc expression directly into a span. This is permitted
because spans impose bounds checking, preventing undetected out-of-range
access errors of the kind that normally make pointers unsafe. Also,
Span<T> and ReadOnlySpan<T> are both defined as ref struct
types, and as “Stack Only” describes, this means they cannot outlive their
containing stack frame. This guarantees that the stack frame on which the
stack-allocated memory lives will not vanish while there are still
outstanding references to it. (.NET’s type safety verification rules include
special handling for spans.)

Earlier I mentioned that spans can refer to strings as well as arrays.
However, we can’t pass a string to this SumSpan for the simple reason
that it requires a span with an element type of int, whereas a string is a
sequence of char values. int and char have different sizes—they take 4
and 2 bytes each, respectively. Although an implicit conversion exists
between the two (meaning you can assign a char value into an int
variable, giving you the Unicode value of the char), that does not make a
ReadOnlySpan<char> implicitly compatible with a
ReadOnlySpan<int>. Remember, the entire point of spans is that they
provide a view into a block of data without needing to copy or modify that
data; since int and char have different sizes, converting a char[] to an
int[] array would double its size. However, if we were to write a method
accepting a ReadOnlySpan<char>, we would be able to pass it a
string, a char[] array, a stackalloc char[], or an unmanaged
pointer of type char* (because the in-memory representation of a
particular span of characters within each of these is the same).

2

NOTE
Since strings are immutable in .NET, you cannot convert a string to a Span<char>.
You can only convert it to a ReadOnlySpan<char>.

We’ve examined two of our requirements from the preceding section:
Span<T> is easier to use than ad hoc storing of an offset and length, and it
makes it possible to write a single method that can work with data in arrays,
strings, the stack, or unmanaged memory. This leaves our final requirement:
widespread support throughout .NET’s runtime libraries. As Example 18-6
shows, it is now supported in int.Parse, enabling us to fix the problem
shown in Example 18-2.

Example 18-6. Parsing integers in a string using Span<char>
string uriString = "http://example.com/books/1323?
edition=6&format=pdf";
int id = int.Parse(uriString.AsSpan(25, 4));

Span<T> is a relatively new type (it was introduced in 2018; .NET has
been around since 2002), so although the .NET runtime libraries now
support it widely, many third-party libraries do not yet support it, and
perhaps never will. However, it has become increasingly well supported
since being introduced, and the situation will only improve.

Utility Methods
In addition to the array-like indexer and Length properties, Span<T>
offers a few useful methods. The Clear and Fill methods provide
convenient ways to initialize all the elements in a span either to the default
value for the element type or a specific value. Obviously, these are not
available on ReadOnlySpan<T>.

You may sometimes encounter situations in which you have a span and you
need to pass its contents to a method that requires an array. Obviously
there’s no avoiding an allocation in this case, but if you need to do it, you
can use the ToArray method.

Spans (both normal and read-only) also offer a TryCopyTo method, which
takes as its argument a (non-read-only) span of the same element type. This
allows you to copy data between spans. This method handles scenarios
where the source and target spans refer to overlapping ranges within the
same container. As the Try suggests, it’s possible for this method to fail: if
the target span is too small, this method returns false.

Stack Only
The Span<T> and ReadOnlySpan<T> types are both declared as ref
struct. This means that not only are they value types, they are value
types that can live only on the stack. So you cannot have fields with span
types in a class, or in any struct that is not also a ref struct. This
also imposes some potentially more surprising restrictions. For example, it
means you cannot use a span in a variable in an async method. (These
store all their variables as fields in a hidden type, enabling them to live on
the heap, because asynchronous methods often need to outlive their original
stack frame. In fact, these methods can even switch to a completely
different stack altogether, because asynchronous methods can end up
running on different threads as their execution progresses.) For similar
reasons, there are restrictions on using spans in anonymous functions and in
iterator methods. You can use them in local methods, and you can even
declare a ref struct variable in the outer method and use it from the
nested one, but with one restriction: you must not create a delegate that
refers to that local method, because this would cause the compiler to move
shared variables into an object that lives on the heap. (See Chapter 9 for
details.)

This restriction is necessary for .NET to be able to offer the combination of
array-like performance, type safety, and the flexibility to work with
multiple different containers. For situations in which this stack-only
limitation is problematic, we have the Memory<T> type.

Representing Sequential Elements with
Memory<T>
The Memory<T> type and its counterpart, ReadOnlyMemory<T>,
represent the same basic concept as Span<T> and ReadOnlySpan<T>:
these types provide a uniform view over a contiguous sequence of elements
of type T that could reside in an array, unmanaged memory, or, if the
element type is char, a string. But unlike spans, these are not ref
struct types, so they can be used anywhere. The downside is that this
means they cannot offer the same high performance as spans. (It also means
you cannot create a Memory<T> that refers to stackalloc memory.)

You can convert a Memory<T> to a Span<T>, and likewise a
ReadOnlyMemory<T> to a ReadOnlySpan<T>, as long as you’re in a
context where spans are allowed (e.g., in an ordinary method but not an
asynchronous one). The conversion to a span has a cost. It is not massive,
but it is significantly higher than the cost of accessing an individual element
in a span. (In particular, many of the optimizations that make spans
attractive only become effective with repeated use of the same span.) So if
you are going to read or write elements in a Memory<T> in a loop, you
should perform the conversion to Span<T> just once, outside of the loop,
rather than doing it each time around. If you can work entirely with spans,
you should do so since they offer the best performance. (And if you are not
concerned with performance, then this is not the chapter for you!)

ReadOnlySequence<T>
The types we’ve looked at so far in this chapter all represent contiguous
blocks of memory. Unfortunately, data doesn’t always neatly present itself
to us in the most convenient possible form. For example, on a busy server
that is handling many concurrent requests, the network messages for
requests in progress often become interleaved—if a particular request is
large enough to need to be split across two network packets, it’s entirely
possible that after receiving the first but before receiving the second of

these, one or more packets for other, unrelated requests could arrive. So by
the time we come to process the contents of the request, it might be split
across two different chunks of memory. Since span and memory values can
each represent only a contiguous range of elements, .NET provides another
type, ReadOnlySequence, to represent data that is conceptually a single
sequence but that has been split into multiple ranges.

NOTE
There is no corresponding Sequence<T>. Unlike spans and memory, this particular
abstraction is available only in read-only form. That’s because it’s common to need to
deal with fragmented data as a reader, where you don’t control where the data lives, but
if you are producing data, you are more likely to be in a position to control where it
goes.

Now that we’ve seen the main types for working with data while
minimizing the number of allocations, let’s look at how these can all work
together to handle high volumes of data. To coordinate this kind of
processing, we need to look at one more feature: pipelines.

Processing Data Streams with Pipelines
Everything we’re looking at in this chapter is designed to enable safe,
efficient processing of large volumes of data. The types we’ve seen so far
all represent information that is already in memory. We also need to think
about how that data is going to get into memory in the first place. The
preceding section hinted at the fact that this can be somewhat messy. The
data will very often be split into chunks, and not in a way designed for the
convenience of the code processing the data, because it will likely be
arriving either over a network or from a disk. If we’re to realize the
performance benefits made possible by Span<T> and its related types, we
need to pay close attention to the job of getting data into memory in the first
place and the way in which this data fetching process cooperates with the
code that processes the data. Even if you are only going to be writing code

that consumes data—perhaps you are relying on a framework such as
ASP.NET Core to get the data into memory for you—it is important to
understand how this process works.

The System.Io.Pipelines NuGet package defines a set of types in a
namespace of the same name that provide a high-performance system for
loading data from some source that tends to split data into inconveniently
sized chunks, and passing that data over to code that wants to be able to
process it in situ using spans. Figure 18-2 shows the main participants in a
pipeline-based process.

At the heart of this is the Pipe class. It offers two properties: Writer and
Reader. The first returns a PipeWriter, which is used by the code that
loads the data into memory. (This often doesn’t need to be application-
specific. For example, in a web application, you can let ASP.NET Core
control the writer on your behalf.) The Reader property’s type is,
predictably, PipeReader, and this is most likely to be the part your code
interacts with.

Figure 18-2. Pipeline overview

The basic process for reading data from a pipe is as follows. First, you call
Pipe Rea der. Rea dAs ync. This returns a task, because if no data is3

available yet, you will need to wait until the data source supplies the writer
with some data. Once data is available, the task will provide a
ReadResult object. This supplies a ReadOnlySequence<T>, which
presents the available data as one or more ReadOnlySpan<T> values.
The number of spans will depend on how fragmented the data is. If it’s all
conveniently in one place in memory, there will be just one span, but code
using a reader needs to be able to cope with more. Your code should then
process as much of the available data as it can. Once it has done this, it calls
the reader’s AdvanceTo to tell it how much of the data your code has
been able to process. Then, if the ReadResult.IsComplete property
is false, we will repeat these steps again from the call to ReadAsync.

An important detail of this is that we are allowed to tell the PipeReader
that we couldn’t process everything it gave us. This would normally be
because the information got sliced into pieces, and we need to see some of
the next chunk before we can fully process everything in the current one.
For example, a JSON message large enough to need to be split across
several network packets will probably end up with splits in inconvenient
places. So you might find that the first chunk looks like this:

{"property1":"value1","prope

And the second like this:

rty2":42}

In practice the chunks would be bigger, but this illustrates the basic
problem: the chunks that a PipeReader returns are likely to slice across
the middle of important features. With most .NET APIs, you never have to
deal with this kind of mess because everything has been cleaned up and
reassembled by the time you see it, but the price you pay for that is the
allocation of new strings to hold the recombined results. If you want to
avoid those allocations, you have to handle these challenges.

There are a couple of ways to deal with this. One is for code reading data to
maintain enough state to be able to stop and later restart at any point in the

sequence. So code processing this JSON might choose to remember that it
is partway through an object and that it’s in the middle of processing a
property whose name starts with prope. But PipeReader offers an
alternative. Code processing these examples could report with its call to
AdvanceTo that it has consumed everything up to the first comma. If you
do that, the Pipe will remember that we’re not yet finished with this first
block, and when the next call to ReadAsync completes, the
ReadOnlySequence<T> in ReadResult.Buffer will now include
at least two spans: the first span will point into the same block of memory
as last time, but now its offset will be set to where we got to last time—that
first span will refer to the "prope text at the end of the first block. And
then the second span will refer to the text in the second chunk.

The advantage of this second approach is that the code processing the data
doesn’t need to remember as much between calls to ReadAsync, because
it knows it’ll be able to go back and look at the previously unprocessed data
again once the next chunk arrives, at which point it should now be able to
make sense of it.

In practice, this particular example is fairly easy to cope with because
there’s a type in the runtime libraries called Utf8JsonReader that can
handle all the awkward details around chunk boundaries for us. Let’s look
at an example.

Processing JSON in ASP.NET Core
Suppose you are developing a web service that needs to handle HTTP
requests containing JSON. This is a pretty common scenario. Example 18-7
shows the typical way to do this in ASP.NET Core. This is reasonably
straightforward, but it does not use any of the low-allocation mechanisms
discussed in this chapter, so this forces ASP.NET Core to allocate multiple
objects for each request.

Example 18-7. Handling JSON in HTTP requests
[HttpPost]
[Route("/jobs/create")]
public void CreateJob([FromBody] JobDescription requestBody)

{
 switch (requestBody.JobCategory)
 {
 case "arduous":
 CreateArduousJob(requestBody.DepartmentId);
 break;

 case "tedious":
 CreateTediousJob(requestBody.DepartmentId);
 break;
 }
}

public record JobDescription(int DepartmentId, string JobCategory);

Before we look at how to change it, for readers not familiar with ASP.NET
Core, I will quickly explain what’s happening in this example. The
CreateJob method is annotated with attributes telling ASP.NET Core
that this will handle HTTP POST requests where the URL path is
/jobs/create. The [FromBody] attribute on the method’s argument
indicates that we expect the body of the request to contain data in the form
described by the JobDescription type. ASP.NET Core can be
configured to handle various data formats, but if you go with the defaults, it
will expect JSON.

This example is therefore telling ASP.NET Core that for each POST request
to /jobs/create, it should construct a JobDescription object,
populating its Dep art ment Id and JobCategory from properties of the
same name in JSON in the incoming request body.

In other words, we’re asking ASP.NET Core to allocate two objects—a Job
Des cri pti on and a string—for each request, each of which will
contain copies of information that was in the body of the incoming request.
(The other property, DepartmentId, is an int, and since that’s a value
type, it lives inside the Job Des crip tion object.) And for most
applications that will be fine—a couple of allocations is not normally
anything to worry about in the course of handling a single web request.
However, in more realistic examples with more complex requests, we might
then be looking at a much larger number of properties, and if you need to

handle a very high volume of requests, the copying of data into a string
for each property can start to cause enough extra work for the GC that it
becomes a performance problem.

Example 18-8 shows how we can avoid these allocations using the various
features described in the preceding sections of this chapter. It makes the
code a good deal more complex, demonstrating why you should only apply
these kinds of techniques in cases where you have established that GC
overhead is high enough that the extra development effort is justified by the
performance improvements.

Example 18-8. Handling JSON without allocations
private static readonly byte[] Utf8TextJobCategory =
 Encoding.UTF8.GetBytes("JobCategory");
private static readonly byte[] Utf8TextDepartmentId =
 Encoding.UTF8.GetBytes("DepartmentId");
private static readonly byte[] Utf8TextArduous =
Encoding.UTF8.GetBytes("arduous");
private static readonly byte[] Utf8TextTedious =
Encoding.UTF8.GetBytes("tedious");

[HttpPost]
[Route("/jobs/create")]
public async ValueTask CreateJobFrugalAsync()
{
 bool inDepartmentIdProperty = false;
 bool inJobCategoryProperty = false;
 int? departmentId = null;
 bool? isArduous = null;

 PipeReader reader = this.Request.BodyReader;
 JsonReaderState jsonState = default;
 while (true)
 {
 ReadResult result = await
reader.ReadAsync().ConfigureAwait(false);
 jsonState = ProcessBuffer(
 result,
 jsonState,
 out SequencePosition position);

 if (departmentId.HasValue && isArduous.HasValue)
 {
 if (isArduous.Value)

 {
 CreateArduousJob(departmentId.Value);
 }
 else
 {
 CreateTediousJob(departmentId.Value);
 }

 return;
 }

 reader.AdvanceTo(position);

 if (result.IsCompleted)
 {
 break;
 }
 }

 JsonReaderState ProcessBuffer(
 in ReadResult result,
 in JsonReaderState jsonState,
 out SequencePosition position)
 {
 // This is a ref struct, so this has no GC overhead
 var r = new Utf8JsonReader(result.Buffer,
result.IsCompleted, jsonState);

 while (r.Read())
 {
 if (inDepartmentIdProperty)
 {
 if (r.TokenType == JsonTokenType.Number)
 {
 if (r.TryGetInt32(out int v))
 {
 departmentId = v;
 }
 }
 }
 else if (inJobCategoryProperty)
 {
 if (r.TokenType == JsonTokenType.String)
 {
 if (r.ValueSpan.SequenceEqual(Utf8TextArduous))
 {
 isArduous = true;
 }

 else if
(r.ValueSpan.SequenceEqual(Utf8TextTedious))
 {
 isArduous = false;
 }
 }
 }

 inDepartmentIdProperty = false;
 inJobCategoryProperty = false;

 if (r.TokenType == JsonTokenType.PropertyName)
 {
 if (r.ValueSpan.SequenceEqual(Utf8TextJobCategory))
 {
 inJobCategoryProperty = true;
 }
 else if
(r.ValueSpan.SequenceEqual(Utf8TextDepartmentId))
 {
 inDepartmentIdProperty = true;
 }
 }
 }

 position = r.Position;
 return r.CurrentState;
 }
}

Instead of defining an argument with a [FromBody] attribute, this method
works directly with the this.Request.BodyReader property. (Inside
an ASP.NET Core MVC controller class, this.Request returns an
object representing the request being handled.) This property’s type is
PipeReader, the consumer side of a Pipe. ASP.NET Core creates the
pipe, and it manages the data production side, feeding data from incoming
requests into the associated PipeWriter.

As the property name suggests, this particular PipeReader enables us to
read the contents of the HTTP request’s body. By reading the data this way,
we make it possible for ASP.NET Core to present the request body to us in
situ: our code will be able to read the data directly from wherever it

happened to end up in memory once the computer’s network card received
it. (In other words, no copies, and no additional GC overhead.)

The while loop in CreateJobFrugalAsync performs the same
process you’ll see with any code that reads data from a PipeReader: it
calls ReadAsync, processes the data that returns, and calls AdvanceTo
to let the PipeReader know how much of that data it was able to process.
We then check the IsComplete property of the ReadResult returned
by ReadAsync, and if that is false, then we go round one more time.

Example 18-8 uses the Utf8JsonReader type to read the data. As the
name suggests, this works directly with text in UTF-8 encoding. This alone
can provide a significant performance improvement: JSON messages are
commonly sent with this encoding, but .NET strings use UTF-16. So one of
the jobs that the simpler Example 18-7 forced ASP.NET to do was convert
any strings from UTF-8 to UTF-16. On the other hand, we’ve lost some
flexibility. The simpler, slower approach has the benefit of being able to
adapt to incoming requests in more formats: if a client chose to send its
request in something other than UTF-8—perhaps UTF-16 or UCS-32, or
even a non-Unicode encoding such as ISO-8859-1—our handler could cope
with any of them, because ASP.NET Core can do the string conversions for
us. But since Example 18-8 works directly with the data in the form the
client transmitted, using a type that only understands UTF-8, we have
traded off that flexibility in exchange for higher performance.

Utf8JsonReader is able to handle the tricky chunking issues for us—if
an incoming request ends up being split across multiple buffers in memory
because it was too large to fit in a single network packet,
Utf8JsonReader is able to cope. In the event of an unhelpfully placed
split, it will process what it can, and then the JsonReaderState value it
returns through its CurrentState will report a Position indicating
the first unprocessed character. We pass this to
PipeReader.AdvanceTo. The next call to
PipeReader.ReadAsync will return only when there is more data, but

its ReadResult.Buffer will also include the previously unconsumed
data.

Like the ReadOnlySpan<T> type it uses internally when reading data,
Utf8JsonReader is a ref struct type, meaning that it cannot live
on the heap. This means it cannot be used in an async method, because
async methods store all of their local variables on the heap. That is why
this example has a separate method, ProcessBuffer. The outer
CreateJobFrugalAsync method has to be async because the
streaming nature of the PipeReader type means that its ReadAsync
method requires us to use await. But the Utf8JsonReader cannot be
used in an async method, so we end up having to split our logic across
two methods.

NOTE
When splitting your pipeline processing into an outer async reader loop and an inner
method that avoids async in order to use ref struct types, it can be convenient to
make the inner method a local method, as Example 18-8 does. This enables it to access
variables declared in the outer method. You might be wondering whether this causes a
hidden extra allocation—to enable sharing of variables in this way, the compiler
generates a type, storing shared variables in fields in that type and not as conventional
stack-based variables. With lambdas and other anonymous methods, this type will
indeed cause an additional allocation, because it needs to be a heap-based type so that it
can outlive the parent method. However, with local methods, the compiler uses a
struct to hold the shared variables, which it passes by reference to the inner method,
thus avoiding any extra allocation. This is possible because the compiler can determine
that all calls to the local method will return before the outer method returns.

When using Utf8JsonReader, our code has to be prepared to receive
the content in whatever order it happens to arrive. We can’t write code that
tries to read the properties in an order that is convenient for us, because that
would rely on something holding those properties and their values in
memory. (If you tried to rely on going back to the underlying data to
retrieve particular properties on demand, you might find that the property
you wanted was in an earlier chunk that’s no longer available.) This defeats

the whole goal of minimizing allocations. If you want to avoid allocations,
your code needs to be flexible enough to handle the properties in whatever
order they appear.

So the ProcessBuffer code in Example 18-8 just looks at each JSON
element as it comes and works out whether it’s of interest. This means that
when looking for particular property values, we have to notice the
PropertyName element, and then remember that this was the last thing
we saw, so that we know how to handle the Number or String element
that follows, containing the value.

One strikingly odd feature of this code is the way it checks for particular
strings. It needs to recognize properties of interest (JobCategory and
DepartmentId in this example). But we can’t just use normal string
comparison. While it’s possible to retrieve property names and string values
as .NET strings, doing so defeats the main purpose of using
Utf8JsonReader: if you obtain a string, the CLR has to allocate
space for that string on the heap and will eventually have to garbage collect
the memory. (In this example, every acceptable incoming string is known in
advance. In some scenarios there will be user-supplied strings whose values
you will need to perform further processing on, and in those cases, you may
just need to accept the costs of allocating an actual string.) So instead we
end up performing binary comparisons. Notice that we’re working entirely
in UTF-8 encoding, and not the UTF-16 encoding used by .NET’s string
type. (The various static fields, such as Utf8TextJobCategory and
Utf8TextDepartmentId, are all byte arrays created through
Encoding.UTF8 from the System.Text namespace.) That’s because
all of this code works directly against the request’s payload in the form in
which it arrived over the network, in order to avoid unnecessary copying.

Summary
APIs that break data down into the constituent components can be very
convenient to use, but this convenience comes at a price. Each time we

want some subelement represented either as a string or a child object, we
cause another object to be allocated on the GC heap. The cumulative cost of
these allocations (and the corresponding work to recover the memory once
they are no longer in use) can be damaging in some very performance-
sensitive applications. They can also be significant in cloud applications or
high-volume data processing, where you might be paying for the amount of
processing work you do—reducing CPU or memory usage can have a
nontrivial effect on cost.

The Span<T> type and the related types discussed in this chapter make it
possible to work with data wherever it already resides in memory. This
typically requires rather more complex code, but in cases where the payoff
justifies the work, these features make it possible for C# to tackle whole
classes of problems for which it would previously have been too slow.

Thank you for reading this book, and congratulations for making it to the
end. I hope you enjoy using C#, and I wish you every success with your
future projects.

1 .NET Core and .NET do not store the pointer and offset separately: instead, a span just points
directly to the data of interest. The version of Span<T> available for .NET Framework needs
to maintain the pointer separately to ensure GC handles spans correctly, because its CLR does
not have the same modifications for supporting spans that .NET Core has.

2 That said, it is possible to perform this kind of conversion explicitly—the MemoryMarshal
class offers methods that can take a span of one type and return another span that provides a
view over the same underlying memory, interpreted as containing a different element type. But
it is unlikely to be useful in this case: converting a ReadOnlySpan<char> to a
ReadOnlySpan<int> would produce a span with half the number of elements, where each
int contained pairs of adjacent char values.

3 It is a ValueTask<ReadResult> because the purpose of this exercise is to minimize
allocations. ValueTask<T> was described in Chapter 16.

Index

Symbols

! (logical negation), Operators

! (null forgiving operator), Banishing Null with Non-Nullable References

!= (not equal), Tuples, Operators, Structs

" (string literals), Verbatim string literals

"" (double quotes in verbatim string literals), Verbatim string literals

(preprocessing directives), Preprocessing Directives-#region and
#endregion

$ (string interpolation), Formatting data in strings-Formatting data in
strings, Variable argument count with the params keyword

% (remainder), Operators

& (bitwise AND), Operators

&& (conditional AND), Operators

' (character literals), Strings and Characters

* (multiplication), Operators

+ (addition), Operators

+ (unary plus), Operators

++ (pre- and postincrement), Operators

- (negation, or unary minus), Operators

- (subtraction), Operators

-- (pre- and postdecrement), Operators

.. (range syntax), Addressing Elements with Index and Range Syntax,
System.Range

/ (division), Operators

< (less than), Operators

<< (shift left), Operators

<= (less than or equal), Operators

<> (angle brackets), Generics

== (equal), Operators, References and Nulls, Structs

=> syntax

expression-bodied members, Expression-bodied methods

lambdas, Anonymous Functions

switch expression, Patterns in Expressions

TotalCount property, Static Members

> (greater than), Operators

>= (greater than or equal), Operators

>> (shift right), Operators

? (nullable references), Banishing Null with Non-Nullable References

? (nullable values), References and Nulls

? : (conditional operator), Operators-Operators

@ (verbatim string literal), Verbatim string literals

[] (indexers), Indexers

^ (binary operator), Operators

^ (bitwise XOR), Operators

^ (range operator), Addressing Elements with Index and Range Syntax

_ (underscore), Local Variables, Numeric Types, Patterns, Passing
arguments by reference

{} (braces), Namespaces, Classes, Scope

| (bitwise OR), Operators

|| (conditional OR), Operators

~ (bitwise negation), Operators

A

abstract methods, Abstract Methods

accessibility

class definitions and, Classes

inheritance and, Accessibility and Inheritance

accumulator, Aggregation

Action<T> delegate type, Standard Event Delegate Pattern

Activator class, Type and TypeInfo, MethodBase, ConstructorInfo, and
MethodInfo

add methods, custom, Custom Add and Remove Methods-Custom Add and
Remove Methods

addition (+), Operators

Aggregate operator, Aggregation-Aggregation, Windowing Operators

AggregateException class, Exception Types, Singular and Multiple
Exceptions-Singular and Multiple Exceptions

aggregation, Aggregation-Aggregation, Aggregation and Other Single-
Value Operators

ahead-of-time (AoT) compilation, Managed Code and the CLR, Anatomy
of an Assembly

All operator, Containment Tests, Containment Tests

AllocateArray method, Accidentally Defeating Compaction

Amb operator, The Amb Operator

and (pattern conjunction), Combining and Negating Patterns, Combining
and Negating Patterns

angle brackets (<>), Generics

anonymous functions, Anonymous Functions-Lambdas and Expression
Trees

captured variables, Captured Variables-Captured Variables

lambda expressions, Anonymous Functions-Anonymous Functions

lambdas and expression trees, Lambdas and Expression Trees-
Lambdas and Expression Trees

anonymous methods, Anonymous Functions

anonymous types, Anonymous Types-Anonymous Types

Select operator and, Data shaping and anonymous types-Data shaping
and anonymous types

tuples versus, Anonymous Types

var and, Local Variables

Any operator, Containment Tests, Containment Tests

AoT (ahead-of-time) compilation, Managed Code and the CLR, Anatomy
of an Assembly

APIs, exceptions from, Exceptions from APIs-Exceptions from APIs

APM (Asynchronous Programming Model), Other Asynchronous Patterns

appdomains, Custom Exceptions, Isolation and Plug-ins with
AssemblyLoadContext

application manifest, Win32-style resources

ArgumentException class, Exception Types

ArgumentNullException class, Throwing Exceptions, Exception Types,
Caller information attributes, Validating Arguments

ArgumentOutOfRangeException class, Implementing IEnumerable<T>
with Iterators

arguments

parameters versus, Methods

passing by reference, Passing arguments by reference-Reference
variables and return values

validation, Implementing IEnumerable<T> with Iterators, Filtering,
Validating Arguments

variable argument count with params keyword, Variable argument
count with the params keyword-Variable argument count with the
params keyword

arithmetic operators, Operators

Array base class, Arrays

Array.Copy method, Copying and Resizing

Array.IndexOf method, Searching and Sorting

arrays, Arrays

basics, Arrays-Arrays

copying and resizing, Copying and Resizing

initialization, Array Initialization

jagged, Jagged arrays

multidimensional, Multidimensional Arrays-Rectangular arrays

rectangular, Rectangular arrays-Copying and Resizing

searching and sorting, Searching and Sorting-Searching and Sorting

ArraySegment<T> type, System.Range

as operator, Reference Type Constraints, Inheritance and Conversions

AsEnumerable<T> operator, Conversion

ASP.NET Core, processing JSON in, Processing JSON in ASP.NET Core-
Processing JSON in ASP.NET Core

AsParallel<T> operator, Conversion

AsQueryable<T> operator, Conversion

assemblies, Assemblies-Summary

anatomy of, Anatomy of an Assembly-Console versus GUI

assembly resolution, Assembly Resolution-Assembly Resolution

asymmetric encryption, Strong Names

console versus GUI, Console versus GUI

culture component of names, Culture-Culture

explicit loading, Explicit Loading

extern aliases, Type Identity

isolation and plug-ins with AssemblyLoadContext, Isolation and Plug-
ins with AssemblyLoadContext-Isolation and Plug-ins with
AssemblyLoadContext

loading, Loading Assemblies-Isolation and Plug-ins with
AssemblyLoadContext

metadata-only load, Metadata-Only Load

multifile, Multifile Assemblies

names, Assembly Names-Culture

.NET metadata, .NET Metadata

protection, Protection

public signing, Strong Names

reflection-only load, Metadata-Only Load

resources, Resources

strong names, Strong Names-Strong Names

target frameworks and .NET Standard, Target Frameworks and .NET
Standard

type identity, Type Identity-Type Identity

version number in name, Version-Version Numbers and Assembly
Loading

version numbers and assembly loading, Version Numbers and
Assembly Loading

Win32-style resources, Win32-style resources

Assembly class, Assembly-Assembly

assembly loader, Assemblies

assembly manifest, Multifile Assemblies

assembly resolution, Assembly Resolution-Assembly Resolution

AssemblyLoadContext, Isolation and Plug-ins with AssemblyLoadContext-
Isolation and Plug-ins with AssemblyLoadContext

Assert method, Compilation Symbols

assignments, as expressions, Expressions

asymmetric encryption, Strong Names

async keyword, Asynchronous Keywords: async and await

applying to nested methods, Applying async to Nested Methods

asynchronous disposal, Asynchronous disposal

consuming/producing asynchronous sequences, Consuming and
producing asynchronous sequences-Consuming and producing
asynchronous sequences

execution and synchronization contexts, Execution and
Synchronization Contexts-Execution and Synchronization Contexts

multiple operations and loops, Multiple Operations and Loops-
Multiple Operations and Loops

out arguments and, Passing arguments by reference

returning a task, Returning a Task-Returning a Task

asynchronous APIs, Asynchronous APIs

asynchronous disposal, Asynchronous disposal

asynchronous exceptions, Failures Detected by the Runtime

asynchronous immediate evaluation, Containment Tests

asynchronous language features, Asynchronous Language Features-
Summary

applying async to nested methods, Applying async to Nested Methods

async and await keywords, Asynchronous Keywords: async and await-
Applying async to Nested Methods

asynchronous disposal, Asynchronous disposal

await pattern, The await Pattern-The await Pattern

concurrent operations and missed exceptions, Concurrent Operations
and Missed Exceptions

consuming/producing asynchronous sequences, Consuming and
producing asynchronous sequences-Consuming and producing
asynchronous sequences

error handling, Error Handling-Concurrent Operations and Missed
Exceptions

execution and synchronization contexts, Execution and
Synchronization Contexts-Execution and Synchronization Contexts

multiple operations and loops, Multiple Operations and Loops-
Multiple Operations and Loops

returning a task, Returning a Task-Returning a Task

singular and multiple exceptions, Singular and Multiple Exceptions-
Singular and Multiple Exceptions

validating arguments, Validating Arguments

asynchronous methods, out arguments and, Passing arguments by reference

asynchronous operations, Asynchronous Operation

Asynchronous Programming Model (APM), Other Asynchronous Patterns

AsyncSubject<T> class, AsyncSubject<T>

Attribute base class, Attribute Types

attributes, Attributes-Summary

applying attributes, Applying Attributes-Interop

attribute targets, Attribute Targets

attribute types, Attribute Types

caller information attributes, Caller information attributes-Caller
information attributes

CLR-handled attributes, CLR-Handled Attributes-Interop

compiler-handled attributes, Compiler-Handled Attributes-Caller
information attributes

defined, Unit Tests, Attributes

defining and consuming attributes, Defining and Consuming
Attributes-Metadata-Only Load

description and related resources, Description and related resources

metadata-only load, Metadata-Only Load

names and versions, Names and versions

reflection-only load, Metadata-Only Load

retrieving attributes, Retrieving Attributes-Metadata-Only Load

Authenticode, Strong Names

auto-properties, Properties

AutoResetEvent class, Event Objects

availability, reachability versus, Weak References

await keyword, Asynchronous Keywords: async and await-Applying async
to Nested Methods

applying async to nested methods, Applying async to Nested Methods

asynchronous disposal, Asynchronous disposal

consuming/producing asynchronous sequences, Consuming and
producing asynchronous sequences-Consuming and producing
asynchronous sequences

execution and synchronization contexts, Execution and
Synchronization Contexts-Execution and Synchronization Contexts

multiple operations and loops, Multiple Operations and Loops-
Multiple Operations and Loops

returning a task, Returning a Task-Returning a Task

await pattern, The await Pattern-The await Pattern

B

background GC mode, Garbage Collector Modes

Barrier class, Barrier

base class members, accessing base, Accessing Base Members

base types, inheritance and, Special Base Types

basic coding in C#, Basic Coding in C#-Summary

comments and whitespace, Comments and Whitespace-Comments and
Whitespace

expressions, Expressions-Expressions

flow control, Flow Control-Collection Iteration with foreach Loops

fundamental data types, Fundamental Data Types-Object

local variables, Local Variables-Local Variable Instances

operators, Operators-Operators

patterns, Patterns-Patterns in Expressions

preprocessing directives, Preprocessing Directives-#region and
#endregion

statements, Statements

BehaviorSubject<T> class, BehaviorSubject<T>

BigInteger, BigInteger

binary integer operators, Operators

BinaryFormatter type, CLR Serialization

BinaryPrimitives class, BinaryReader, BinaryWriter, and BinaryPrimitives

BinaryReader class, BinaryReader, BinaryWriter, and BinaryPrimitives

BinarySearch method, Searching and Sorting-Searching and Sorting

BinaryWriter class, BinaryReader, BinaryWriter, and BinaryPrimitives

BindingFlags enumeration type, Assembly

Blazor, Many .NETs

blocks

defined, Scope

statements as, Statements

bool expressions, Boolean Decisions with if Statements-Boolean Decisions
with if Statements

Boolean operators, Operators

Boolean types, Booleans

bootstrapping executables, Visual Studio, Visual Studio Code, and JetBrains
Rider, Anatomy of an Assembly

boxing, Boxing-Boxing Nullable<T>

braces ({}), Namespaces, Classes, Scope

break statement

switches, Multiple Choice with switch Statements-Multiple Choice
with switch Statements

while loops, Loops: while and do

bucket values, Rethrowing Exceptions

Buffer operator, Chunking, Windowing Operators-Windowing Operators

BufferedStream class, One Type, Many Behaviors

byte type, Numeric Types

C

C# (generally)

anatomy of a simple program, Anatomy of a Simple Program-Unit
Tests

basic coding (see basic coding in C#)

basics, Introducing C#-Summary

expression, defined, Expressions

general-purpose language features, C# Prefers Generality to
Specialization

managed code and the CLR, Managed Code and the CLR

reasons to use, Why C#?

standards and implementations, C# Standards and Implementations-
Target Multiple .NET Versions with .NET Standard

Visual Studio and Visual Studio Code, Visual Studio, Visual Studio
Code, and JetBrains Rider-Visual Studio, Visual Studio Code, and
JetBrains Rider

C# 9.0

partial methods, Partial Types and Methods

type patterns, Patterns

C# 10.0

async keyword, Asynchronous Keywords: async and await

boilerplate reduction, Anatomy of a Simple Program

CallerArgumentExpression, Caller information attributes

global using directives, Namespaces

ignoring arguments in anonymous methods, Anonymous Functions

namespace declaration, Namespaces

nullable references, Banishing Null with Non-Nullable References

property patterns, Patterns

record structs, Record Structs

release of, Introducing C#

return types for anonymous functions, Anonymous Functions

string interpolation, Formatting data in strings

throwing exceptions, Throwing Exceptions

tuple deconstruction, Tuple deconstruction

using static directives, Static Classes

zero-argument constructors, Default constructors and zero-argument
constructors, Arrays

CallerArgumentExpression, Caller information attributes

cancellation, Cancellation

CancellationToken type, Cancellation

captured variables, Captured Variables-Captured Variables

case statement, Multiple Choice with switch Statements-Multiple Choice
with switch Statements

cast, Numeric conversions

Cast<T> operator, Conversion

catch blocks

exception handling, Handling Exceptions

multiple, Multiple catch Blocks-Multiple catch Blocks

rethrowing exceptions, Rethrowing Exceptions-Rethrowing
Exceptions

chaining constructors, Chaining constructors-Chaining constructors

char type, Strings and Characters-Verbatim string literals

checked contexts, Checked contexts-Checked contexts

Chunk operator, Chunking

class instances, copying, References and Nulls

class keyword, reference types and, References and Nulls, Reference Type
Constraints

class libraries, Why C#?

classes, Classes, Classes-Banishing Null with Non-Nullable References

events and, Events

naming conventions, Classes

reference types, References and Nulls-Banishing Null with Non-
Nullable References

sealed, Sealed Methods and Classes-Sealed Methods and Classes

static classes, Static Classes

static members, Static Members-Static Members

structs and, Structs

when to use, Class, Structs, Records, or Tuples?

Close method, Disposal

cloud services, libraries for, Why C#?

CLR (Common Language Runtime)

C# as native to, Managed Code and the CLR

CTS and, Why C#?

GC and, Object Lifetime, Memory Efficiency

serialization, CLR Serialization-CLR Serialization

CLS (Common Language Specification), Numeric Types

code analyzers, #pragma, Classes

code page encodings, Code page encodings

code points, Strings and Characters

code smell, One Type, Many Behaviors

coding, C# (see basic coding in C#)

cold observables, Implementing cold sources-Implementing cold sources

Collection<T> class, Collection<T>

collections, Collections

addressing elements with index and range syntax, Addressing
Elements with Index and Range Syntax-Supporting Index and Range
in Your Own Types

arrays, Arrays

asynchronous iteration with foreach loops, Consuming and producing
asynchronous sequences

concurrent, Concurrent Collections

defined, Collection Iteration with foreach Loops

dictionaries, Dictionaries-Sorted Dictionaries

immutable collections, Immutable Collections-Immutable Collections

implementing IAsyncEnumerable<T> with iterators, Consuming and
producing asynchronous sequences

implementing IEnumerable<T> with iterators, Implementing
IEnumerable<T> with Iterators-Implementing IEnumerable<T> with
Iterators

implementing lists and sequences, Implementing Lists and Sequences-
ReadOnlyCollection<T>

indexes, System.Index

iteration with foreach loops, Collection Iteration with foreach Loops,
Consuming and producing asynchronous sequences

linked lists, Linked Lists

list and sequence interfaces, List and Sequence Interfaces-List and
Sequence Interfaces

List<T> class, List<T>-List<T>

queues and stacks, Queues and Stacks

ranges, System.Range-System.Range

ReadOnlyCollection<T>, ReadOnlyCollection<T>

sets, Sets-Sets

COM (Component Object Model), Numeric Types, Dynamic, Determining
Reachability, finally Blocks, STAThread and MTAThread

comments, Comments and Whitespace

Common Language Runtime (see CLR)

Common Language Specification (CLS), Numeric Types

Common Type System (CTS), Why C#?, Numeric Types

CompareExchange method, Interlocked

comparison, Type Constraints, Searching and Sorting, Covariance and
Contravariance, Delegates Versus Interfaces, Loading Assemblies

Comparison<T> delegate type, Delegates Versus Interfaces

compilation symbols, Compilation Symbols-Compilation Symbols

Component Object Model (COM), Numeric Types, Dynamic, Determining
Reachability, finally Blocks, STAThread and MTAThread

compound assignment operators, Operators

Concat operator, Whole-Sequence, Order-Preserving Operations, Concat
Operator

concrete class, Abstract Methods

concurrent collections, Concurrent Collections

conditional methods, Compilation Symbols

conditional operator, Operators-Operators

ConditionalAttribute, Compilation Symbols

const field, Fields

constant pattern, Patterns

constraints, Constraints-Multiple Constraints

multiple constraints, Multiple Constraints

not null constraints, Not Null Constraints

reference type constraints, Reference Type Constraints-Reference Type
Constraints

type constraints, Type Constraints-Type Constraints

unmanaged constraints, Value Types All the Way Down with
Unmanaged Constraints

value type constraints, Value Type Constraints

constructed type, Generic Types

construction, inheritance and, Inheritance and Construction-Inheritance and
Construction

ConstructorInfo class, MethodBase, ConstructorInfo, and MethodInfo-
MethodBase, ConstructorInfo, and MethodInfo

constructors, Constructors-Static constructors

chaining, Chaining constructors-Chaining constructors

default, Default constructors and zero-argument constructors-Default
constructors and zero-argument constructors

static, Static constructors-Static constructors

zero-argument, Default constructors and zero-argument constructors-
Default constructors and zero-argument constructors

containment tests, Containment Tests-Containment Tests

Contains operator, Containment Tests, Containment Tests

contextual keywords, Properties

continuation task, Continuations-Continuations

ContinueWith method, Continuations-Continuations

contravariance, Covariance and Contravariance-Covariance and
Contravariance, Type Compatibility

conversions

conversion queries, Conversion-Conversion

explicit, Numeric conversions, Operators

implicit, Numeric conversions, Tuples, Operators, Inheritance and
Conversions, Inheritance and Conversions, Covariance and
Contravariance, Covariance and Contravariance, Covariance and
Contravariance, Boxing, Delegate Types, Monitors and the lock
Keyword, Representing Sequential Elements with Span<T>

implicit reference, Inheritance and Conversions, Covariance and
Contravariance, Type Compatibility

inheritance and, Inheritance and Conversions-Inheritance and
Conversions

numeric, Numeric conversions-Numeric conversions

reference, Covariance and Contravariance, Boxing, Delegate Types,
Type Compatibility

conversions, implicit reference, Type Compatibility

copying

array elements, Copying and Resizing

class instances, References and Nulls

don't, (Don’t) Copy That-(Don’t) Copy That

CopyTo method, Copying and Resizing, List and Sequence Interfaces,
Copying, File Class

CopyToAsync method, Asynchronous Operation

Count operator, Containment Tests, Aggregation and Other Single-Value
Operators

Count property, List<T>

garbage collection, Accidentally Defeating the Garbage Collector,
Accidentally Defeating the Garbage Collector

CountdownEvent class, CountdownEvent

covariance, Covariance and Contravariance-Covariance and
Contravariance, Type Compatibility

crash bucket data, Rethrowing Exceptions

crossgen, Managed Code and the CLR

.csproj (C# project file), Visual Studio, Visual Studio Code, and JetBrains
Rider

CTS (Common Type System), Why C#?, Numeric Types

culture, assembly names and, Culture-Culture

CultureInfo objects, Query Expressions-Query Expressions

curly brackets ({}), Namespaces, Classes, Scope

custom exceptions, Custom Exceptions-Custom Exceptions

D

dammit operator, Banishing Null with Non-Nullable References

data protection laws, exception messages and, Throwing Exceptions

data streams

processing JSON in ASP.NET Core, Processing JSON in ASP.NET
Core-Processing JSON in ASP.NET Core

processing with pipelines, Processing Data Streams with Pipelines-
Processing JSON in ASP.NET Core

database access, LINQ and, C# Prefers Generality to Specialization,
Lambdas and Expression Trees, LINQ, Filtering, Entity Framework Core

Debug class, Compilation Symbols

debugging, exceptions during, Exceptions

decimal type, Numeric Types

declaration patterns

about, Patterns

var patterns versus, Patterns

declaration space, Variable Name Ambiguity

Deconstruct member, Deconstructors

deconstructors, Deconstructors

Decrypt method, File Class

default constructors, Default constructors and zero-argument constructors-
Default constructors and zero-argument constructors

default interface implementation, Default Interface Implementation-Default
Interface Implementation

default keyword, Zero-Like Values

default property, indexers as, Indexers

DefaultIfEmpty operator, Whole-Sequence, Order-Preserving Operations

defensive copies, Guaranteeing Immutability, Passing arguments by
reference

deferred evaluation

defined, Deferred Evaluation

LINQ, Deferred Evaluation-Deferred Evaluation

#define directive, Compilation Symbols

definite assignment rules, Local Variables

Delay operator, Delay

DelaySubscription operator, DelaySubscription

Delegate base class, Behind the Syntax

delegates, Delegates, Lambdas, and Events-Behind the Syntax

common types, Common Delegate Types-Common Delegate Types

covariance and contravariance, Type Compatibility

creating, Creating a Delegate-Creating a Delegate

creating an observable source with, Creating an Observable Source
with Delegates-Creating an Observable Source with Delegates

events versus, Events Versus Delegates

interfaces versus, Delegates Versus Interfaces

invoking, Invoking a Delegate-Invoking a Delegate

multicast, Multicast Delegates

publishing and subscribing with, Publishing and Subscribing with
Delegates-Subscribing to an Observable Source with Delegates

standard event delegate pattern, Standard Event Delegate Pattern

subscribing to an observable source with, Subscribing to an
Observable Source with Delegates

syntax, Behind the Syntax-Behind the Syntax

type compatibility, Type Compatibility-Type Compatibility

delimited comments, Comments and Whitespace

destructors, Destructors and Finalization-Destructors and Finalization

dictionaries, Dictionaries-Sorted Dictionaries

about, Dictionaries-Dictionaries

sorted dictionaries, Sorted Dictionaries

Directory class, Directory Class

DirectoryInfo class, FileInfo, DirectoryInfo, and FileSystemInfo

discard pattern, Patterns

discard, type patterns and, Patterns

disposal

IAsyncDisposable interface, Asynchronous Operation, Asynchronous
disposal

IDisposable interface, IDisposable-Optional Disposal

optional, Optional Disposal

Dispose method

IDisposable interface and, IDisposable-Optional Disposal

stream class, Disposal

DisposeAsync method, Asynchronous disposal

Distinct operator, SelectMany, Set Operations

DistinctBy operator, Set Operations

DistinctUntilChanged operator, DistinctUntilChanged

do loops, Loops: while and do

domain sockets, Concrete Stream Types

dotnet command line tool, Visual Studio, Visual Studio Code, and JetBrains
Rider, Namespaces

dotnet build, Visual Studio, Visual Studio Code, and JetBrains Rider,
Classes

dotnet new, Banishing Null with Non-Nullable References, Assemblies

dotnet new console, Anatomy of a Simple Program, Anatomy of a
Simple Program

dotnet new mstest, Anatomy of a Simple Program

dotnet new sln, Anatomy of a Simple Program

dotnet publish, Assembly Resolution

dotnet run, Anatomy of a Simple Program

dotnet store, Assembly Resolution

dotnet test, Writing a Unit Test, Classes

double type, Numeric Types

double-precision numbers, Numeric Types

downcast, Inheritance and Conversions, Conversion

dynamic link libraries, Visual Studio, Visual Studio Code, and JetBrains
Rider

dynamic loading, Explicit Loading

dynamic type, Dynamic

E

EAP (Event-based Asynchronous Pattern), Other Asynchronous Patterns

EF (Entity Framework), Lambdas and Expression Trees

EF Core (Entity Framework Core), Filtering, Data shaping and anonymous
types, Entity Framework Core

ElementAt operator, Specific Items and Subranges

ElementAtOrDefault operator, Specific Items and Subranges

#elif directive, Compilation Symbols

else (part of if statement), Boolean Decisions with if Statements

#else directive, Compilation Symbols

encapsulation, Classes

encoding

code page encodings, Code page encodings

text-oriented types, Encoding-Using encodings directly

using encodings directly, Using encodings directly

Encrypt method, File Class

encryption, asymmetric, Strong Names

#endif directive, Compilation Symbols

#endregion directive, #region and #endregion

Entity Framework (EF), Lambdas and Expression Trees

Entity Framework Core (EF Core), Filtering, Data shaping and anonymous
types, Entity Framework Core

Enumerable class, Sequence Generation

enums, Enums-Enums

Environment class, Failing Fast

ephemeral generations, Reclaiming Memory

equality operator, Operators

Equals method, The Ubiquitous Methods of System.Object

#error directive, #error and #warning

error handling, Error Handling-Concurrent Operations and Missed
Exceptions

(see also exception handling; exceptions)

concurrent operations and missed exceptions, Concurrent Operations
and Missed Exceptions

singular and multiple exceptions, Singular and Multiple Exceptions-
Singular and Multiple Exceptions

Task object and, Error Handling

validating arguments, Validating Arguments

event bubbling, Custom Add and Remove Methods

event objects, Event Objects-Event Objects

Event-based Asynchronous Pattern (EAP), Other Asynchronous Patterns

EventArgs class, Anonymous Functions, Standard Event Delegate Pattern

EventHandler delegate type, Anonymous Functions, Standard Event
Delegate Pattern

EventInfo objects, EventInfo

EventLoopScheduler, Built-in Schedulers

events, Events, Events-Events Versus Delegates

custom add and remove methods, Custom Add and Remove Methods-
Custom Add and Remove Methods

delegates versus, Events Versus Delegates

garbage collector and, Events and the Garbage Collector-Events and
the Garbage Collector

standard event delegate pattern, Standard Event Delegate Pattern

Except operator, Set Operations

ExceptBy operator, Set Operations

Exception base class, Exception Objects

exception filters, Exception Filters

exception handling, Handling Exceptions-finally Blocks

(see also error handling)

exception filters, Exception Filters

exception objects, Exception Objects

finally blocks, finally Blocks

multiple catch blocks, Multiple catch Blocks-Multiple catch Blocks

nested try blocks, Nested try Blocks

exception objects, Exception Objects

exception types, Exception Types-Custom Exceptions

exceptions, Exceptions-Summary

custom, Custom Exceptions-Custom Exceptions

exception filters, Exception Filters

exception objects, Exception Objects

exception types, Exception Types-Custom Exceptions

failures detected by the runtime, Failures Detected by the Runtime

finally blocks, finally Blocks

from APIs, Exceptions from APIs-Exceptions from APIs

handling, Handling Exceptions-finally Blocks

multiple catch blocks, Multiple catch Blocks-Multiple catch Blocks

nested try blocks, Nested try Blocks

return codes versus, Exceptions

sources of, Exception Sources-Failures Detected by the Runtime

throwing exceptions, Throwing Exceptions-Failing Fast

unhandled exceptions, Unhandled Exceptions-Unhandled Exceptions

Exchange method, Interlocked

executables, Visual Studio, Visual Studio Code, and JetBrains Rider,
Anatomy of an Assembly

execution context, ExecutionContext-ExecutionContext, Execution and
Synchronization Contexts-Execution and Synchronization Contexts

ExecutionContext class, ExecutionContext-ExecutionContext

existential quantifier, Containment Tests

Exists method, File Class

explicit implementation, Interfaces

expression trees, lambdas and, Lambdas and Expression Trees-Lambdas
and Expression Trees

expression-bodied methods, Expression-bodied methods

Expression<T> type, Lambdas and Expression Trees

expressions, Expressions-Expressions

defined, Expressions

patterns in, Patterns in Expressions-Patterns in Expressions

extension methods, Extension methods-Extension methods

extern aliases, Type Identity

F

FailFast method, Failing Fast

fall-through, Multiple Choice with switch Statements

false keyword, Booleans

false operator, Operators

FieldInfo class, FieldInfo

fields

GC and, Garbage Collection

members and, Fields-Fields

value types and, When to Write a Value Type

FIFO (first-in, first-out) list, Queues and Stacks

File class, File Class-File Class

FileInfo class, FileInfo, DirectoryInfo, and FileSystemInfo

files and directories, Files and Directories-Known Folders

Directory class, Directory Class

File class, File Class-File Class

FileInfo, DirectoryInfo, FileSystemInfo, FileInfo, DirectoryInfo, and
FileSystemInfo

FileStream class, FileStream Class-FileStream Class

known folders, Known Folders

Path class, Path Class-Path Class

random access and scatter/gather I/O without Stream, Random Access
and Scatter/Gather I/O Without Stream

FileShare type, FileStream Class

FileStream class, FileStream Class-FileStream Class

FileStreamOptions overload, FileStream Class

FileSystemInfo class, FileInfo, DirectoryInfo, and FileSystemInfo

FileSystemWatcher, Grouping Operators, .NET Events

filtering, LINQ operators for, Filtering-Filtering

finalization, Destructors and Finalization-Destructors and Finalization

Finalize method, The Ubiquitous Methods of System.Object

finally blocks, finally Blocks

FindAll method, Captured Variables

FindIndex method, Searching and Sorting

First operator, Specific Items and Subranges

first-in, first-out (FIFO) list, Queues and Stacks

FirstOrDefault operator, Specific Items and Subranges

fixed keyword, Accidentally Defeating Compaction

Flags attribute, Enums

float type, Numeric Types

floating-point numbers, Numeric Types

flow control, Flow Control-Collection Iteration with foreach Loops

Boolean decisions with if statements, Boolean Decisions with if
Statements-Boolean Decisions with if Statements

for loops, C-Style for Loops-C-Style for Loops

foreach loops, Collection Iteration with foreach Loops

multiple choice with switch statements, Multiple Choice with switch
Statements-Multiple Choice with switch Statements

while loops/do loops, Loops: while and do

Flush method, Destructors and Finalization, Flushing

FlushAsync method, Asynchronous Operation

folders, Known Folders

for loops, C-Style for Loops-C-Style for Loops

foreach loops, Collection Iteration with foreach Loops

asynchronous, Consuming and producing asynchronous sequences

ForEachAsync method, The Parallel Class

format provider, Formatting data in strings

format specifiers, Formatting data in strings

framework-dependent application, Assembly Resolution

frameworks, attributes and, Unit Tests, Attributes

from (LINQ clause), Query Expressions

Func<TResult> delegate type, Common Delegate Types

function token, Behind the Syntax

functions (see anonymous functions; local functions)

fundamental data types, Fundamental Data Types-Object

Booleans, Booleans

dynamic, Dynamic

numeric types, Numeric Types-BigInteger

object, Object

strings and characters, Strings and Characters-Verbatim string literals

tuples, Tuples-Tuple deconstruction

G

garbage collector/garbage collection (GC), Why C#?, Garbage Collection-
Forcing Garbage Collections, Memory Efficiency

about, Garbage Collection-Garbage Collection

accidentally defeating compaction, Accidentally Defeating
Compaction-Accidentally Defeating Compaction

accidentally defeating the garbage collector, Accidentally Defeating
the Garbage Collector-Accidentally Defeating the Garbage Collector

compaction, Accidentally Defeating Compaction-Accidentally
Defeating Compaction

(see also reclaiming memory)

determining reachability, Determining Reachability-Determining
Reachability

events and, Events and the Garbage Collector-Events and the Garbage
Collector

forcing, Forcing Garbage Collections

garbage collector modes, Garbage Collector Modes-Garbage Collector
Modes

memory efficiency and, Memory Efficiency

reclaiming memory, Reclaiming Memory-Reclaiming Memory

temporarily suspending, Temporarily Suspending Garbage Collections

weak references, Weak References-Weak References

GC class, Garbage Collector Modes, Forcing Garbage Collections

AllocateArray method, Accidentally Defeating Compaction

SuppressFinalize method, Destructors and Finalization

generations (heap division), Reclaiming Memory-Reclaiming Memory

generics, Generics-Summary

constraints, Constraints-Multiple Constraints

covariance and contravariance, Covariance and Contravariance-
Covariance and Contravariance

generic methods, Generic Methods

inheritance, Generics-Covariance and Contravariance

inside, Inside Generics-Inside Generics

methods, Type Inference

templates versus, Inside Generics-Inside Generics

tuples and, Generics and Tuples

Type class and, Generic types

types, Generic Types-Generic Types, LINQ, Generics, and
IQueryable<T>-LINQ, Generics, and IQueryable<T>

zero-like values, Zero-Like Values-Zero-Like Values

get (property accessor), Properties

GetDirectoryName method, Path Class

GetFileName method, Path Class

GetHashCode method, Structs, The Ubiquitous Methods of System.Object

GetManifestResourceStream, Resources

GetRandomFileName method, Path Class

global using directive, Namespaces

goto case statement, Multiple Choice with switch Statements

goto statement, Multiple Choice with switch Statements, List and Sequence
Interfaces, IDisposable, finally Blocks

group (LINQ clause), Query Expressions

GroupBy operator, Grouping

grouping operators, Grouping-Grouping, Grouping Operators-Grouping
Operators

GroupJoin operator, Joins, Join Operators-Join Operators

H

hardware threads, Threads

HashSet<T> class, Sets

heap

defined, Garbage Collection

large object (LOH), Reclaiming Memory

pinned blocks, Accidentally Defeating Compaction-Accidentally
Defeating Compaction

pinned object (POH), Accidentally Defeating Compaction

heap compaction, accidentally defeating, Accidentally Defeating
Compaction-Accidentally Defeating Compaction

hidden methods, virtual methods versus, Inheritance and Library Versioning

HistoricalScheduler, Built-in Schedulers

hot observables

defined, IObservable<T>

implementing, Implementing hot sources-Implementing hot sources

HttpClient class, Garbage Collection, Optional Disposal, Captured
Variables, Asynchronous APIs, Concrete Stream Types, The Thread Class,
The Task and Task<T> Classes, Asynchronous Keywords: async and await

hyperthreading, Threads

I

IAsyncDisposable interface, Asynchronous disposal

IAsyncEnumerable<T> interface, List and Sequence Interfaces,
IAsyncEnumerable<T>, IEnumerable<T> and IAsyncEnumerable<T>,
Consuming and producing asynchronous sequences-Consuming and
producing asynchronous sequences

IAsyncOperation<T> class, Execution and Synchronization Contexts

ICloneable interface, References and Nulls

ICollection<T> interface, List and Sequence Interfaces, Sets

IComparable<T> interface, Type Constraints

IComparer<T> interface, Type Constraints, Covariance and Contravariance,
Delegates Versus Interfaces

IDE (Integrated Development Environment), Visual Studio, Visual Studio
Code, and JetBrains Rider

IDisposable interface, IDisposable-Optional Disposal

IEnumerable<T> interface, List and Sequence Interfaces

adapting to Rx, IEnumerable<T> and IAsyncEnumerable<T>-
IEnumerable<T> and IAsyncEnumerable<T>

implementing with iterators, Implementing IEnumerable<T> with
Iterators-Implementing IEnumerable<T> with Iterators

IObservable<T> and, Reactive Extensions

LINQ and, LINQ, Generics, and IQueryable<T>-LINQ, Generics, and
IQueryable<T>

IEqualityComparer<T> interface, Dictionaries

IEquatable<T> interface, Structs

#if directive, Compilation Symbols

if statements, Boolean decisions with, Boolean Decisions with if
Statements-Boolean Decisions with if Statements

IL (intermediate language), Managed Code and the CLR

IList<T> interface, List and Sequence Interfaces-List and Sequence
Interfaces

immutability

of strings, Immutability of strings

of structs, Guaranteeing Immutability

immutable collections, Immutable Collections-Immutable Collections

ImmutableArray<T> struct, Immutable Collections

implementations (of C#), C# Standards and Implementations-Target
Multiple .NET Versions with .NET Standard

implicit conversions, Numeric conversions, Tuples, Inheritance and
Conversions, Inheritance and Conversions, Covariance and Contravariance,
Covariance and Contravariance, Covariance and Contravariance, Delegate
Types, Monitors and the lock Keyword, Representing Sequential Elements
with Span<T>

boxing and, Boxing

implicit reference conversions, Inheritance and Conversions,
Covariance and Contravariance, Type Compatibility

operators, Operators

implicit global usings, Supporting Query Expressions

implicit reference conversions, Type Compatibility

in keyword, Passing arguments by reference-Passing arguments by
reference

Index struct

addressing elements with index and range syntax, System.Index

supporting index and range in your own types, Supporting Index and
Range in Your Own Types-Supporting Index and Range in Your Own
Types

indexers, Indexers

IndexOf method, Searching and Sorting

inheritance, Inheritance-Summary

accessibility and, Accessibility and Inheritance

accessing base members, Accessing Base Members

construction and, Inheritance and Construction-Inheritance and
Construction

conversions and, Inheritance and Conversions-Inheritance and
Conversions

generics, Generics-Covariance and Contravariance

interface inheritance, Interface Inheritance

library versioning and, Inheritance and Library Versioning-Inheritance
and Library Versioning

sealed methods and classes, Sealed Methods and Classes-Sealed
Methods and Classes

special base types, Special Base Types

System.Object, System.Object

virtual methods, Virtual Methods-Inheritance and Library Versioning

initialization

arrays, Array Initialization

lazy, Lazy Initialization-LazyInitializer

variable, Local Variables

initializer syntax, Initializer syntax

initializers, Local Variables

collection, Dictionaries

dictionary, Dictionaries

field, Fields, Static constructors, Inheritance and Construction

object, Initializer syntax

InnerException property, Exception Objects

INotifyPropertyChanged interface, Caller information attributes

instances, copying, References and Nulls

int type, Numeric Types

Integrated Development Environment (IDE), Visual Studio, Visual Studio
Code, and JetBrains Rider

interface inheritance, Interface Inheritance

interfaces

about, Interfaces-Default Interface Implementation

default implementation, Default Interface Implementation-Default
Interface Implementation

delegates versus, Delegates Versus Interfaces

list and sequence, List and Sequence Interfaces-List and Sequence
Interfaces

objects versus, System.Object

virtual methods versus, Virtual Methods

Interlocked class, Interlocked-Interlocked

intermediate language (IL), Managed Code and the CLR

internal members, Accessibility, Accessibility and Inheritance, Protection,
InternalsVisibleToAttribute

internal types, Classes, Accessibility and Inheritance, Protection, Type and
TypeInfo, InternalsVisibleToAttribute

InternalsVisibleToAttribute, InternalsVisibleToAttribute-
InternalsVisibleToAttribute

interop services, Interop

Intersect operator, Set Operations

IntersectBy operator, Set Operations

IntersectWith method, Sets

into keyword (LINQ query expressions), Grouping

IntPtr type, Numeric Types

InvalidCastException type, Inheritance and Conversions, Boxing,
Conversion

InvalidOperationException type, Exception Types

invocation list, Invoking a Delegate

Invoke method, Behind the Syntax

invoking a delegate, Invoking a Delegate-Invoking a Delegate

IObservable<T> interface, Reactive Extensions, Fundamental Interfaces,
IObservable<T>-Implementing hot sources

exception throwing, Subscribing to an Observable Source with
Delegates

implementing cold sources, Implementing cold sources-Implementing
cold sources

implementing hot sources, Implementing hot sources-Implementing
hot sources

.NET events and, .NET Events

Rx implementation, IObserver<T>

IObserver<T> interface, Fundamental Interfaces-IObserver<T>

IOrderedEnumerable<T> interface, LINQ, Generics, and IQueryable<T>,
Ordering, Ordering, Specific Items and Subranges

IOrderedQueryable<T> interface, LINQ, Generics, and IQueryable<T>,
Ordering

IQbservable<T> interface, Reaqtor—Rx as a Service

IQueryable<T> interface

EF Core and, Entity Framework Core

LINQ and, LINQ, Generics, and IQueryable<T>-LINQ, Generics, and
IQueryable<T>

IQueryProvider interface, LINQ, Generics, and IQueryable<T>

IReadOnlyDictionary<T> interface, Dictionaries

IReadOnlyList<T> interface, List and Sequence Interfaces

is operator, Inheritance and Conversions

IsCompleted property, The await Pattern-The await Pattern

ISet<T> interface, Sets-Sets

iteration statement, Statements

iteration variable, Collection Iteration with foreach Loops

iterators

defined, Implementing IEnumerable<T> with Iterators

implementing IAsyncEnumerable<T> with, Consuming and producing
asynchronous sequences

implementing IEnumerable<T> with, Implementing IEnumerable<T>
with Iterators-Implementing IEnumerable<T> with Iterators

J

jagged arrays, Jagged arrays

flattening, SelectMany

JavaScript Object Notation (see JSON)

JetBrains Rider, Visual Studio, Visual Studio Code, and JetBrains Rider,
Inheritance and Construction

JIT (just-in-time) compilation, Managed Code and the CLR, JIT
compilation

join (LINQ clause), Joins

Join operator, Joins-Joins, Join Operators-Join Operators

JSON, JSON-JSON DOM

processing in ASP.NET Core, Processing JSON in ASP.NET Core-
Processing JSON in ASP.NET Core

JSON DOM, JSON DOM-JSON DOM

JsonSerializer, JsonSerializer-JsonSerializer

just-in-time (JIT) compilation, Managed Code and the CLR, JIT
compilation

L

lambda expressions, Anonymous Functions-Anonymous Functions,
Lambdas and Expression Trees-Lambdas and Expression Trees

Language Integrated Query (see LINQ)

large object heap (LOH), Reclaiming Memory

Last operator, Specific Items and Subranges

last-in, last-out (LIFO) list, Queues and Stacks

lazy initialization, Lazy Initialization-LazyInitializer

Lazy<T> class, Lazy<T>

LazyInitializer class, LazyInitializer

legal issues, exception messages and, Throwing Exceptions

length operations, Length

Length property, Operators, Length

let (LINQ clause), How Query Expressions Expand

libraries

.dll file extension for, Visual Studio, Visual Studio Code, and JetBrains
Rider

inheritance and library versioning, Inheritance and Library Versioning-
Inheritance and Library Versioning

LIFO (last-in, last-out) list, Queues and Stacks

#line directive, #line

linked lists, Linked Lists

LinkedList<T> class, Linked Lists

LINQ, LINQ-Summary

deferred evaluation, Deferred Evaluation-Deferred Evaluation

Entity Framework, Entity Framework Core

generics and IQueryable<T>, LINQ, Generics, and IQueryable<T>-
LINQ, Generics, and IQueryable<T>

introduction of, C# Prefers Generality to Specialization

LINQ to XML, LINQ to XML

Parallel LINQ (PLINQ), Parallel LINQ (PLINQ)

query expressions, Query Expressions-Supporting Query Expressions

reactive extensions, Reactive Extensions

Rx LINQ queries, LINQ Queries-Concat Operator

SelectMany operator, SelectMany-SelectMany

sequence generation, Sequence Generation

standard operators, Standard LINQ Operators-Conversion

LINQ operators

Aggregate, Aggregation-Aggregation, Windowing Operators

aggregation, Aggregation-Aggregation

All, Containment Tests, Containment Tests

Any, Containment Tests, Containment Tests

asynchronous immediate evaluation, Containment Tests

Buffer, Chunking

Cast<T>, Conversion

Chunk, Chunking

Concat, Whole-Sequence, Order-Preserving Operations

containment tests, Containment Tests-Containment Tests

Contains, Containment Tests, Containment Tests

conversion, Conversion-Conversion

DefaultIfEmpty, Whole-Sequence, Order-Preserving Operations

DistinctBy, Set Operations

ElementAt, Specific Items and Subranges

ElementAtOrDefault, Specific Items and Subranges

ExceptBy, Set Operations

filtering, Filtering-Filtering

First, Specific Items and Subranges

FirstOrDefault, Specific Items and Subranges

GroupBy, Grouping

grouping, Grouping-Grouping

GroupJoin, Joins

IntersectBy, Set Operations

Join, Joins-Joins

OfType, Filtering

ordering, Ordering-Ordering

Reverse, Whole-Sequence, Order-Preserving Operations

Select, Select-Projection and mapping

SelectMany, SelectMany-SelectMany

SequenceEqual, Whole-Sequence, Order-Preserving Operations

set operations, Set Operations

Single, Specific Items and Subranges

SingleOrDefault, Specific Items and Subranges

Skip, Specific Items and Subranges

SkipLast, Specific Items and Subranges

SkipWhile, Specific Items and Subranges

specific items and subranges, Specific Items and Subranges-Specific
Items and Subranges

Take, Specific Items and Subranges

TakeLast, Specific Items and Subranges

TakeWhile, Specific Items and Subranges

ThenBy, Ordering

ThenByDescending, Ordering

ToDictionary, Conversion

Union, Aggregation

UnionBy, Set Operations

Where, Filtering-Filtering

whole-sequence, order-preserving operations, Whole-Sequence, Order-
Preserving Operations

Zip, Whole-Sequence, Order-Preserving Operations

LINQ providers, LINQ

LINQ to Objects, LINQ

(see also LINQ)

LINQ to XML, LINQ to XML

list interfaces, List and Sequence Interfaces-List and Sequence Interfaces

List<T> class, List<T>-List<T>, Collection<T>

lists

Collection<T> and, Collection<T>

implementing, Implementing Lists and Sequences-
ReadOnlyCollection<T>

linked, Linked Lists

ReadOnlyCollection<T> and, ReadOnlyCollection<T>

literals, Expressions

local functions, Local functions-Local functions

local variable instances, Local Variable Instances

local variables, Local Variables-Local Variable Instances

lock free operations, Interlocked

lock keyword, Monitors and the lock Keyword-Timeouts

expansion of, How the lock keyword expands

timeouts, Timeouts

LOH (large object heap), Reclaiming Memory

Long Term Support (LTS), .NET release cycles and, Release Cycles and
Long Term Support

long type, Numeric Types

long weak reference, Weak References

LongCount operator, Containment Tests

LongLength property, Arrays

M

managed code, Managed Code and the CLR

ManualResetEvent class, Event Objects

ManualResetEventSlim class, Event Objects

mapping, Projection and mapping

marble diagram, Fundamental Interfaces

Math class, Static Classes

Max operator, Aggregation

MaxBy operator, Aggregation

MemberInfo class, MemberInfo-MemberInfo

members, Members-Nested Types

accessibility, Accessibility

constructors, Constructors-Static constructors

deconstructors, Deconstructors

events, Events

fields, Fields-Fields

indexers, Indexers

initializer syntax, Initializer syntax

methods, Methods-Extension methods

nested types, Nested Types

operators, Operators-Operators

properties, Properties-Properties and mutable value types

MemberwiseClone method, The Ubiquitous Methods of System.Object

memory efficiency, Memory Efficiency-Summary

avoiding making copies of data, (Don’t) Copy That-(Don’t) Copy That

processing data streams with pipelines, Processing Data Streams with
Pipelines-Processing JSON in ASP.NET Core

ReadOnlySequence<T>, ReadOnlySequence<T>

representing sequential elements with Memory<T>, Representing
Sequential Elements with Memory<T>

representing sequential elements with Span<T>, Representing
Sequential Elements with Span<T>-Stack Only

Sequence<T>, ReadOnlySequence<T>

memory, reclaiming, Reclaiming Memory-Reclaiming Memory

Memory<T> type, Representing Sequential Elements with Memory<T>

MemoryPool<T> class, Accidentally Defeating Compaction

MemoryStream class, Concrete Stream Types

Merge operator (Rx), Merge

Message property (Exception), Exception Objects

metadata-only load, Metadata-Only Load

MetadataLoadContext class, Assembly, Metadata-Only Load

MethodBase class, MethodBase, ConstructorInfo, and MethodInfo-
MethodBase, ConstructorInfo, and MethodInfo

MethodInfo class, MethodBase, ConstructorInfo, and MethodInfo-
MethodBase, ConstructorInfo, and MethodInfo

methods, Methods-Extension methods

(see also specific methods)

defined, Methods

expression-bodied, Expression-bodied methods

extension, Extension methods-Extension methods

generic, Generic Methods

local functions, Local functions-Local functions

optional arguments, Optional arguments-Variable argument count with
the params keyword

partial, Partial Types and Methods

passing arguments by reference, Passing arguments by reference-
Passing arguments by reference

reference variables and return values, Reference variables and return
values-Reference variables and return values

sealed, Sealed Methods and Classes-Sealed Methods and Classes

variable argument count with params keyword, Variable argument
count with the params keyword-Variable argument count with the
params keyword

virtual, Virtual Methods-Inheritance and Library Versioning

Min operator, Aggregation

MinBy operator, Aggregation

minus (-)

negation (unary minus), Operators

pre- and postdecrement, Operators

subtraction, Operators

Mock<T> class, Reference Type Constraints, Lambdas and Expression
Trees

Module class, Module

modules, in multifile assemblies, Multifile Assemblies

Monitor class

SpinLock versus, SpinLock

synchronizing multithreaded use of shared state, Monitors and the lock
Keyword-Timeouts

waiting and notification, Waiting and notification

Mono project, Many .NETs

Moq library, Reference Type Constraints, Lambdas and Expression Trees

mscorlib assembly, Strong Names, Version Numbers and Assembly
Loading, Type and TypeInfo

MTAThread attribute, STAThread and MTAThread

multi-threaded apartment (MTA), STAThread and MTAThread

multicast delegates, Multicast Delegates

MulticastDelegate type, Multicast Delegates, Behind the Syntax

multidimensional arrays, Multidimensional Arrays-Copying and Resizing

jagged arrays, Jagged arrays, SelectMany

rectangular arrays, Rectangular arrays-Rectangular arrays

multiline comments, Comments and Whitespace

multiplication (*), Operators

multithreading, Multithreading-Summary

cancellation, Cancellation

parallelism, Parallelism-TPL Dataflow

synchronization, Synchronization-Other Class Library Concurrency
Support

(see also synchronization, multithreading and)

tasks, Tasks-Composite Tasks

(see also Task and Task<T> classes)

threads, Threads-ExecutionContext

(see also threads)

various asynchronous patterns, Other Asynchronous Patterns

mutex, Mutex

Mutex class, Mutex

N

named pipes, Concrete Stream Types

nameof operator, Implementing IEnumerable<T> with Iterators, Throwing
Exceptions

namespaces, Namespaces-Nested namespaces

naming conventions, Classes

negation (-), Operators

nested blocks, Scope

nested methods (see local functions)

nested methods, applying async to, Applying async to Nested Methods

nested namespaces, Nested namespaces

nested types, Nested Types

.NET

release cycles and long term support, Release Cycles and Long Term
Support

targeting multiple .NET versions with .NET Standard, Target Multiple
.NET Versions with .NET Standard-Target Multiple .NET Versions

with .NET Standard

.NET 6.0

caller information attributes, Caller information attributes

chunking (LINQ operator), Chunking

Debug.Assert overload, Formatting data in strings

FileStreamOptions overload, FileStream Class

ForEachAsync method, The Parallel Class

implicit global usings feature, Supporting Query Expressions

IntersectBy, ExceptBy, UnionBy, DistinctBy operators, Set Operations

.NET Framework versus, Many .NETs

overload to Take, Specific Items and Subranges

overloads for zero-like value, Specific Items and Subranges

overloads taking an Index, Specific Items and Subranges

RandomAccess class, Random Access and Scatter/Gather I/O Without
Stream

rectangular arrays, Rectangular arrays

release of, Introducing C#

target frameworks and .NET Standard, Target Frameworks and .NET
Standard

throwing exceptions, Throwing Exceptions

TryGetNonEnumeratedCount method, Containment Tests

version numbers in runtime library assembly names, Version

.NET events, .NET Events

.NET Framework, Many .NETs-Target Multiple .NET Versions with .NET
Standard

.NET Native build tools, Managed Code and the CLR

.NET Standard, Target Multiple .NET Versions with .NET Standard-Target
Multiple .NET Versions with .NET Standard, Target Frameworks and .NET
Standard

.NET Standard 2.0, Target Multiple .NET Versions with .NET Standard

new keyword, Inheritance and Library Versioning-Inheritance and Library
Versioning

NewThreadScheduler, Built-in Schedulers

non-nullable references, Banishing Null with Non-Nullable References-
Banishing Null with Non-Nullable References

nonconcurrent GC mode, Garbage Collector Modes

not (pattern negation), Combining and Negating Patterns

not null constraints, Not Null Constraints

NotImplementedException, Exception Types

NotSupportedException, Exception Types

NuGet, Target Multiple .NET Versions with .NET Standard, Version

nuint type, Numeric Types

null coalescing operator, Operators

null forgiving operator, Banishing Null with Non-Nullable References

null-conditional operators, Operators, Indexers

nullable annotation context, Banishing Null with Non-Nullable References

nullable attributes, Banishing Null with Non-Nullable References

#nullable directives, #nullable

#nullable disable directives, Banishing Null with Non-Nullable References

#nullable enable directives, Banishing Null with Non-Nullable References

nullable references feature, Banishing Null with Non-Nullable References

#nullable restore directives, Banishing Null with Non-Nullable References

nullable types, class constraints and, Reference Type Constraints

nullable warning context, Banishing Null with Non-Nullable References

Nullable<T> type, References and Nulls, Value Type Constraints, Boxing
Nullable<T>

NullReferenceException class, Operators

nulls, References and Nulls-Banishing Null with Non-Nullable References

numeric conversions, Numeric conversions-Numeric conversions

numeric types, Numeric Types-BigInteger

checked contexts, Checked contexts-Checked contexts

numeric conversions, Numeric conversions-Numeric conversions

O

object (see System.Object)

object initializers, Properties

object lifetime, Object Lifetime-Summary

boxing, Boxing-Boxing Nullable<T>

destructors and finalization, Destructors and Finalization-Destructors
and Finalization

garbage collection, Garbage Collection-Forcing Garbage Collections

IDisposable, IDisposable-Optional Disposal

objects

about, Object

interfaces versus, System.Object

Observable class, Sequence Builders-Generate

ObserveOn extension methods, ObserveOn

OfType operator, Filtering

operands, Expressions

operators, Operators-Operators

(see also specific operators)

arithmetic, Operators

basics, Operators-Operators

binary integer, Operators

Boolean, Operators

conditional, Operators-Operators

expressions and, Expressions

members and, Operators-Operators

null-conditional, Operators

ordering in expressions, Expressions

relational, Operators

or (pattern disjunction), Combining and Negating Patterns

orderby (LINQ clause), Ordering-Ordering

OrderBy operator, Ordering

OrderByDescending operator, Ordering

ordering constraints, Expressions

ordering, LINQ operators for, Ordering-Ordering

out parameter, Passing arguments by reference-Passing arguments by
reference

overloading, Overloading

override keyword, Inheritance and Library Versioning

P

Parallel class, The Parallel Class

Parallel LINQ (PLINQ), Parallel LINQ (PLINQ)

ParallelEnumerable class, Parallel LINQ

parallelism, multithreading, Parallelism-TPL Dataflow

Parallel class, The Parallel Class

Parallel LINQ, Parallel LINQ

TPL Dataflow, TPL Dataflow

ParameterInfo class, ParameterInfo

parameters, arguments versus, Methods

params keyword, Variable argument count with the params keyword-
Variable argument count with the params keyword

parent/child relationships, multithreading tasks and, Parent/Child
Relationships

partial methods, Partial Types and Methods

partial type declaration, Partial Types and Methods

Pascal casing, Classes

Path class, Path Class-Path Class

patterns, Patterns-Patterns in Expressions

combining/negating, Combining and Negating Patterns

constant, Patterns

declaration, Patterns, Patterns

discard, Patterns, Patterns

in expressions, Patterns in Expressions-Patterns in Expressions

positional, Patterns-Patterns

property, Patterns

recursive, Patterns

relational, Relational Patterns

type, Patterns

var, Patterns

when clause with, Getting More Specific with when

PE (Portable Executable) file format, Anatomy of an Assembly

pinned blocks, Accidentally Defeating Compaction-Accidentally Defeating
Compaction

pinned object heap (POH), Accidentally Defeating Compaction

pipelines

processing data streams with, Processing Data Streams with Pipelines-
Processing JSON in ASP.NET Core

processing JSON in ASP.NET Core, Processing JSON in ASP.NET
Core-Processing JSON in ASP.NET Core

PLINQ (Parallel LINQ), Parallel LINQ (PLINQ)

POH (pinned object heap), Accidentally Defeating Compaction

Point struct, Properties and mutable value types-Properties and mutable
value types

pointers, Other Types

Portable Executable (PE) file format, Anatomy of an Assembly

Position property (Stream), Position and Seeking, Asynchronous Operation

positional patterns, Patterns-Patterns

postdecrement (x--), Operators

postincrement (x++), Operators

#pragma directive, #pragma

preamble, Using encodings directly

precedence, rules of, Expressions

(see also ordering)

predecrement (--x), Operators

Predicate<T> delegate type, Delegate Types-Delegate Types

anonymous functions and, Anonymous Functions

creating a delegate, Creating a Delegate-Creating a Delegate

implied meaning, Common Delegate Types

type compatibility, Type Compatibility-Type Compatibility

Where operator and, Filtering

preincrement (++x), Operators

preprocessing directives, Preprocessing Directives-#region and #endregion

compilation symbols, Compilation Symbols-Compilation Symbols

#define, Compilation Symbols

#error and #warning, #error and #warning

#if, #else, #elif, #endif, Compilation Symbols

#line, #line

#nullable, #nullable

#pragma, #pragma

#region and #endregion, #region and #endregion

private members, Classes-Static Members, The Ubiquitous Methods of
System.Object-Accessibility and Inheritance

project files, Visual Studio, Visual Studio Code, and JetBrains Rider

project, Visual Studio, Visual Studio, Visual Studio Code, and JetBrains
Rider

projection, Select operator and, Projection and mapping

properties, Properties-Properties and mutable value types

indexers, Indexers

mutable value types and, Properties and mutable value types-
Properties and mutable value types

property patterns, Patterns

PropertyInfo type, PropertyInfo

protected internal members, Accessibility and Inheritance

protected members, Accessibility and Inheritance

protected private members, Accessibility and Inheritance

public key token, Assembly Names

public members, Interfaces, Inheritance and Construction, Special Base
Types, Assembly

Public Signing, Strong Names

public types, Classes, Classes-Static Members, Assembly,
InternalsVisibleToAttribute

Q

query expressions, Query Expressions-Supporting Query Expressions

defined, LINQ

expansion of, How Query Expressions Expand-How Query
Expressions Expand

Queue<T>, Queues and Stacks

supporting, Supporting Query Expressions-Supporting Query
Expressions

query operators, LINQ (see LINQ operators)

query operators, Rx, Rx Query Operators-DistinctUntilChanged

Amb, The Amb Operator

Buffer, Windowing Operators-Demarcating windows with observables

Delay, Delay

DelaySubscription, DelaySubscription

DistinctUntilChanged, DistinctUntilChanged

Merge, Merge

Sample, Sample

Scan, The Scan Operator

Throttle, Throttle

TimeInterval, TimeInterval

Timeout, Timeout

Timestamp, Timestamp

Window, Windowing Operators-Demarcating windows with
observables

Queryable class, LINQ, Generics, and IQueryable<T>

Queue<T> class, Queues and Stacks

queues, Queues and Stacks

R

RandomAccess class, Random Access and Scatter/Gather I/O Without
Stream

range operator, Addressing Elements with Index and Range Syntax,
System.Range-System.Range

Range struct, System.Range-System.Range

range type

supporting index and range in your own types, Supporting Index and
Range in Your Own Types-Supporting Index and Range in Your Own

Types

System.Range and, System.Range-System.Range

Razor, #line

reachability

availability versus, Weak References

defined, Garbage Collection

determining, Determining Reachability-Determining Reachability

reactive extensions (Rx), Reactive Extensions, Reactive Extensions-
Summary

adaptation, Adaptation

asynchronous APIs, Asynchronous APIs

basics, Reactive Extensions

fundamental interfaces, Fundamental Interfaces-Implementing hot
sources

IAsyncEnumerable<T>, IEnumerable<T> and
IAsyncEnumerable<T>-IEnumerable<T> and IAsyncEnumerable<T>

IEnumerable<T>, IEnumerable<T> and IAsyncEnumerable<T>-
IEnumerable<T> and IAsyncEnumerable<T>

IObservable<T>, IObservable<T>-Implementing hot sources

IObserver<T>, Fundamental Interfaces-IObserver<T>

LINQ queries, LINQ Queries-Concat Operator

.NET events, .NET Events

publishing and subscribing with delegates, Publishing and Subscribing
with Delegates-Subscribing to an Observable Source with Delegates

query operators, Rx Query Operators-DistinctUntilChanged

Reaqtor, Reaqtor—Rx as a Service

schedulers, Schedulers-Built-in Schedulers

sequence builders, Sequence Builders-Generate

subjects, Subjects-AsyncSubject<T>

timed operations, Timed Operations-DelaySubscription

Read method, The Stream Class-The Stream Class, Interlocked

ReadByte method, The Stream Class

ReaderWriterLock class, Reader/Writer Locks

ReaderWriterLockSlim class, Reader/Writer Locks

readonly keyword, Guaranteeing Immutability, Fields

ReadOnlyCollection<T> class, ReadOnlyCollection<T>

ReadOnlyMemory<T> type, Representing Sequential Elements with
Memory<T>

ReadOnlySequence<T> type, ReadOnlySequence<T>

ReadOnlySpan<T> type, System.Range

Reaqtor, Reaqtor—Rx as a Service

reclaiming memory, Reclaiming Memory-Reclaiming Memory

record structs, Record Structs

record types

about, Records-Records

inheritance and, Record Types-Records, Inheritance, and the with
Keyword

when to use, Class, Structs, Records, or Tuples?

with keyword, Records, Inheritance, and the with Keyword

rectangular arrays, Rectangular arrays-Rectangular arrays

recursive patterns, Patterns

ref keyword, Passing arguments by reference

reference conversions, Covariance and Contravariance, Boxing, Delegate
Types, Type Compatibility

reference types, References and Nulls-Banishing Null with Non-Nullable
References

reference variables, Reference variables and return values-Reference
variables and return values

ReferenceEquals method, References and Nulls, Structs, The Ubiquitous
Methods of System.Object

references, Namespaces

in C# context, Garbage Collection

libraries and, Namespaces

reflection, Reflection-Summary

Assembly, Assembly-Assembly

EventInfo, EventInfo

FieldInfo, FieldInfo

MemberInfo, MemberInfo-MemberInfo

MethodBase, ConstructorInfo, and MethodInfo, MethodBase,
ConstructorInfo, and MethodInfo-MethodBase, ConstructorInfo, and
MethodInfo

Module, Module

ParameterInfo, ParameterInfo

PropertyInfo, PropertyInfo

reflection contexts, Reflection Contexts-Reflection Contexts

Type and TypeInfo, Type and TypeInfo-Generic types

types, Reflection Types-EventInfo

reflection contexts, Reflection Contexts-Reflection Contexts

reflection-only load, Metadata-Only Load

#region directive, #region and #endregion

relational operators, Operators

relational patterns, Relational Patterns

remainder (%), Operators

remove methods (events), Custom Add and Remove Methods-Custom Add
and Remove Methods

ReplaySubject<T> class, ReplaySubject<T>

resizing arrays, Copying and Resizing

ResourceManager class, Culture-Culture

Result property, Retrieving the result

rethrowing exceptions, Rethrowing Exceptions-Rethrowing Exceptions

return codes, exceptions versus, Exceptions

Reverse operator, Whole-Sequence, Order-Preserving Operations

RID (Runtime Identifier), Assembly Resolution

root references, Determining Reachability

rules of precedence, Expressions

(see also ordering)

runtime class libraries, Why C#?

Runtime Identifier (RID), Assembly Resolution

runtime package store, Assembly Resolution

Rx (see reactive extensions)

Rx LINQ queries, LINQ Queries-Concat Operator

aggregation and other single-value operators, Aggregation and Other
Single-Value Operators

Concat operator, Concat Operator

GroupBy operator, Grouping Operators

grouping operators, Grouping Operators-Grouping Operators

GroupJoin operator, Grouping Operators, Join Operators-Join
Operators

Join operator, Join Operators-Join Operators

select clause, LINQ Queries

Select operator, LINQ Queries

SelectMany operator, SelectMany Operator

where clause, LINQ Queries

Where operator, LINQ Queries

S

Sample operator, Sample

satellite resource assemblies, Culture

sbyte type, Numeric Types

Scan operator, The Scan Operator

scatter/gather I/O without Stream, Random Access and Scatter/Gather I/O
Without Stream

schedulers (Rx), Schedulers-Built-in Schedulers

built-in schedulers, Built-in Schedulers

ObserveOn extension method, ObserveOn

passing schedulers explicitly, Passing schedulers explicitly

specifying, Specifying Schedulers-Passing schedulers explicitly

SubscribeOn extension method, SubscribeOn

schedulers (thread-based tasks), Schedulers

scope

local variable instances, Local Variable Instances

of variable, Scope-Local Variable Instances

variable name ambiguity, Variable Name Ambiguity-Variable Name
Ambiguity

sealed classes, Sealed Methods and Classes-Sealed Methods and Classes

sealed methods, Sealed Methods and Classes-Sealed Methods and Classes

searching arrays, Searching and Sorting-Searching and Sorting

seed, Aggregation

Seek method, Position and Seeking

select (LINQ clause), Query Expressions

Select operator

data shaping and anonymous types, Data shaping and anonymous
types-Data shaping and anonymous types

LINQ operators, Select-Projection and mapping

projection and mapping, Projection and mapping

selection statements, Statements

SelectMany operator, SelectMany-SelectMany, SelectMany Operator

self-contained applications, Assembly Resolution

Semaphore class, Semaphores

semaphores, Semaphores

SemaphoreSlim class, Semaphores

sequence builders, Rx, Sequence Builders-Generate

Empty, Empty

Generate, Generate

Never, Never

Range, Range

Repeat, Repeat

Return, Return

Throw, Throw

sequence generation, LINQ, Sequence Generation

sequence interfaces, List and Sequence Interfaces-List and Sequence
Interfaces

Sequence<T> type, ReadOnlySequence<T>

SequenceEqual operator, Whole-Sequence, Order-Preserving Operations

sequences

implementing, Implementing Lists and Sequences-
ReadOnlyCollection<T>

implementing IEnumerable<T> with iterators, Implementing
IEnumerable<T> with Iterators-Implementing IEnumerable<T> with
Iterators

serialization, Serialization-JSON DOM

BinaryReader, BinaryWriter, BinaryPrimitives, BinaryReader,
BinaryWriter, and BinaryPrimitives

CLR serialization, CLR Serialization-CLR Serialization

JSON, JSON-JSON DOM

Utf8JsonReader, Processing JSON in ASP.NET Core-Processing JSON
in ASP.NET Core

server GC mode, Garbage Collector Modes

set (property accessor), Properties

set operations, LINQ, Set Operations

sets, Sets-Sets

shift left (<<), Operators

shift right (>>), Operators

short type, Numeric Types

short weak reference, Weak References

simple name, Assembly Names

simple program, creating, Anatomy of a Simple Program-Unit Tests

classes, Classes

namespaces, Namespaces-Nested namespaces

performing a unit test, Unit Tests

writing a unit test, Writing a Unit Test

simultaneous multithreading (SMT), Threads

Single operator, Specific Items and Subranges

single-line comments, Comments and Whitespace

single-precision numbers, Numeric Types

single-threaded apartment (STA), STAThread and MTAThread

SingleOrDefault operator, Specific Items and Subranges

Skip operator, Specific Items and Subranges

SkipLast operator, Specific Items and Subranges

SkipWhile operator, Specific Items and Subranges

slicing, Inheritance

SMT (simultaneous multithreading), Threads

solutions (in Visual Studio), Visual Studio, Visual Studio Code, and
JetBrains Rider

(see also simple program, creating)

sorted dictionaries, Sorted Dictionaries

sorted sets, Sets

sorting arrays, Searching and Sorting-Searching and Sorting

Span<T> type, System.Range, Representing Sequential Elements with
Span<T>-Stack Only

SpinLock struct, SpinLock-SpinLock

STA (single-threaded apartment), STAThread and MTAThread

Stack<T>, Queues and Stacks

stackalloc keyword, Representing Sequential Elements with Span<T>

stacks, Queues and Stacks

standards, C# Standards and Implementations-Target Multiple .NET
Versions with .NET Standard

state, thread-local storage and, Thread-Local Storage-Thread-Local Storage

statements, Statements

STAThread attribute, STAThread and MTAThread

static classes, Static Classes

static constructors, Static constructors-Static constructors

static members, Static Members-Static Members

static methods, Classes

static typing, Local Variables

Status property, Task status

storage, thread-local, Thread-Local Storage-Thread-Local Storage

Stream class, The Stream Class-One Type, Many Behaviors

asynchronous operation, Asynchronous Operation

concrete types, Concrete Stream Types

copying, Copying

disposal, Disposal

flushing, Flushing

length, Length

position and seeking, Position and Seeking

usage styles, One Type, Many Behaviors

StreamReader type, StreamReader and StreamWriter

character encoding, Encoding-Using encodings directly

exception handling, Handling Exceptions

exception thrown by, Exceptions from APIs

streams, Files and Streams

StreamWriter type, StreamReader and StreamWriter, Encoding-Using
encodings directly

string interpolation, Formatting data in strings-Formatting data in strings

string literals, Expressions, Verbatim string literals-Verbatim string literals

string type, Strings and Characters-Verbatim string literals

formatting data in, Formatting data in strings-Formatting data in
strings

immutability of, Immutability of strings

manipulation methods, String manipulation methods

verbatim string literals, Verbatim string literals-Verbatim string literals

string.Format method, Variable argument count with the params keyword

StringBuilder class, Immutability of strings, StringReader and StringWriter,
Threads, Variables, and Shared State

StringComparer class, Operators

StringInfo class, Strings and Characters

StringReader type, StringReader and StringWriter

strings, Strings and Characters-Verbatim string literals

formatting data in, Formatting data in strings-Formatting data in
strings

immutability of, Immutability of strings

manipulation methods, String manipulation methods

verbatim string literals, Verbatim string literals-Verbatim string literals

StringWriter type, StringReader and StringWriter

strongly named assemblies, Names and versions

structs, Structs-Guaranteeing Immutability

copying, References and Nulls

events and, Events

guaranteeing immutability, Guaranteeing Immutability

record structs, Record Structs

when to use, Class, Structs, Records, or Tuples?

when to write a value type, When to Write a Value Type-When to
Write a Value Type

Subject<T> class, Subject<T>-Subject<T>

subjects, Rx, Subjects-AsyncSubject<T>

AsyncSubject<T>, AsyncSubject<T>

BehaviorSubject<T> class, BehaviorSubject<T>

ReplaySubject<T> class, ReplaySubject<T>

Subject<T> class, Subject<T>-Subject<T>

SubscribeOn extension method, SubscribeOn

subsystems, .exe files and, Console versus GUI

subtraction (-), Operators

Sum operator, Aggregation

SuppressFinalize method, Destructors and Finalization

switch expressions, Patterns in Expressions

switch statements

enums with, Enums

multiple choice with, Multiple Choice with switch Statements-
Multiple Choice with switch Statements

synchronization context, Execution and Synchronization Contexts-
Execution and Synchronization Contexts

synchronization, multithreading and, Synchronization-Other Class Library
Concurrency Support

Barrier class, Barrier

CountdownEvent class, CountdownEvent

event objects, Event Objects-Event Objects

Interlocked class, Interlocked-Interlocked

lazy initialization, Lazy Initialization-LazyInitializer

Lazy<T> class, Lazy<T>

LazyInitializer class, LazyInitializer

lock keyword expansion, How the lock keyword expands

monitors and the lock keyword, Monitors and the lock Keyword-
Timeouts

mutex, Mutex

reader/writer locks, Reader/Writer Locks

runtime library concurrency support, Other Class Library Concurrency
Support

semaphores, Semaphores

SpinLock struct, SpinLock-SpinLock

timeouts, Timeouts

waiting and notification, Waiting and notification

SynchronizationContext class

about, Thread Affinity and SynchronizationContext-Thread Affinity
and SynchronizationContext

ExecutionContext class and, ExecutionContext-ExecutionContext

System.Collections.Concurrent namespace, Other Class Library
Concurrency Support

System.IO RandomAccess class, Random Access and Scatter/Gather I/O
Without Stream

System.Io.Pipelines package, Processing Data Streams with Pipelines-
Processing Data Streams with Pipelines

System.Object, System.Object

System.Text.Json

JSON DOM, JSON DOM-JSON DOM

JsonSerializer, JsonSerializer-JsonSerializer

System.ValueType, Special Base Types

T

Take operator, Specific Items and Subranges

TakeLast operator, Specific Items and Subranges

TakeWhile operator, Specific Items and Subranges

target (in Visual Studio), Visual Studio, Visual Studio Code, and JetBrains
Rider

target frameworks, Target Frameworks and .NET Standard

Task and Task<T> classes, Tasks-Composite Tasks

composite tasks, Composite Tasks

continuations, Continuations-Continuations

creation options, Task creation options

custom threadless tasks, Custom Threadless Tasks

error handling, Error Handling

launching thread pool work with, Launching thread pool work with
Task

parent/child relationships, Parent/Child Relationships

Result property, Retrieving the result

retrieving the result, Retrieving the result

returning, Returning a Task-Returning a Task

schedulers, Schedulers

Status property, Task status

ValueTask and ValueTask<T>, ValueTask and ValueTask<T>

TaskCompletionSource<T> class, Custom Threadless Tasks

TaskPoolScheduler, Built-in Schedulers

TaskScheduler class, Schedulers

templates, generics versus, Inside Generics-Inside Generics

ternary operator (see conditional operator)

testing (see unit test)

text-oriented types, Text-Oriented Types-Using encodings directly

char, Strings and Characters-Verbatim string literals

concrete reader and writer types, Concrete Reader and Writer Types-
StringReader and StringWriter

encoding, Encoding-Using encodings directly

string, Strings and Characters-Verbatim string literals

TextReader and TextWriter, TextReader and TextWriter-TextReader
and TextWriter

TextReader class, TextReader and TextWriter-TextReader and TextWriter

TextWriter class, TextReader and TextWriter-TextReader and TextWriter

ThenBy operator, Ordering

ThenByDescending operator, Ordering

this reference, Classes, Static Members, Accessing Base Members,
Monitors and the lock Keyword

thread affinity, Thread Affinity and SynchronizationContext-
ExecutionContext

Thread class, The Thread Class-The Thread Class

thread pool, The Thread Pool-Thread creation heuristics

launching with Task, Launching thread pool work with Task

thread creation heuristics, Thread creation heuristics

thread-local storage, Thread-Local Storage-Thread-Local Storage

ThreadLocal<T> class, Thread-Local Storage

ThreadPoolScheduler, Built-in Schedulers

threads, Threads-ExecutionContext

hardware threads, Threads

thread affinity and SynchronizationContext, Thread Affinity and
SynchronizationContext-ExecutionContext

Thread class, The Thread Class-The Thread Class

thread pool, The Thread Pool-Thread creation heuristics

thread-local storage, Thread-Local Storage-Thread-Local Storage

variables and shared state, Threads, Variables, and Shared State-
Thread-Local Storage

ThreadStatic attribute, Thread-Local Storage

threshold variable, Captured Variables

Throttle operator, Throttle

throwing exceptions, Throwing Exceptions-Failing Fast

FailFast method, Failing Fast

rethrowing exceptions, Rethrowing Exceptions-Rethrowing
Exceptions

timed operations, Rx, Timed Operations-DelaySubscription

Delay, Delay

DelaySubscription, DelaySubscription

Interval, Interval-Interval

Sample, Sample

Throttle, Throttle

TimeInterval, TimeInterval

Timeout, Timeout

Timer, Timer

Timestamp, Timestamp

windowing operators, Windowing Operators

TimeInterval operator, TimeInterval

Timeout operator, Timeout

timeouts, Timeouts

Timestamp operator, Timestamp

ToArray operator, Conversion

ToDictionary operator, Conversion

ToList operator, Conversion

ToLookup operator, Conversion

ToString method, Fundamental Data Types, Formatting data in strings,
Records, Enums, System.Object

Trace class, Compilation Symbols

true keyword, Booleans

true operator, Operators

try blocks

exception handling, Handling Exceptions

nested, Nested try Blocks

TryGetNonEnumeratedCount method, Containment Tests

TryParse method, Passing arguments by reference, Exceptions, (Don’t)
Copy That

tuples, Tuples-Tuple deconstruction, Anonymous Types

anonymous types versus, Anonymous Types

basics, Tuples-Tuple deconstruction

deconstruction, Tuple deconstruction

generics and, Generics and Tuples

when to use, Class, Structs, Records, or Tuples?

type arguments, Generics

Type class

generics, Generic types

generics and, Generic Types-Generic Types

reflection and, Type and TypeInfo-Generic types

type constraints, Type Constraints-Type Constraints

reference type constraints, Reference Type Constraints-Reference Type
Constraints

value type constraints, Value Type Constraints

type forwarding, Type Identity

type identity

assemblies and, Type Identity-Type Identity

extern aliases, Type Identity

type inference, Type Inference

type parameters, Generics

type patterns, Patterns

TypeInfo class, Type and TypeInfo-Generic types

typeof operator, Type and TypeInfo

assemblies, Explicit Loading, Isolation and Plug-ins with
AssemblyLoadContext, Culture, Assembly

examples of use, Arrays, Custom Exceptions, Creating a Delegate,
Lambdas and Expression Trees, Supporting Query Expressions, Type
Identity, MemberInfo

types, Types-Summary

(see also specific types)

anonymous, Anonymous Types-Anonymous Types

character, Strings and Characters-Verbatim string literals

choosing, Class, Structs, Records, or Tuples?-Class, Structs, Records,
or Tuples?

classes, Classes-Banishing Null with Non-Nullable References

delegates, Common Delegate Types-Common Delegate Types

enums, Enums-Enums

exception types, Exception Types-Custom Exceptions

interfaces, Interfaces-Default Interface Implementation

members, Members-Nested Types

nested, Nested Types

numeric, Numeric Types-BigInteger

partial types and methods, Partial Types and Methods

records, Records-Records

references and nulls, References and Nulls-Banishing Null with Non-
Nullable References

reflection, Reflection Types-EventInfo

string, Strings and Characters-Verbatim string literals

structs, Structs-Guaranteeing Immutability

text-oriented (see text-oriented types)

tuples, Tuples-Tuple deconstruction

U

uint type, Numeric Types

UintPtr type, Numeric Types

ulong type, Numeric Types

unary minus (-), Operators

unary plus (+), Operators

unbound type declaration, Generic Types

unbox operation, Boxing, Boxing Nullable<T>

unchecked contexts, Checked contexts

unhandled exceptions, Unhandled Exceptions-Unhandled Exceptions

Unicode, Local Variables, Strings and Characters

encoding, Encoding-Using encodings directly

Union operator, Aggregation

UnionBy operator, Set Operations

unit test

performing a test, Unit Tests

writing, Writing a Unit Test

universal quantifier, Containment Tests

Universal Windows Platform (UWP), Explicit Loading

unmanaged constraints, Value Types All the Way Down with Unmanaged
Constraints

unsafe code, (Don’t) Copy That

unspeakable names, Anonymous Types, Captured Variables, The await
Pattern

ushort type, Numeric Types

using declaration, IDisposable

using directive, Namespaces

using statement, IDisposable, Asynchronous disposal

Utf8JsonReader type, Processing JSON in ASP.NET Core-Processing JSON
in ASP.NET Core

UWP (Universal Windows Platform), Explicit Loading

V

vacuous truth, Containment Tests

value type

constraints, Value Type Constraints

properties and mutable value types, Properties and mutable value
types-Properties and mutable value types

unmanaged constraints, Value Types All the Way Down with
Unmanaged Constraints

when to write, When to Write a Value Type-When to Write a Value
Type

ValueTask and ValueTask<T> types, ValueTask and ValueTask<T>

ValueTuple<T> type, Generics and Tuples

ValueType, Special Base Types

var keyword, Local Variables-Local Variables

positional pattern with, Patterns

with variables holding LINQ queries, Query Expressions

var patterns, declaration patterns versus, Patterns

variables

captured, Captured Variables-Captured Variables

declaring with var, Local Variables

in C# specification, Local Variables

local, Local Variables-Local Variable Instances

local variable instances, Local Variable Instances

name ambiguity, Variable Name Ambiguity-Variable Name Ambiguity

reference variables and return values, Reference variables and return
values-Reference variables and return values

scope, Scope-Local Variable Instances

verbatim string literals, Verbatim string literals-Verbatim string literals

versioning

assembly names, Version-Version Numbers and Assembly Loading

inheritance and library versioning, Inheritance and Library Versioning-
Inheritance and Library Versioning

version numbers and assembly loading, Version Numbers and
Assembly Loading

virtual methods, Virtual Methods-Inheritance and Library Versioning

abstract methods, Abstract Methods

hidden methods versus, Inheritance and Library Versioning

inheritance and library versioning, Inheritance and Library Versioning-
Inheritance and Library Versioning

interfaces versus, Virtual Methods

Visual Basic, C# Prefers Generality to Specialization

Visual Studio

anatomy of a simple program, Anatomy of a Simple Program-Unit
Tests

assemblies and, Assemblies

basics, Visual Studio, Visual Studio Code, and JetBrains Rider-Visual
Studio, Visual Studio Code, and JetBrains Rider

constructor generation, Inheritance and Construction

#region and #endregion, #region and #endregion

Visual Studio Code, Visual Studio, Visual Studio Code, and JetBrains Rider

constructor generation, Inheritance and Construction

writing a unit test, Writing a Unit Test

Visual Studio for Mac, Visual Studio, Visual Studio Code, and JetBrains
Rider

void keyword, Methods

W

WaitHandle class, Event Objects

#warning directive, #error and #warning

weak references, Weak References-Weak References

WER (Windows Error Reporting), Rethrowing Exceptions

when clause, patterns with, Getting More Specific with when

when keyword (exception filters), Exception Filters

where (LINQ clause), Query Expressions, Query Expressions

Where operator, Filtering-Filtering

while loops, Loops: while and do

whitespace, Comments and Whitespace

Window operator, Windowing Operators-Demarcating windows with
observables

windowing operators, Windowing Operators-Demarcating windows with
observables

Buffer operator, Windowing Operators-Windowing Operators

demarcating windows with observables, Demarcating windows with
observables

time-based overloads, Windowing Operators

Window operator, Windowing Operators-Demarcating windows with
observables

Windows Error Reporting (WER), Rethrowing Exceptions

with keyword, Records, Inheritance, and the with Keyword

workstation GC mode, Garbage Collector Modes

Write method, The Stream Class, TextReader and TextWriter

X

Xamarin, Many .NETs, Visual Studio, Visual Studio Code, and JetBrains
Rider

XML, C# Prefers Generality to Specialization

Y

yield break statement, Implementing IEnumerable<T> with Iterators

yield keyword, Implementing IEnumerable<T> with Iterators

yield return statement, Implementing IEnumerable<T> with Iterators

Z

zero, division by, Failures Detected by the Runtime

zero-argument constructors, Default constructors and zero-argument
constructors-Default constructors and zero-argument constructors

zero-like values, Zero-Like Values-Zero-Like Values

Zip operator, Whole-Sequence, Order-Preserving Operations

About the Author
Ian Griffiths works for endjin, where he is a technical fellow. He lives in
Hove, England, but can often be found on various developer mailing lists
and newsgroups, where a popular sport is to see who can get him to write
the longest email in reply to the shortest possible question. Ian is coauthor
of Windows Forms in a Nutshell, Mastering Visual Studio .NET, and
Programming WPF.

Colophon
The animal on the cover of Programming C# 10 is a gray crowned crane
(Balearica regulorum). This bird’s range extends from Kenya and Uganda
in the north into eastern South Africa, and they prefer to live in habitats
such as open marshes and grasslands.

Adult birds stand 3 to 4 feet tall and weigh about 8 pounds. They are
visually striking birds, with a gray body and pale-gray neck, white and gold
wings, a white face (with a red patch above), a black cap, a bright-red throat
lappet, and blue eyes. Topping all of this off (and giving them their name) is
the distinctive spray of stiff gold filaments at the back of their heads.

Crowned cranes can live for up to 20 years in the wild, spending most of
their waking hours stalking through the grass hunting for small animals and
insects, as well as seeds and grains. They are one of only two types of crane
to roost at night in trees, a feat made possible by a prehensile hind toe that
allows them to grip branches. These birds produce clutches of up to four
eggs; a few hours after hatching, the chicks are able to follow their parents,
and the family forages for food together.

Social and talkative, crowned cranes group together in pairs or families,
which at times combine into flocks of more than one hundred birds. Like
other cranes, they are well-known for their elaborate mating dancing, which
includes elements such as short upward flights, wing flapping, and deep
bows.

Despite their wide range, these birds are currently considered endangered,
threatened by habitat loss, egg poaching, and pesticide use. Many of the
animals on O’Reilly covers are endangered; all of them are important to the
world.

The cover illustration is by Karen Montgomery, based on a black-and-white
engraving from Cassell’s Natural History (1896). The cover fonts are
Gilroy and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

	Preface
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Introducing C#
	Why C#?
	Managed Code and the CLR
	C# Prefers Generality to Specialization

	C# Standards and Implementations
	Many .NETs
	Release Cycles and Long Term Support
	Target Multiple .NET Versions with .NET Standard

	Visual Studio, Visual Studio Code, and JetBrains Rider
	Anatomy of a Simple Program
	Writing a Unit Test
	Namespaces
	Classes
	Unit Tests

	Summary

	2. Basic Coding in C#
	Local Variables
	Scope
	Variable Name Ambiguity
	Local Variable Instances

	Statements and Expressions
	Statements
	Expressions

	Comments and Whitespace
	Preprocessing Directives
	Compilation Symbols
	#error and #warning
	#line
	#pragma
	#nullable
	#region and #endregion

	Fundamental Data Types
	Numeric Types
	Booleans
	Strings and Characters
	Tuples
	Dynamic
	Object

	Operators
	Flow Control
	Boolean Decisions with if Statements
	Multiple Choice with switch Statements
	Loops: while and do
	C-Style for Loops
	Collection Iteration with foreach Loops

	Patterns
	Combining and Negating Patterns
	Relational Patterns
	Getting More Specific with when
	Patterns in Expressions

	Summary

	3. Types
	Classes
	Static Members
	Static Classes

	Records
	References and Nulls
	Banishing Null with Non-Nullable References

	Structs
	When to Write a Value Type
	Guaranteeing Immutability
	Record Structs

	Class, Structs, Records, or Tuples?
	Members
	Accessibility
	Fields
	Constructors
	Deconstructors
	Methods
	Properties
	Operators
	Events
	Nested Types

	Interfaces
	Default Interface Implementation

	Enums
	Other Types
	Anonymous Types
	Partial Types and Methods
	Summary

	4. Generics
	Generic Types
	Constraints
	Type Constraints
	Reference Type Constraints
	Value Type Constraints
	Value Types All the Way Down with Unmanaged Constraints
	Not Null Constraints
	Other Special Type Constraints
	Multiple Constraints

	Zero-Like Values
	Generic Methods
	Type Inference

	Generics and Tuples
	Inside Generics
	Summary

	5. Collections
	Arrays
	Array Initialization
	Searching and Sorting
	Multidimensional Arrays
	Copying and Resizing

	List<T>
	List and Sequence Interfaces
	Implementing Lists and Sequences
	Implementing IEnumerable<T> with Iterators
	Collection<T>
	ReadOnlyCollection<T>

	Addressing Elements with Index and Range Syntax
	System.Index
	System.Range
	Supporting Index and Range in Your Own Types

	Dictionaries
	Sorted Dictionaries

	Sets
	Queues and Stacks
	Linked Lists
	Concurrent Collections
	Immutable Collections
	Summary

	6. Inheritance
	Inheritance and Conversions
	Interface Inheritance
	Generics
	Covariance and Contravariance

	System.Object
	The Ubiquitous Methods of System.Object

	Accessibility and Inheritance
	Virtual Methods
	Abstract Methods
	Inheritance and Library Versioning

	Sealed Methods and Classes
	Accessing Base Members
	Inheritance and Construction
	Record Types
	Records, Inheritance, and the with Keyword

	Special Base Types
	Summary

	7. Object Lifetime
	Garbage Collection
	Determining Reachability
	Accidentally Defeating the Garbage Collector
	Weak References
	Reclaiming Memory
	Garbage Collector Modes
	Temporarily Suspending Garbage Collections
	Accidentally Defeating Compaction
	Forcing Garbage Collections

	Destructors and Finalization
	IDisposable
	Optional Disposal

	Boxing
	Boxing Nullable<T>

	Summary

	8. Exceptions
	Exception Sources
	Exceptions from APIs
	Failures Detected by the Runtime

	Handling Exceptions
	Exception Objects
	Multiple catch Blocks
	Exception Filters
	Nested try Blocks
	finally Blocks

	Throwing Exceptions
	Rethrowing Exceptions
	Failing Fast

	Exception Types
	Custom Exceptions
	Unhandled Exceptions
	Summary

	9. Delegates, Lambdas, and Events
	Delegate Types
	Creating a Delegate
	Multicast Delegates
	Invoking a Delegate
	Common Delegate Types
	Type Compatibility
	Behind the Syntax

	Anonymous Functions
	Captured Variables
	Lambdas and Expression Trees

	Events
	Standard Event Delegate Pattern
	Custom Add and Remove Methods
	Events and the Garbage Collector
	Events Versus Delegates

	Delegates Versus Interfaces
	Summary

	10. LINQ
	Query Expressions
	How Query Expressions Expand
	Supporting Query Expressions

	Deferred Evaluation
	LINQ, Generics, and IQueryable<T>
	Standard LINQ Operators
	Filtering
	Select
	SelectMany
	Chunking
	Ordering
	Containment Tests
	Specific Items and Subranges
	Aggregation
	Set Operations
	Whole-Sequence, Order-Preserving Operations
	Grouping
	Joins
	Conversion

	Sequence Generation
	Other LINQ Implementations
	Entity Framework Core
	Parallel LINQ (PLINQ)
	LINQ to XML
	IAsyncEnumerable<T>
	Reactive Extensions

	Summary

	11. Reactive Extensions
	Fundamental Interfaces
	IObserver<T>
	IObservable<T>

	Publishing and Subscribing with Delegates
	Creating an Observable Source with Delegates
	Subscribing to an Observable Source with Delegates

	Sequence Builders
	Empty
	Never
	Return
	Throw
	Range
	Repeat
	Generate

	LINQ Queries
	Grouping Operators
	Join Operators
	SelectMany Operator
	Aggregation and Other Single-Value Operators
	Concat Operator

	Rx Query Operators
	Merge
	Windowing Operators
	The Scan Operator
	The Amb Operator
	DistinctUntilChanged

	Schedulers
	Specifying Schedulers
	Built-in Schedulers

	Subjects
	Subject<T>
	BehaviorSubject<T>
	ReplaySubject<T>
	AsyncSubject<T>

	Adaptation
	IEnumerable<T> and IAsyncEnumerable<T>
	.NET Events
	Asynchronous APIs

	Timed Operations
	Interval
	Timer
	Timestamp
	TimeInterval
	Throttle
	Sample
	Timeout
	Windowing Operators
	Delay
	DelaySubscription

	Reaqtor—Rx as a Service
	Summary

	12. Assemblies
	Anatomy of an Assembly
	.NET Metadata
	Resources
	Multifile Assemblies
	Other PE Features

	Type Identity
	Loading Assemblies
	Assembly Resolution
	Explicit Loading
	Isolation and Plug-ins with AssemblyLoadContext

	Assembly Names
	Strong Names
	Version
	Version Numbers and Assembly Loading
	Culture

	Protection
	Target Frameworks and .NET Standard
	Summary

	13. Reflection
	Reflection Types
	Assembly
	Module
	MemberInfo
	Type and TypeInfo
	MethodBase, ConstructorInfo, and MethodInfo
	ParameterInfo
	FieldInfo
	PropertyInfo
	EventInfo

	Reflection Contexts
	Summary

	14. Attributes
	Applying Attributes
	Attribute Targets
	Compiler-Handled Attributes
	CLR-Handled Attributes

	Defining and Consuming Attributes
	Attribute Types
	Retrieving Attributes
	Metadata-Only Load

	Summary

	15. Files and Streams
	The Stream Class
	Position and Seeking
	Flushing
	Copying
	Length
	Disposal
	Asynchronous Operation
	Concrete Stream Types
	One Type, Many Behaviors

	Random Access and Scatter/Gather I/O Without Stream
	Text-Oriented Types
	TextReader and TextWriter
	Concrete Reader and Writer Types
	Encoding

	Files and Directories
	FileStream Class
	File Class
	Directory Class
	Path Class
	FileInfo, DirectoryInfo, and FileSystemInfo
	Known Folders

	Serialization
	BinaryReader, BinaryWriter, and BinaryPrimitives
	CLR Serialization
	JSON

	Summary

	16. Multithreading
	Threads
	Threads, Variables, and Shared State
	Thread-Local Storage
	The Thread Class
	The Thread Pool
	Thread Affinity and SynchronizationContext
	ExecutionContext

	Synchronization
	Monitors and the lock Keyword
	SpinLock
	Reader/Writer Locks
	Event Objects
	Barrier
	CountdownEvent
	Semaphores
	Mutex
	Interlocked
	Lazy Initialization
	Other Class Library Concurrency Support

	Tasks
	The Task and Task<T> Classes
	Continuations
	Schedulers
	Error Handling
	Custom Threadless Tasks
	Parent/Child Relationships
	Composite Tasks

	Other Asynchronous Patterns
	Cancellation
	Parallelism
	The Parallel Class
	Parallel LINQ
	TPL Dataflow

	Summary

	17. Asynchronous Language Features
	Asynchronous Keywords: async and await
	Execution and Synchronization Contexts
	Multiple Operations and Loops
	Returning a Task
	Applying async to Nested Methods

	The await Pattern
	Error Handling
	Validating Arguments
	Singular and Multiple Exceptions
	Concurrent Operations and Missed Exceptions

	Summary

	18. Memory Efficiency
	(Don’t) Copy That
	Representing Sequential Elements with Span<T>
	Utility Methods
	Stack Only

	Representing Sequential Elements with Memory<T>
	ReadOnlySequence<T>
	Processing Data Streams with Pipelines
	Processing JSON in ASP.NET Core

	Summary

	Index
	About the Author

