

Think Python

THIRD EDITION

How to Think Like a Computer Scientist

Allen B. Downey

Think Python

by Allen B. Downey

Copyright © 2024 Allen B. Downey. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (https://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Brian Guerin

Development Editor: Jeff Bleiel

Production Editor: Christopher Faucher

Copyeditor: Sonia Saruba

Proofreader: Kim Cofer

Indexer: Ellen Troutman-Zaig

https://oreilly.com/

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

August 2012: First Edition
December 2015: Second Edition
June 2024: Third Edition

Revision History for the Third Edition

2024-05-24: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098155438 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Think Python, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do
not represent the publisher’s views. While the publisher and
the author have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the author disclaim all

http://oreilly.com/catalog/errata.csp?isbn=9781098155438

responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.
978-1-098-15543-8

[LSI]

Preface

Who Is This Book For?

If you want to learn to program, you have come to the right
place. Python is one of the best programming languages for
beginners—and it is also one of the most in-demand skills.

You have also come at the right time, because learning to
program now is probably easier than ever. With virtual
assistants like ChatGPT, you don’t have to learn alone.
Throughout this book, I’ll suggest ways you can use these tools
to accelerate your learning.

This book is primarily for people who have never programmed
before and people who have some experience in another
programming language. If you have substantial experience in
Python, you might find the first few chapters too slow.

One of the challenges of learning to program is that you have to
learn two languages: one is the programming language itself;
the other is the vocabulary we use to talk about programs. If
you learn only the programming language, you are likely to
have problems when you need to interpret an error message,
read documentation, talk to another person, or use virtual
assistants. If you have done some programming, but you have

not also learned this second language, I hope you find this book
helpful.

Goals of the Book

Writing this book, I tried to be careful with the vocabulary. I
define each term when it first appears. And there is a glossary
at the end of each chapter that reviews the terms that were
introduced.

I also tried to be concise. The less mental effort it takes to read
the book, the more capacity you will have for programming.

But you can’t learn to program just by reading a book—you
have to practice. For that reason, this book includes exercises at
the end of every chapter where you can practice what you have
learned.

If you read carefully and work on exercises consistently, you
will make progress. But I’ll warn you now—learning to program
is not easy, and even for experienced programmers it can be
frustrating. As we go, I will suggest strategies to help you write
correct programs and fix incorrect ones.

Navigating the Book

Each chapter in this book builds on the previous ones, so you
should read them in order and take time to work on the
exercises before you move on.

The first six chapters introduce basic elements like arithmetic,
conditionals, and loops. They also introduce the most important
concept in programming, functions, and a powerful way to use
them, recursion.

Chapters 7 and 8 introduce strings—which can represent
letters, words, and sentences—and algorithms for working with
them.

Chapters 9 through 12 introduce Python’s core data structures—
lists, dictionaries, and tuples—which are powerful tools for
writing efficient programs. Chapter 12 presents algorithms for
analyzing text and randomly generating new text. Algorithms
like these are at the core of large language models (LLMs), so
this chapter will give you an idea of how tools like ChatGPT
work.

Chapter 13 is about ways to store data in long-term storage—
files and databases. As an exercise, you can write a program

that searches a filesystem and finds duplicate files.

Chapters 14 through 17 introduce object-oriented programming
(OOP), which is a way to organize programs and the data they
work with. Many Python libraries are written in object-oriented
style, so these chapters will help you understand their design—
and define your own objects.

The goal of this book is not to cover the entire Python language.
Rather, I focus on a subset of the language that provides the
greatest capability with the fewest concepts. Nevertheless,
Python has a lot of features you can use to solve common
problems efficiently. Chapter 18 presents some of these
features.

Finally, Chapter 19 presents my parting thoughts and
suggestions for continuing your programming journey.

What’s New in the Third Edition?

The biggest changes in this edition were driven by two new
technologies—Jupyter notebooks and virtual assistants.

Each chapter of this book is a Jupyter notebook, which is a
document that contains both ordinary text and code. For me,

that makes it easier to write the code, test it, and keep it
consistent with the text. For you, it means you can run the code,
modify it, and work on the exercises, all in one place.
Instructions for working with the notebooks are in the first
chapter.

The other big change is that I’ve added advice for working with
virtual assistants like ChatGPT and using them to accelerate
your learning. When the previous edition of this book was
published in 2015, the predecessors of these tools were far less
useful and most people were unaware of them. Now they are a
standard tool for software engineering, and I think they will be
a transformational tool for learning to program—and learning
a lot of other things, too.

The other changes in the book were motivated by my regrets
about the second edition. The first is that I did not emphasize
software testing. That was already a regrettable omission in
2015, but with the advent of virtual assistants, automated
testing has become even more important. So this edition
presents Python’s most widely used testing tools, doctest and
unittest , and includes several exercises where you can
practice working with them.

My other regret is that the exercises in the second edition were
uneven—some were more interesting than others and some
were too hard. Moving to Jupyter notebooks helped me develop
and test a more engaging and effective sequence of exercises.

In this revision, the sequence of topics is almost the same, but I
rearranged a few of the chapters and compressed two short
chapters into one. Also, I expanded the coverage of strings to
include regular expressions.

A few chapters use turtle graphics. In previous editions, I used
Python’s turtle module, but unfortunately it doesn’t work in
Jupyter notebooks. So I replaced it with a new turtle module
that should be easier to use.

Finally, I rewrote a substantial fraction of the text, clarifying
places that needed it and cutting back in places where I was not
as concise as I could be.

I am very proud of this new edition—I hope you like it!

Getting Started

For most programming languages, including Python, there are
many tools you can use to write and run programs. These tools

are called integrated development environments (IDEs). In
general, there are two kinds of IDEs:

Some work with files that contain code, so they provide
tools for editing and running these files.
Others work primarily with notebooks, which are
documents that contain text and code.

For beginners, I recommend starting with a notebook
development environment like Jupyter. The notebooks for this
book are available from an online repository at
https://allendowney.github.io/ThinkPython. There are two ways
to use them:

You can download the notebooks and run them on your
own computer. In that case, you have to install Python and
Jupyter, which is not hard, but if you want to learn Python,
it can be frustrating to spend a lot of time installing
software.
An alternative is to run the notebooks on Colab, which is a
Jupyter environment that runs in a web browser, so you
don’t have to install anything. Colab is operated by Google,
and it is free to use.

https://allendowney.github.io/ThinkPython

If you are just getting started, I strongly recommend you start
with Colab.

Resources for Teachers

If you are teaching with this book, here are some resources you
might find useful.

You can find notebooks with solutions to the exercises,
along with links to the additional resources listed here, at
https://allendowney.github.io/ThinkPython.
Quizzes for each chapter, and a summative quiz for the
whole book, are available in the O’Reilly Learning Platform
version of this book.
Teaching and Learning with Jupyter is an online book with
suggestions for using Jupyter effectively in the classroom.
You can read the book at
https://jupyter4edu.github.io/jupyter-edu-book.
One of the best ways to use notebooks is live coding, where
an instructor writes code and students follow along in their
own notebooks. To learn about live coding—and get other
great advice about teaching programming—I recommend
the instructor training provided by The Carpentries, at
https://carpentries.github.io/instructor-training.

https://allendowney.github.io/ThinkPython
https://oreil.ly/think-python-3e
https://jupyter4edu.github.io/jupyter-edu-book
https://carpentries.github.io/instructor-training

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Bold

Indicates the first introduction of new technical term,
which also has a corresponding glossary entry.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is
available for download at
https://allendowney.github.io/ThinkPython.

https://allendowney.github.io/ThinkPython

If you have a technical question or a problem using the code
examples, please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Think Python by Allen B. Downey (O’Reilly).
Copyright 2024 Allen B. Downey, 978-1-098-15543-8.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

mailto:support@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to
the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

https://oreilly.com/
https://oreilly.com/

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https://oreil.ly/think-python-3e.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments

Many thanks to Jeff Elkner, who translated my Java book into
Python, which got this project started and introduced me to
what has turned out to be my favorite language. Thanks also to
Chris Meyers, who contributed several sections to How to Think
Like a Computer Scientist (Green Tea Press).

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/think-python-3e
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

Thanks to the Free Software Foundation for developing the
GNU Free Documentation License, which helped make my
collaboration with Jeff and Chris possible, and thanks to the
Creative Commons for the license I am using now.

Thanks to the developers and maintainers of the Python
language and the libraries I used, including the turtle graphics
module; the tools I used to develop the book, including Jupyter
and JupyterBook; and the services I used, including ChatGPT,
Copilot, Colab, and GitHub.

Thanks to the editors at Lulu who worked on How to Think Like
a Computer Scientist and the editors at O’Reilly Media who
worked on Think Python.

Special thanks to the technical reviewers for the second edition,
Melissa Lewis and Luciano Ramalho, and for the third edition,
Sam Lau and Luciano Ramalho (again!). I am also grateful to
Luciano for developing the turtle graphics module I use in
several chapters, called jupyturtle .

Thanks to all the students who worked with earlier versions of
this book and all the contributors who sent in corrections and
suggestions. More than one hundred sharp-eyed and thoughtful
readers have sent in suggestions and corrections over the past

few years. Their contributions, and enthusiasm for this project,
have been a huge help.

If you have a suggestion or correction, please email
feedback@thinkpython.com. If you include at least part of the
sentence the error appears in, that makes it easy for me to
search. Page and section numbers are fine, too, but not quite as
easy to work with. Thanks!

Chapter 1. Programming as a Way of
Thinking

The first goal of this book is to teach you how to program in
Python. But learning to program means learning a new way to
think, so the second goal of this book is to help you think like a
computer scientist. This way of thinking combines some of the
best features of mathematics, engineering, and natural science.
Like mathematicians, computer scientists use formal languages
to denote ideas—specifically computations. Like engineers, they
design things, assembling components into systems and
evaluating trade-offs among alternatives. Like scientists, they
observe the behavior of complex systems, form hypotheses, and
test predictions.

We will start with the most basic elements of programming and
work our way up. In this chapter, we’ll see how Python
represents numbers, letters, and words. And you’ll learn to
perform arithmetic operations.

You will also start to learn the vocabulary of programming,
including terms like operator, expression, value, and type. This
vocabulary is important—you will need it to understand the

rest of the book, to communicate with other programmers, and
to use and understand virtual assistants.

Arithmetic Operators

An arithmetic operator is a symbol that represents an
arithmetic computation. For example, the plus sign, + ,
performs addition:

30 + 12

42

The minus sign, – , is the operator that performs subtraction:

43 - 1

42

The asterisk, * , performs multiplication:

6 * 7

42

And the forward slash, / , performs division:

84 / 2

42.0

Notice that the result of the division is 42.0 rather than 42 .
That’s because there are two types of numbers in Python:

integers, which represent whole numbers, and
floating-point numbers, which represent numbers with a
decimal point.

If you add, subtract, or multiply two integers, the result is an
integer. But if you divide two integers, the result is a floating-
point number. Python provides another operator, // , that
performs integer division. The result of integer division is
always an integer:

84 // 2

42

Integer division is also called “floor division” because it always
rounds down (toward the “floor”):

85 // 2

42

Finally, the operator ** performs exponentiation; that is, it
raises a number to a power:

7 ** 2

49

In some other languages, the caret, ^ , is used for
exponentiation, but in Python it is a bitwise operator called
XOR. If you are not familiar with bitwise operators, the result
might be unexpected:

7 ^ 2

5

I won’t cover bitwise operators in this book, but you can read
about them at http://wiki.python.org/moin/BitwiseOperators.

Expressions

A collection of operators and numbers is called an expression.
An expression can contain any number of operators and
numbers. For example, here’s an expression that contains two
operators:

6 + 6 ** 2

42

http://wiki.python.org/moin/BitwiseOperators

Notice that exponentiation happens before addition. Python
follows the order of operations you might have learned in a
math class: exponentiation happens before multiplication and
division, which happen before addition and subtraction.

In the following example, multiplication happens before
addition:

12 + 5 * 6

42

If you want the addition to happen first, you can use
parentheses:

(12 + 5) * 6

102

Every expression has a value. For example, the expression 6 *
7 has the value 42 .

Arithmetic Functions

In addition to the arithmetic operators, Python provides a few
functions that work with numbers. For example, the round
function takes a floating-point number and rounds it off to the
nearest whole number:

round(42.4)

42

round(42.6)

43

The abs function computes the absolute value of a number.
For a positive number, the absolute value is the number itself:

abs(42)

42

For a negative number, the absolute value is positive:

abs(-42)

42

When we use a function like this, we say we’re calling the
function. An expression that calls a function is a function call.

When you call a function, the parentheses are required. If you
leave them out, you get an error message:

abs 42

 Cell In[18], line 1

 abs 42

 ^

SyntaxError: invalid syntax

You can ignore the first line of this message; it doesn’t contain
any information we need to understand right now. The second
line is the code that contains the error, with a caret (^) beneath
it to indicate where the error was discovered.

The last line indicates that this is a syntax error, which means
that there is something wrong with the structure of the
expression. In this example, the problem is that a function call
requires parentheses.

Let’s see what happens if you leave out the parentheses and the
value:

abs

<function abs(x, /)>

A function name all by itself is a legal expression that has a
value. When it’s displayed, the value indicates that abs is a
function, and it includes some additional information I’ll
explain later.

Strings

In addition to numbers, Python can also represent sequences of
letters, which are called strings because the letters are strung
together like beads on a necklace. To write a string, we can put
a sequence of letters inside straight quotation marks:

'Hello'

'Hello'

It is also legal to use double quotation marks:

"world"

'world'

Double quotes make it easy to write a string that contains an
apostrophe, which is the same symbol as a straight quote:

"it's a small "

"it's a small "

Strings can also contain spaces, punctuation, and digits:

'Well, '

'Well, '

The + operator works with strings; it joins two strings into a
single string, which is called concatenation:

'Well, ' + "it's a small " + 'world.'

"Well, it's a small world."

The * operator also works with strings; it makes multiple
copies of a string and concatenates them:

'Spam, ' * 4

'Spam, Spam, Spam, Spam, '

The other arithmetic operators don’t work with strings.

Python provides a function called len that computes the
length of a string:

len('Spam')

4

Notice that len counts the letters between the quotes, but not
the quotes.

When you create a string, be sure to use straight quotes. The
backquote, also known as a backtick, causes a syntax error:

 `Hello`

 Cell In[49], line 1

 `Hello`

 ^

SyntaxError: invalid syntax

Smart quotes, also known as curly quotes, are also illegal.

Values and Types

So far we’ve seen three kinds of values:

2 is an integer,
42.0 is a floating-point number, and
'Hello' is a string.

A kind of value is called a type. Every value has a type—or we
sometimes say it “belongs to” a type.

Python provides a function called type that tells you the type
of any value. The type of an integer is int :

type(2)

int

The type of a floating-point number is float :

type(42.0)

float

And the type of a string is str :

type('Hello, World!')

str

The types int , float , and str can be used as functions. For
example, int can take a floating-point number and convert it
to an integer (always rounding down):

int(42.9)

42

And float can convert an integer to a floating-point value:

float(42)

42.0

Now, here’s something that can be confusing. What do you get if
you put a sequence of digits in quotes?

'126'

'126'

It looks like a number, but it is actually a string:

type('126')

str

If you try to use it like a number, you might get an error:

'126' / 3

TypeError: unsupported operand type(s) for /: 'st

This example generates a TypeError , which means that the
values in the expression, which are called operands, have the
wrong type. The error message indicates that the / operator
does not support the types of these values, which are str and
int .

If you have a string that contains digits, you can use int to
convert it to an integer:

int('126') / 3

42.0

If you have a string that contains digits and a decimal point, you
can use float to convert it to a floating-point number:

float('12.6')

12.6

When you write a large integer, you might be tempted to use
commas between groups of digits, as in 1,000,000 . This is a
legal expression in Python, but the result is not an integer:

1,000,000

(1, 0, 0)

Python interprets 1,000,000 as a comma-separated sequence
of integers. We’ll learn more about this kind of sequence later.

You can use underscores to make large numbers easier to read:

1_000_000

1000000

Formal and Natural Languages

Natural languages are the languages people speak, like
English, Spanish, and French. They were not designed by
people; they evolved naturally.

Formal languages are languages that are designed by people
for specific applications. For example, the notation that
mathematicians use is a formal language that is particularly
good at denoting relationships among numbers and symbols.
Similarly, programming languages are formal languages that
have been designed to express computations.

Although formal and natural languages have some features in
common there are important differences:

Ambiguity

Natural languages are full of ambiguity, which people deal
with by using contextual clues and other information.
Formal languages are designed to be nearly or completely

unambiguous, which means that any program has exactly
one meaning, regardless of context.

Redundancy

In order to make up for ambiguity and reduce
misunderstandings, natural languages use redundancy. As
a result, they are often verbose. Formal languages are less
redundant and more concise.

Literalness

Natural languages are full of idiom and metaphor. Formal
languages mean exactly what they say.

Because we all grow up speaking natural languages, it is
sometimes hard to adjust to formal languages. Formal
languages are more dense than natural languages, so it takes
longer to read them. Also, the structure is important, so it is not
always best to read from top to bottom, left to right. Finally, the
details matter. Small errors in spelling and punctuation, which
you can get away with in natural languages, can make a big
difference in a formal language.

Debugging

Programmers make mistakes. For whimsical reasons,
programming errors are called bugs and the process of tracking
them down is called debugging.

Programming, and especially debugging, sometimes brings out
strong emotions. If you are struggling with a difficult bug, you
might feel angry, sad, or embarrassed.

Preparing for these reactions might help you deal with them.
One approach is to think of the computer as an employee with
certain strengths, like speed and precision, and particular
weaknesses, like lack of empathy and an inability to grasp the
big picture.

Your job is to be a good manager: find ways to take advantage
of the strengths and mitigate the weaknesses. And find ways to
use your emotions to engage with the problem, without letting
your reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill
that is useful for many activities beyond programming. At the
end of each chapter there is a section, like this one, with my
suggestions for debugging. I hope they help!

Glossary

arithmetic operator: A symbol, like + and * , that denotes an
arithmetic operation like addition or multiplication.

integer: A type that represents whole numbers.

floating-point: A type that represents numbers with fractional
parts.

integer division: An operator, // , that divides two numbers
and rounds down to an integer.

expression: A combination of variables, values, and operators.

value: An integer, floating-point number, or string—or one of
other kinds of values we will see later.

function: A named sequence of statements that performs some
useful operation. Functions may or may not take arguments
and may or may not produce a result.

function call: An expression—or part of an expression—that
runs a function. It consists of the function name followed by an
argument list in parentheses.

syntax error: An error in a program that makes it impossible
to parse—and therefore impossible to run.

string: A type that represents sequences of characters.

concatenation: Joining two strings end to end.

type: A category of values. The types we have seen so far are
integers (type int), floating-point numbers (type float), and
strings (type str).

operand: One of the values on which an operator operates.

natural language: Any of the languages that people speak that
evolved naturally.

formal language: Any of the languages that people have
designed for specific purposes, such as representing
mathematical ideas or computer programs. All programming
languages are formal languages.

bug: An error in a program.

debugging: The process of finding and correcting errors.

Exercises

Ask a Virtual Assistant

As you work through this book, there are several ways you can
use a virtual assistant or chatbot to help you learn:

If you want to learn more about a topic in the chapter, or
anything is unclear, you can ask for an explanation.
If you are having a hard time with any of the exercises, you
can ask for help.

In each chapter, I’ll suggest exercises you can do with a virtual
assistant, but I encourage you to try things on your own and see
what works for you.

Here are some topics you could ask a virtual assistant about:

Earlier I mentioned bitwise operators but I didn’t explain
why the value of 7 ^ 2 is 5. Try asking “What are the
bitwise operators in Python?” or “What is the value of 7
XOR 2 ?”
I also mentioned the order of operations. For more details,
ask “What is the order of operations in Python?”

The round function, which we used to round a floating-
point number to the nearest whole number, can take a
second argument. Try asking “What are the arguments of
the round function?” or “How do I round pi off to three
decimal places?”
There’s one more arithmetic operator I didn’t mention; try
asking “What is the modulus operator in Python?”

Most virtual assistants know about Python, so they answer
questions like this pretty reliably. But remember that these tools
make mistakes. If you get code from a chatbot, test it!

Exercise

You might wonder what round does if a number ends in 0.5 .
The answer is that it sometimes rounds up and sometimes
rounds down. Try these examples and see if you can figure out
what rule it follows:

round(42.5)

42

round(43.5)

44

If you are curious, ask a virtual assistant, “If a number ends in
0.5, does Python round up or down?”

Exercise

When you learn about a new feature, you should try it out and
make mistakes on purpose. That way, you learn the error
messages, and when you see them again, you will know what
they mean. It is better to make mistakes now and deliberately
than later and accidentally.

1. You can use a minus sign to make a negative number like
-2 . What happens if you put a plus sign before a number?
What about 2++2 ?

2. What happens if you have two values with no operator
between them, like 4 2 ?

3. If you call a function like round(42.5) , what happens if
you leave out one or both parentheses?

Exercise

Recall that every expression has a value, every value has a type,
and we can use the type function to find the type of any value.

What is the type of the value of the following expressions?
Make your best guess for each one, and then use type to find
out.

765

2.718

'2 pi'

abs(-7)

abs(-7.0)

abs

int

type

Exercise

The following questions give you a chance to practice writing
arithmetic expressions:

1. How many seconds are there in 42 minutes 42 seconds?
2. How many miles are there in 10 kilometers? Hint: there are

1.61 kilometers in a mile.
3. If you run a 10 kilometer race in 42 minutes 42 seconds,

what is your average pace in seconds per mile?
4. What is your average pace in minutes and seconds per

mile?
5. What is your average speed in miles per hour?

If you already know about variables, you can use them for this
exercise. If you don’t, you can do the exercise without them—
and then we’ll see them in the next chapter.

Chapter 2. Variables and Statements

In the previous chapter, we used operators to write expressions
that perform arithmetic computations.

In this chapter, you’ll learn about variables and statements, the
import statement, and the print function. And I’ll introduce
more of the vocabulary we use to talk about programs,
including “argument” and “module.”

Variables

A variable is a name that refers to a value. To create a variable,
we can write an assignment statement like this:

n = 17

An assignment statement has three parts: the name of the
variable on the left, the equals operator, = , and an expression
on the right. In this example, the expression is an integer. In the
following example, the expression is a floating-point number:

pi = 3.141592653589793

And in the following example, the expression is a string:

message = 'And now for something completely diffe

When you run an assignment statement, there is no output.
Python creates the variable and gives it a value, but the
assignment statement has no visible effect. However, after
creating a variable, you can use it as an expression. So we can
display the value of message like this:

message

'And now for something completely different'

You can also use a variable as part of an expression with
arithmetic operators:

n + 25

42

2 * pi

6.283185307179586

And you can use a variable when you call a function:

round(pi)

3

len(message)

42

State Diagrams

A common way to represent variables on paper is to write the
name with an arrow pointing to its value:

This kind of figure is called a state diagram because it shows
what state each of the variables is in (think of it as the variable’s
state of mind). We’ll use state diagrams throughout the book to
represent a model of how Python stores variables and their
values.

Variable Names

Variable names can be as long as you like. They can contain
both letters and numbers, but they can’t begin with a number. It
is legal to use uppercase letters, but it is conventional to use
only lowercase for variable names.

The only punctuation that can appear in a variable name is the
underscore character, _ . It is often used in names with
multiple words, such as your_name or
airspeed_of_unladen_swallow .

If you give a variable an illegal name, you get a syntax error.
The name million! is illegal because it contains punctuation:

million! = 1000000

 Cell In[15], line 1

 million! = 1000000

 ^

SyntaxError: invalid syntax

76trombones is illegal because it starts with a number:

76trombones = 'big parade'

 Cell In[16], line 1

 76trombones = 'big parade'

 ^

SyntaxError: invalid decimal literal

class is also illegal, but it might not be obvious why:

 class = 'Self-Defence Against Fresh Fruit

 Cell In[17], line 1

 class = 'Self-Defence Against Fresh Fruit'

 ^

SyntaxError: invalid syntax

It turns out that class is a keyword, which is a special word
used to specify the structure of a program. Keywords can’t be
used as variable names.

Here’s a complete list of Python’s keywords:

False await else import pass

None break except in raise

True class finally is retur

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif if or yield

You don’t have to memorize this list. In most development
environments, keywords are displayed in a different color; if
you try to use one as a variable name, you’ll know.

The import Statement

In order to use some Python features, you have to import them.
For example, the following statement imports the math
module:

import math

A module is a collection of variables and functions. The math
module provides a variable called pi that contains the value of

the mathematical constant denoted π. We can display its value
like this:

math.pi

3.141592653589793

To use a variable in a module, you have to use the dot operator
(.) between the name of the module and the name of the
variable.

The math module also contains functions. For example, sqrt
computes square roots:

math.sqrt(25)

5.0

And pow raises one number to the power of a second number:

math.pow(5, 2)

25.0

At this point we’ve seen two ways to raise a number to a power:
we can use the math.pow function or the exponentiation
operator, ** . Either one is fine, but the operator is used more
often than the function.

Expressions and Statements

So far, we’ve seen a few kinds of expressions. An expression can
be a single value, like an integer, floating-point number, or
string. It can also be a collection of values and operators. And it
can include variable names and function calls. Here’s an
expression that includes several of these elements:

19 + n + round(math.pi) * 2

42

We have also seen a few kinds of statements. A statement is a
unit of code that has an effect, but no value. For example, an
assignment statement creates a variable and gives it a value,
but the statement itself has no value:

n = 17

Similarly, an import statement has an effect—it imports a
module so we can use the values and functions it contains—but
it has no visible effect:

import math

Computing the value of an expression is called evaluation.
Running a statement is called execution.

The print Function

When you evaluate an expression, the result is displayed:

n + 1

18

But if you evaluate more than one expression, only the value of
the last one is displayed:

n + 2

n + 3

20

To display more than one value, you can use the print
function:

print(n+2)

print(n+3)

19

20

It also works with floating-point numbers and strings:

print('The value of pi is approximately')

print(math.pi)

The value of pi is approximately

3.141592653589793

You can also use a sequence of expressions separated by
commas:

print('The value of pi is approximately', math.pi

The value of pi is approximately 3.14159265358979

Notice that the print function puts a space between the
values.

Arguments

When you call a function, the expression in parentheses is
called an argument. Normally I would explain why, but in this

case the technical meaning of a term has almost nothing to do
with the common meaning of the word, so I won’t even try.

Some of the functions we’ve seen so far take only one
argument, like int :

int('101')

101

Some take two, like math.pow :

math.pow(5, 2)

25.0

Some can take additional arguments that are optional. For
example, int can take a second argument that specifies the
base of the number:

int('101', 2)

5

The sequence of digits 101 in base 2 represents the number 5
in base 10.

round also takes an optional second argument, which is the
number of decimal places to round off to:

round(math.pi, 3)

3.142

Some functions can take any number of arguments, like
print :

print('Any', 'number', 'of', 'arguments')

Any number of arguments

If you call a function and provide too many arguments, that’s a
TypeError :

float('123.0', 2)

TypeError: float expected at most 1 argument, got

If you provide too few arguments, that’s also a TypeError :

math.pow(2)

TypeError: pow expected 2 arguments, got 1

And if you provide an argument with a type the function can’t
handle, that’s a T y p e E r r o r , too:

math.sqrt('123')

TypeError: must be real number, not str

This kind of checking can be annoying when you are getting
started, but it helps you detect and correct errors.

Comments

As programs get bigger and more complicated, they get more
difficult to read. Formal languages are dense, and it is often
difficult to look at a piece of code and figure out what it is doing
and why.

For this reason, it is a good idea to add notes to your programs
to explain in natural language what the program is doing. These
notes are called comments, and they start with the # symbol:

number of seconds in 42:42

seconds = 42 * 60 + 42

In this case, the comment appears on a line by itself. You can
also put comments at the end of a line:

miles = 10 / 1.61 # 10 kilometers in miles

Everything from the # to the end of the line is ignored—it has
no effect on the execution of the program. Comments are most
useful when they document non-obvious features of the code. It
is reasonable to assume that the reader can figure out what the
code does; it is more useful to explain why.

This comment is redundant with the code and useless:

v = 8 # assign 8 to v

This comment contains useful information that is not in the
code:

v = 8 # velocity in miles per hour

Good variable names can reduce the need for comments, but
long names can make complex expressions hard to read, so
there is a trade-off.

Debugging

Three kinds of errors can occur in a program: syntax errors,
runtime errors, and semantic errors. It is useful to distinguish
among them in order to track them down more quickly:

Syntax error

“Syntax” refers to the structure of a program and the rules
about that structure. If there is a syntax error anywhere
in your program, Python does not run the program. It
displays an error message immediately.

Runtime error

If there are no syntax errors in your program, it can start
running. But if something goes wrong, Python displays an
error message and stops. This type of error is called a
runtime error. It is also called an exception because it
indicates that something exceptional has happened.

Semantic error

The third type of error is “semantic,” which means related
to meaning. If there is a semantic error in your program,
it runs without generating error messages, but it does not
do what you intended. Identifying semantic errors can be

tricky because it requires you to work backward by
looking at the output of the program and trying to figure
out what it is doing.

As we’ve seen, an illegal variable name is a syntax error:

million! = 1000000

 Cell In[43], line 1

 million! = 1000000

 ^

SyntaxError: invalid syntax

If you use an operator with a type it doesn’t support, that’s a
runtime error:

'126' / 3

TypeError: unsupported operand type(s) for /: 'st

Finally, here’s an example of a semantic error. Suppose we want
to compute the average of 1 and 3 , but we forget about the
order of operations and write this:

1 + 3 / 2

2.5

When this expression is evaluated, it does not produce an error
message, so there is no syntax error or runtime error. But the
result is not the average of 1 and 3 , so the program is not
correct. This is a semantic error because the program runs but
it doesn’t do what’s intended.

Glossary

variable: A name that refers to a value.

assignment statement: A statement that assigns a value to a
variable.

state diagram: A graphical representation of a set of variables
and the values they refer to.

keyword: A special word used to specify the structure of a
program.

import statement: A statement that reads a module file and
creates a module object.

module: A file that contains Python code, including function
definitions and sometimes other statements.

dot operator: The operator, . , used to access a function in
another module by specifying the module name followed by a
dot and the function name.

statement: One or more lines of code that represent a
command or action.

evaluate: Perform the operations in an expression in order to
compute a value.

execute: Run a statement and do what it says.

argument: A value provided to a function when the function is
called. Each argument is assigned to the corresponding
parameter in the function.

comment: Text included in a program that provides
information about the program but has no effect on its
execution.

runtime error: An error that causes a program to display an
error message and exit.

exception: An error that is detected while the program is
running.

semantic error: An error that causes a program to do the
wrong thing, but not to display an error message.

Exercises

Ask a Virtual Assistant

Again, I encourage you to use a virtual assistant to learn more
about any of the topics in this chapter.

If you are curious about any of keywords I listed, you could ask
“Why is class a keyword?” or “Why can’t variable names be
keywords?”

You might have noticed that int , float , and str are not
Python keywords. They are variables that represent types, and
they can be used as functions. So it is legal to have a variable or
function with one of those names, but it is strongly discouraged.
Ask an assistant “Why is it bad to use int, float, and string as
variable names?”

Also ask, “What are the built-in functions in Python?” If you are
curious about any of them, ask for more information.

In this chapter we imported the math module and used some
of the variables and functions it provides. Ask an assistant,
“What variables and functions are in the math module?” and
“Other than math, what modules are considered core Python?”

Exercise

Repeating my advice from the previous chapter, whenever you
learn a new feature, you should make errors on purpose to see
what goes wrong.

1. We’ve seen that n = 17 is legal. What about 17 = n ?
2. How about x = y = 1 ?
3. In some languages every statement ends with a semicolon

(;). What happens if you put a semicolon at the end of a
Python statement?

4. What if you put a period at the end of a statement?
5. What happens if you spell the name of a module wrong and

try to import maath ?

Exercise

Practice using the Python interpreter as a calculator:

Part 1. The volume of a sphere with radius r is 4
3 πr

3. What is
the volume of a sphere with radius 5? Start with a variable
named radius and then assign the result to a variable named
volume . Display the result. Add comments to indicate that
radius is in centimeters and volume is in cubic centimeters.

Part 2. A rule of trigonometry says that for any value of x,
(cos x)2 + (sin x)2 = 1. Let’s see if it’s true for a specific value
of x like 42.

Create a variable named x with this value. Then use
math.cos and math.sin to compute the sine and cosine of x,
and the sum of their squares.

The result should be close to 1. It might not be exactly 1 because
floating-point arithmetic is not exact—it is only approximately
correct.

Part 3. In addition to pi , the other variable defined in the
math module is e , which represents the base of the natural
logarithm, written in math notation as e. If you are not familiar
with this value, ask a virtual assistant “What is math.e ?” Now
let’s compute e2 three ways:

1. Use math.e and the exponentiation operator (**).
2. Use math.pow to raise math.e to the power 2 .
3. Use math.exp , which takes as an argument a value, x, and

computes ex.

You might notice that the last result is slightly different from the
other two. See if you can find out which is correct.

Chapter 3. Functions

In the previous chapter we used several functions provided by
Python, like int and float , and a few provided by the math
module, like sqrt and pow . In this chapter, you will learn how
to create your own functions and run them. And we’ll see how
one function can call another. As examples, we’ll display lyrics
from Monty Python songs. These silly examples demonstrate an
important feature—the ability to write your own functions is
the foundation of programming.

This chapter also introduces a new statement, the for loop,
which is used to repeat a computation.

Defining New Functions

A function definition specifies the name of a new function and
the sequence of statements that run when the function is called.
Here’s an example:

def print_lyrics():

 print("I'm a lumberjack, and I'm okay.")

 print("I sleep all night and I work all day."

def is a keyword that indicates that this is a function
definition. The name of the function is print_lyrics .
Anything that’s a legal variable name is also a legal function
name.

The empty parentheses after the name indicate that this
function doesn’t take any arguments.

The first line of the function definition is called the header—the
rest is called the body. The header has to end with a colon and
the body has to be indented. By convention, indentation is
always four spaces. The body of this function is two print
statements; in general, the body of a function can contain any
number of statements of any kind.

Defining a function creates a function object, which we can
display like this:

print_lyrics

<function __main__.print_lyrics()>

The output indicates that print_lyrics is a function that
takes no arguments. __main__ is the name of the module that
contains print_lyrics .

Now that we’ve defined a function, we can call it the same way
we call built-in functions:

print_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

When the function runs, it executes the statements in the body,
which display the first two lines of “The Lumberjack Song.”

Parameters

Some of the functions we have seen require arguments; for
example, when you call abs you pass a number as an
argument. Some functions take more than one argument; for
example, math.pow takes two, the base and the exponent.

Here is a definition for a function that takes an argument:

def print_twice(string):

 print(string)

 print(string)

The variable name in parentheses is a parameter. When the
function is called, the value of the argument is assigned to the
parameter. For example, we can call print_twice like this:

print_twice('Dennis Moore, ')

Dennis Moore,

Dennis Moore,

Running this function has the same effect as assigning the
argument to the parameter and then executing the body of the
function, like this:

string = 'Dennis Moore, '

print(string)

print(string)

Dennis Moore,

Dennis Moore,

You can also use a variable as an argument:

line = 'Dennis Moore, '

print_twice(line)

Dennis Moore,

Dennis Moore,

In this example, the value of line gets assigned to the
parameter string .

Calling Functions

Once you have defined a function, you can use it inside another
function. To demonstrate, we’ll write functions that print the
lyrics of “The Spam Song”:

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

We’ll start with the following function, which takes two
parameters:

def repeat(word, n):

https://www.songfacts.com/lyrics/monty-python/the-spam-song

 print(word * n)

We can use this function to print the first line of the song, like
this:

spam = 'Spam, '

repeat(spam, 4)

Spam, Spam, Spam, Spam,

To display the first two lines, we can define a new function that
uses repeat :

def first_two_lines():

 repeat(spam, 4)

 repeat(spam, 4)

And then call it like this:

first_two_lines()

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

To display the last three lines, we can define another function,
which also uses repeat :

def last_three_lines():

 repeat(spam, 2)

 print('(Lovely Spam, Wonderful Spam!)')

 repeat(spam, 2)

last_three_lines()

Spam, Spam,

(Lovely Spam, Wonderful Spam!)

Spam, Spam,

Finally, we can bring it all together with one function that
prints the whole verse:

def print_verse():

 first_two_lines()

 last_three_lines()

print_verse()

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Spam, Spam,

(Lovely Spam, Wonderful Spam!)

Spam, Spam,

When we run print_verse , it calls first_two_lines ,
which calls repeat , which calls print . That’s a lot of
functions.

Of course, we could have done the same thing with fewer
functions, but the point of this example is to show how
functions can work together.

Repetition

If we want to display more than one verse, we can use a for
statement. Here’s a simple example:

for i in range(2):

 print(i)

0

1

The first line is a header that ends with a colon. The second line
is the body, which has to be indented.

The first line starts with the keyword for , a new variable
named i , and another keyword, in . It uses the range
function to create a sequence of two values, which are 0 and
1 . In Python, when we start counting, we usually start from 0 .

When the for statement runs, it assigns the first value from
range to i and then runs the print function in the body,
which displays 0 .

When it gets to the end of the body, it loops back around to the
header, which is why this statement is called a loop. The second
time through the loop, it assigns the next value from range to
i , and displays it. Then, because that’s the last value from
range , the loop ends.

Here’s how we can use a for loop to print two verses of the
song:

for i in range(2):

 print("Verse", i)

 print_verse()

 print()

Verse 0

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Spam, Spam,

(Lovely Spam, Wonderful Spam!)

Spam, Spam,

Verse 1

Spam, Spam, Spam, Spam,

Spam, Spam, Spam, Spam,

Spam, Spam,

(Lovely Spam, Wonderful Spam!)

Spam, Spam,

You can put a for loop inside a function. For example,
print_n_verses takes a parameter named n , which has to
be an integer, and displays the given number of verses:

def print_n_verses(n):

 for i in range(n):

 print_verse()

 print()

In this example, we don’t use i in the body of the loop, but
there has to be a variable name in the header anyway.

Variables and Parameters Are Local

When you create a variable inside a function, it is local, which
means that it only exists inside the function. For example, the
following function takes two arguments, concatenates them,
and prints the result twice:

def cat_twice(part1, part2):

 cat = part1 + part2

 print_twice(cat)

Here’s an example that uses it:

line1 = 'Always look on the '

line2 = 'bright side of life.'

cat_twice(line1, line2)

Always look on the bright side of life.

Always look on the bright side of life.

When cat_twice runs, it creates a local variable named cat ,
which is destroyed when the function ends. If we try to display
it, we get a NameError :

print(cat)

NameError: name 'cat' is not defined

Outside of the function, cat is not defined.

Parameters are also local. For example, outside cat_twice ,
there is no such thing as part1 or part2 .

Stack Diagrams

To keep track of which variables can be used where, it is
sometimes useful to draw a stack diagram. Like state diagrams,
stack diagrams show the value of each variable, but they also
show the function each variable belongs to.

Each function is represented by a frame. A frame is a box with
the name of a function on the outside and the parameters and
local variables of the function on the inside.

Here’s the stack diagram for the previous example:

The frames are arranged in a stack that indicates which
function called which, and so on. Reading from the bottom,
print was called by print_twice , which was called by
cat_twice , which was called by __main__ —which is a
special name for the topmost frame. When you create a
variable outside of any function, it belongs to __main__ .

In the frame for print , the question mark indicates that we
don’t know the name of the parameter. If you are curious, ask a
virtual assistant, “What are the parameters of the Python print
function?”

Tracebacks

When a runtime error occurs in a function, Python displays the
name of the function that was running, the name of the
function that called it, and so on, up the stack.

To see an example, I’ll define a version of print_twice that
contains an error—it tries to print cat , which is a local
variable in another function:

def print_twice(string):

 print(cat) # NameError

 print(cat)

Now here’s what happens when we run cat_twice :

cat_twice(line1, line2)

Traceback (most recent call last):

 File <string>:2

 Cell In[21], line 3 in cat_twice

 print_twice(cat)

 Cell In[26], line 2 in print_twice

 print(cat) # NameError

NameError: name 'cat' is not defined

The error message includes a traceback, which shows the
function that was running when the error occurred, the

function that called it, and so on. In this example, it shows that
cat_twice called print_twice , and the error occurred in a
print_twice .

The order of the functions in the traceback is the same as the
order of the frames in the stack diagram. The function that was
running is at the bottom.

Why Functions?

It may not be clear yet why it is worth the trouble to divide a
program into functions. There are several reasons:

Creating a new function gives you an opportunity to name
a group of statements, which makes your program easier to
read and debug.
Functions can make a program smaller by eliminating
repetitive code. Later, if you make a change, you only have
to make it in one place.
Dividing a long program into functions allows you to debug
the parts one at a time and then assemble them into a
working whole.
Well-designed functions are often useful for many
programs. Once you write and debug one, you can reuse it.

Debugging

Debugging can be frustrating, but it is also challenging,
interesting, and sometimes even fun. And it is one of the most
important skills you can learn.

In some ways debugging is like detective work. You are given
clues and you have to infer the events that led to the results you
see.

Debugging is also like experimental science. Once you have an
idea about what is going wrong, you modify your program and
try again. If your hypothesis was correct, you can predict the
result of the modification, and you take a step closer to a
working program. If your hypothesis was wrong, you have to
come up with a new one.

For some people, programming and debugging are the same
thing; that is, programming is the process of gradually
debugging a program until it does what you want. The idea is
that you should start with a working program and make small
modifications, debugging them as you go.

If you find yourself spending a lot of time debugging, that is
often a sign that you are writing too much code before you start

tests. If you take smaller steps, you might find that you can
move faster.

Glossary

function definition: A statement that creates a function.

header: The first line of a function definition.

body: The sequence of statements inside a function definition.

function object: A value created by a function definition. The
name of the function is a variable that refers to a function
object.

parameter: A name used inside a function to refer to the value
passed as an argument.

loop: A statement that runs one or more statements, often
repeatedly.

local variable: A variable defined inside a function, which can
only be accessed inside the function.

stack diagram: A graphical representation of a stack of
functions, their variables, and the values they refer to.

frame: A box in a stack diagram that represents a function call.
It contains the local variables and parameters of the function.

traceback: A list of the functions that are executing, printed
when an exception occurs.

Exercises

Ask a Virtual Assistant

By convention, the statements in a function or a for loop are
indented by four spaces. But not everyone agrees with that
convention. If you are curious about the history of this great
debate, ask a virtual assistant to “tell me about spaces and tabs
in Python.”

Virtual assistants are pretty good at writing small functions:

1. Ask your favorite VA to “write a function called repeat
that takes a string and an integer and prints the string the
given number of times.”

2. If the result uses a for loop, you could ask, “Can you do it
without a for loop?”

3. Pick any other function in this chapter and ask a virtual
assistant to write it. The challenge is to describe the

function precisely enough to get what you want. Use the
vocabulary you have learned so far in this book.

Virtual assistants are also pretty good at debugging functions:

1. Ask a virtual assistant what’s wrong with this version of
print_twice :

def print_twice(string):

 print(cat)

 print(cat)

And if you get stuck on any of the following exercises, consider
asking a virtual assistant for help.

Exercise

Write a function named print_right that takes a string
named text as a parameter and prints the string with enough
leading spaces that the last letter of the string is in the 40th
column of the display.

Hint: use the len function, the string concatenation operator
(+), and the string repetition operator (*).

Here’s an example that shows how it should work:

print_right("Monty")

print_right("Python's")

print_right("Flying Circus")

 Monty

 Python's

 Flying Circus

Exercise

Write a function called triangle that takes a string and an
integer and draws a triangle with the given height, made up of
copies of the string. Here’s an example of a triangle with five
levels using the string 'L' :

triangle('L', 5)

L

LL

LLL

LLLL

LLLLL

Exercise

Write a function called rectangle that takes a string and two
integers and draws a rectangle with the given width and height,
made up of copies of the string. Here’s an example of a
rectangle with width 5 and height 4, using the string 'H' :

rectangle('H', 5, 4)

HHHHH

HHHHH

HHHHH

HHHHH

Exercise

The song “99 Bottles of Beer” starts with this verse:

99 bottles of beer on the wall,
99 bottles of beer.
Take one down, pass it around,
98 bottles of beer on the wall.

Then the second verse is the same, except that it starts with 98
bottles and ends with 97. The song continues—for a very long
time—until there are 0 bottles of beer.

Write a function called bottle_verse that takes a number as
a parameter and displays the verse that starts with the given
number of bottles.

Hint: consider starting with a function that can print the first,
second, or last line of the verse, and then use it to write
bottle_verse .

Use this function call to display the first verse:

bottle_verse(99)

99 bottles of beer on the wall

99 bottles of beer

Take one down, pass it around

98 bottles of beer on the wall

If you want to print the whole song, you can use this for loop,
which counts down from 99 to 1 . You don’t have to
completely understand this example—we’ll learn more about
for loops and the range function later.

for n in range(99, 0, -1):

 bottle_verse(n)

 print()

Chapter 4. Functions and Interfaces

This chapter introduces a module called jupyturtle , which
allows you to create simple drawings by giving instructions to
an imaginary turtle. We will use this module to write functions
that draw squares, polygons, and circles—and to demonstrate
interface design, which is a way of designing functions that
work together.

The jupyturtle Module

To use the jupyturtle module, we can import it like this:

import jupyturtle

Now we can use the functions defined in the module, like
make_turtle and forward :

jupyturtle.make_turtle()

jupyturtle.forward(100)

make_turtle creates a canvas, which is a space on the screen
where we can draw, and a turtle, which is represented by a
circular shell and a triangular head. The circle shows the
location of the turtle and the triangle indicates the direction it is
facing.

forward moves the turtle a given distance in the direction it’s
facing, drawing a line segment along the way. The distance is in
arbitrary units—the actual size depends on your computer’s
screen.

We will use functions defined in the jupyturtle module
many times, so it would be nice if we did not have to write the
name of the module every time. That’s possible if we import the
module like this:

from jupyturtle import make_turtle, forward

This version of the import statement imports make_turtle
and forward from the jupyturtle module so we can call
them like this:

make_turtle()

forward(100)

jupyturtle provides two other functions we’ll use, called
left and right . We’ll import them like this:

from jupyturtle import left, right

left causes the turtle to turn left. It takes one argument,
which is the angle of the turn in degrees. For example, we can
make a 90 degree left turn like this:

make_turtle()

forward(50)

left(90)

forward(50)

This program moves the turtle east and then north, leaving two
line segments behind. Before you go on, see if you can modify
the program to make a square.

Making a Square

Here’s one way to make a square:

make_turtle()

forward(50)

left(90)

forward(50)

left(90)

forward(50)

left(90)

forward(50)

left(90)

Because this program repeats the same pair of lines four times,
we can do the same thing more concisely with a for loop:

make_turtle()

for i in range(4):

 forward(50)

 left(90)

Encapsulation and Generalization

Let’s take the square-drawing code from the previous section
and put it in a function called square :

def square():

 for i in range(4):

 forward(50)

 left(90)

Now we can call the function like this:

make_turtle()

square()

Wrapping a piece of code up in a function is called
encapsulation. One of the benefits of encapsulation is that it
attaches a name to the code, which serves as a kind of
documentation. Another advantage is that if you re-use the
code, it is more concise to call a function twice than to copy and
paste the body!

In the current version, the size of the square is always 50 . If
we want to draw squares with different sizes, we can take the
length of the sides as a parameter:

def square(length):

 for i in range(4):

 forward(length)

 left(90)

Now we can draw squares with different sizes:

make_turtle()

square(30)

square(60)

Adding a parameter to a function is called generalization
because it makes the function more general: with the previous
version, the square is always the same size; with this version it
can be any size.

If we add another parameter, we can make it even more
general. The following function draws regular polygons with a
given number of sides:

def polygon(n, length):

 angle = 360 / n

 for i in range(n):

 forward(length)

 left(angle)

In a regular polygon with n sides, the angle between adjacent
sides is 360 / n degrees.

The following example draws a 7 -sided polygon with side
length of 30 :

make_turtle()

polygon(7, 30)

When a function has more than a few numeric arguments, it is
easy to forget what they are, or what order they should be in. It
can be a good idea to include the names of the parameters in
the argument list:

make_turtle()

polygon(n=7, length=30)

These are sometimes called “named arguments” because they
include the parameter names. But in Python they are more
often called keyword arguments (not to be confused with
Python keywords like for and def).

This use of the assignment operator, = , is a reminder about
how arguments and parameters work—when you call a
function, the arguments are assigned to the parameters.

Approximating a Circle

Now suppose we want to draw a circle. We can do that,
approximately, by drawing a polygon with a large number of
sides, so each side is small enough that it’s hard to see. Here is a
function that uses polygon to draw a 30-sided polygon that
approximates a circle:

import math

def circle(radius):

 circumference = 2 * math.pi * radius

 n = 30

 length = circumference / n

 polygon(n, length)

circle takes the radius of the circle as a parameter. It
computes circumference , which is the circumference of a
circle with the given radius. n is the number of sides, so
circumference / n is the length of each side.

This function might take a long time to run. We can speed it up
by calling m a k e _ t u r t l e with a keyword argument called
delay that sets the time, in seconds, the turtle waits after each
step. The default value is 0.2 seconds—if we set it to 0.02 it
runs about 10 times faster.

make_turtle(delay=0.02)

circle(30)

A limitation of this solution is that n is a constant, which
means that for very big circles, the sides are too long, and for
small circles, we waste time drawing very short sides. One
option is to generalize the function by taking n as a parameter.
But let’s keep it simple for now.

Refactoring

Now let’s write a more general version of circle , called arc ,
that takes a second parameter, angle , and draws an arc of a

circle that spans the given angle. For example, if angle is 360
degrees, it draws a complete circle. If angle is 180 degrees, it
draws a half circle.

To write circle , we were able to reuse polygon , because a
many-sided polygon is a good approximation of a circle. But we
can’t use polygon to write arc .

Instead, we’ll create the more general version of polygon ,
called polyline :

def polyline(n, length, angle):

 for i in range(n):

 forward(length)

 left(angle)

polyline takes as parameters the number of line segments to
draw, n ; the length of the segments, length ; and the angle
between them, angle .

Now we can rewrite polygon to use polyline :

def polygon(n, length):

 angle = 360.0 / n

 polyline(n, length, angle)

And we can use polyline to write arc :

def arc(radius, angle):

 arc_length = 2 * math.pi * radius * angle / 3

 n = 30

 length = arc_length / n

 step_angle = angle / n

 polyline(n, length, step_angle)

arc is similar to circle , except that it computes
arc_length , which is a fraction of the circumference of a
circle.

Finally, we can rewrite circle to use arc :

def circle(radius):

 arc(radius, 360)

To check that these functions work as expected, we’ll use them
to draw something like a snail. With delay=0 , the turtle runs
as fast as possible.

make_turtle(delay=0)

polygon(n=20, length=9)

arc(radius=70, angle=70)

circle(radius=10)

In this example, we started with working code and reorganized
it with different functions. Changes like this, which improve the
code without changing its behavior, are called refactoring.

If we had planned ahead, we might have written polyline
first and avoided refactoring, but often you don’t know enough
at the beginning of a project to design all the functions. Once
you start coding, you understand the problem better.
Sometimes refactoring is a sign that you have learned
something.

Stack Diagram

When we call circle , it calls arc , which calls polyline . We
can use a stack diagram to show this sequence of function calls
and the parameters for each one:

Notice that the value of angle in polyline is different from
the value of angle in arc . Parameters are local, which means
you can use the same parameter name in different functions;
it’s a different variable in each function, and it can refer to a
different value.

A Development Plan

A development plan is a process for writing programs. The
process we used in this chapter is “encapsulation and
generalization.” The steps of this process are:

1. Start by writing a small program with no function
definitions.

2. Once you get the program working, identify a coherent
piece of it, encapsulate the piece in a function, and give it a
name. Copy and paste working code to avoid retyping (and
re-debugging).

3. Generalize the function by adding appropriate parameters.
4. Repeat steps 1 through 3 until you have a set of working

functions.
5. Look for opportunities to improve the program by

refactoring. For example, if you have similar code in
several places, consider factoring it into an appropriately
general function.

This process has some drawbacks—we will see alternatives
later—but it can be useful if you don’t know ahead of time how
to divide the program into functions. This approach lets you
design as you go along.

The design of a function has two parts:

interface

How the function is used, including its name, the
parameters it takes, and what the function is supposed to
do

implementation

How the function does what it’s supposed to do

For example, here’s the first version of circle we wrote,
which uses polygon :

def circle(radius):

 circumference = 2 * math.pi * radius

 n = 30

 length = circumference / n

 polygon(n, length)

And here’s the refactored version that uses arc :

def circle(radius):

 arc(radius, 360)

These two functions have the same interface—they take the
same parameters and do the same thing—but they have
different implementations.

Docstrings

A docstring is a string at the beginning of a function that
explains the interface (“doc” is short for “documentation”).
Here is an example:

def polyline(n, length, angle):

 """Draws line segments with the given length

 n: integer number of line segments

 length: length of the line segments

 angle: angle between segments (in degrees)

 """

 for i in range(n):

 forward(length)

 left(angle)

By convention, docstrings are triple-quoted strings, also known
as multiline strings because the triple quotes allow the string
to span more than one line.

A docstring should:

Explain concisely what the function does, without getting
into the details of how it works,
Explain what effect each parameter has on the behavior of
the function, and
Indicate what type each parameter should be, if it is not
obvious.

Writing this kind of documentation is an important part of
interface design. A well-designed interface should be simple to
explain; if you have a hard time explaining one of your
functions, maybe the interface could be improved.

Debugging

An interface is like a contract between a function and a caller.
The caller agrees to provide certain arguments and the function
agrees to do certain work.

For example, polyline requires three arguments: n has to be
an integer, length should be a positive number, and angle
has to be a number, which is understood to be in degrees.

These requirements are called preconditions because they are
supposed to be true before the function starts executing.
Conversely, conditions at the end of the function are

postconditions. Postconditions include the intended effect of
the function (like drawing line segments) and any side effects
(like moving the turtle or making other changes).

Preconditions are the responsibility of the caller. If the caller
violates a precondition and the function doesn’t work correctly,
the bug is in the caller, not the function.

If the preconditions are satisfied and the postconditions are not,
the bug is in the function. If your pre- and postconditions are
clear, they can help with debugging.

Glossary

interface design: A process for designing the interface of a
function, which includes the parameters it should take.

canvas: A window used to display graphical elements including
lines, circles, rectangles, and other shapes.

encapsulation: The process of transforming a sequence of
statements into a function definition.

generalization: The process of replacing something
unnecessarily specific (like a number) with something

appropriately general (like a variable or parameter).

keyword argument: An argument that includes the name of
the parameter.

refactoring: The process of modifying a working program to
improve function interfaces and other qualities of the code.

development plan: A process for writing programs.

docstring: A string that appears at the top of a function
definition to document the function’s interface.

multiline string: A string enclosed in triple quotes that can
span more than one line of a program.

precondition: A requirement that should be satisfied by the
caller before a function starts.

postcondition: A requirement that should be satisfied by the
function before it ends.

Exercises

For these exercises, there are a few more turtle functions you
might want to use:

penup

Lift the turtle’s imaginary pen so it doesn’t leave a trail
when it moves.

pendown

Put the pen back down.

The following function uses penup and pendown to move the
turtle without leaving a trail:

from jupyturtle import penup, pendown

def jump(length):

 """Move forward length units without leaving

 Postcondition: Leaves the pen down.

 """

 penup()

 forward(length)

 pendown()

Exercise

Write a function called rectangle that draws a rectangle with
given side lengths. For example, here’s a rectangle that’s 80
units wide and 40 units tall:

Exercise

Write a function called rhombus that draws a rhombus with a
given side length and a given interior angle. For example, here’s

a rhombus with side length of 50 and an interior angle of 60
degrees:

Exercise

Now write a more general function called parallelogram
that draws a quadrilateral with parallel sides. Then rewrite
rectangle and rhombus to use parallelogram .

Exercise

Write an appropriately general set of functions that can draw
shapes like this.

Hint: write a function called triangle that draws one
triangular segment, and then a function called draw_pie that
uses triangle .

Exercise

Write an appropriately general set of functions that can draw
flowers like this.

Hint: use arc to write a function called petal that draws one
flower petal.

Ask a Virtual Assistant

Several modules like jupyturtle in Python, and the one we
used in this chapter have been customized for this book. So if
you ask a virtual assistant for help, it won’t know which module
to use. But if you give it a few examples to work with, it can
probably figure it out. For example, try this prompt and see if it
can write a function that draws a spiral:

The following program uses a turtle graphics modu

from jupyturtle import make_turtle, forward, left

import math

def polygon(n, length):

 angle = 360 / n

 for i in range(n):

 forward(length)

 left(angle)

def circle(radius):

 circumference = 2 * math.pi * radius

 n = 30

 length = circumference / n

 polygon(n, length)

make_turtle(delay=0)

circle(30)

Write a function that draws a spiral.

Keep in mind that the result might use features we have not
seen yet, and it might have errors. Copy the code from the

virtual assistant and see if you can get it working. If you didn’t
get what you wanted, try modifying the prompt.

Chapter 5. Conditionals and
Recursion

The main topic of this chapter is the if statement, which
executes different code depending on the state of the program.
With the if statement we’ll be able to explore one of the most
powerful ideas in computing, recursion.

But we’ll start with three new features: the modulus operator,
boolean expressions, and logical operators.

Integer Division and Modulus

Recall that the integer division operator, // , divides two
numbers and rounds down to an integer. For example, suppose
the runtime of a movie is 105 minutes. You might want to know
how long that is in hours. Conventional division returns a
floating-point number:

minutes = 105

minutes / 60

1.75

But we don’t normally write hours with decimal points. Floor
division returns the integer number of hours, rounding down:

minutes = 105

hours = minutes // 60

hours

1

To get the remainder, you could subtract off one hour, in
minutes:

remainder = minutes - hours * 60

remainder

45

Or you could use the modulus operator, % , which divides two
numbers and returns the remainder:

remainder = minutes % 60

remainder

45

The modulus operator is more useful than it might seem. For
example, it can check whether one number is divisible by
another: if x % y is zero, then x is divisible by y .

Also, it can extract the rightmost digit or digits from a number.
For example, x % 10 yields the rightmost digit of x (in base
10). Similarly, x % 100 yields the last two digits.

Finally, the modulus operator can do “clock arithmetic.” For
example, if an event starts at 11 A.M. and lasts three hours, we
can use the modulus operator to figure out what time it ends:

start = 11

duration = 3

end = (start + duration) % 12

end

2

The event would end at 2 P.M.:

a = 25 // 10

b = 25 % 10

a, b

(2, 5)

Boolean Expressions

A boolean expression is an expression that is either true or
false. For example, the following expressions use the equals
operator, == , which compares two values and produces True
if they are equal and False otherwise:

5 == 5

True

5 == 7

False

A common error is to use a single equals sign (=) instead of a
double equals sign (==). Remember that = assigns a value to a
variable and == compares two values:

x = 5

y = 7

x == y

False

True and False are special values that belong to the type
bool ; they are not strings:

type(True)

bool

type(False)

bool

The == operator is one of the relational operators; the others
are:

x != y # x is not equal to y

True

x > y # x is greater than y

False

x < y # x is less than to y

True

x >= y # x is greater than or equal

False

x <= y # x is less than or equal to

True

Logical Operators

To combine boolean values into expressions, we can use logical
operators. The most common are and , or , and not . The
meaning of these operators is similar to their meaning in
English. For example, the value of the following expression is
True only if x is greater than 0 and less than 10 :

x > 0 and x < 10

True

The following expression is True if either or both of the
conditions is true, that is, if the number is divisible by 2 or 3:

x % 2 == 0 or x % 3 == 0

False

Finally, the not operator negates a boolean expression, so the
following expression is True if x > y is False :

not x > y

True

Strictly speaking, the operands of a logical operator should be
boolean expressions, but Python is not very strict. Any nonzero

number is interpreted as True :

42 and True

True

This flexibility can be useful, but there are some subtleties to it
that can be confusing. You might want to avoid it.

if Statements

In order to write useful programs, we almost always need the
ability to check conditions and change the behavior of the
program accordingly. Conditional statements give us this
ability. The simplest form is the if statement:

if x > 0:

 print('x is positive')

x is positive

if is a Python keyword. if statements have the same
structure as function definitions: a header followed by an
indented statement or sequence of statements called a block.

The boolean expression after if is called the condition. If it is
true, the statements in the indented block run. If not, they don’t.

There is no limit to the number of statements that can appear in
the block, but there has to be at least one. Occasionally, it is
useful to have a block that does nothing—usually as a place
keeper for code you haven’t written yet. In that case, you can
use the pass statement, which does nothing:

if x < 0:

 pass # TODO: need to handle negative

The word TODO in a comment is a conventional reminder that
there’s something you need to do later.

The else Clause

An if statement can have a second part, called an else
clause. The syntax looks like this:

if x % 2 == 0:

 print('x is even')

else:

 print('x is odd')

x is odd

If the condition is true, the first indented statement runs;
otherwise, the second indented statement runs.

In this example, if x is even, the remainder when x is divided
by 2 is 0 , so the condition is true and the program displays x
is even . If x is odd, the remainder is 1 , so the condition is
false, and the program displays x is odd .

Since the condition must be true or false, exactly one of the
alternatives will run. The alternatives are called branches.

Chained Conditionals

Sometimes there are more than two possibilities and we need
more than two branches. One way to express a computation
like that is a chained conditional, which includes an elif
clause:

if x < y:

 print('x is less than y')

elif x > y:

 print('x is greater than y')

else:

 print('x and y are equal')

x is less than y

elif is an abbreviation of “else if.” There is no limit on the
number of elif clauses. If there is an else clause, it has to

be at the end, but there doesn’t have to be one.

Each condition is checked in order. If the first is false, the next is
checked, and so on. If one of them is true, the corresponding
branch runs and the if statement ends. Even if more than one
condition is true, only the first true branch runs.

Nested Conditionals

One conditional can also be nested within another. We could
have written the example in the previous section like this:

if x == y:

 print('x and y are equal')

else:

 if x < y:

 print('x is less than y')

 else:

 print('x is greater than y')

x is less than y

The outer if statement contains two branches. The first
branch contains a simple statement. The second branch
contains another if statement, which has two branches of its
own. Those two branches are both simple statements, although
they could have been conditional statements as well.

Although the indentation of the statements makes the structure
apparent, nested conditionals can be difficult to read. I suggest
you avoid them when you can.

Logical operators often provide a way to simplify nested
conditional statements. Here’s an example with a nested
conditional:

if 0 < x:

 if x < 10:

 print('x is a positive single-digit numbe

x is a positive single-digit number.

The print statement runs only if we make it past both
conditionals, so we get the same effect with the and operator:

if 0 < x and x < 10:

 print('x is a positive single-digit number.')

x is a positive single-digit number.

For this kind of condition, Python provides a more concise
option:

if 0 < x < 10:

 print('x is a positive single-digit number.')

x is a positive single-digit number.

Recursion

It is legal for a function to call itself. It may not be obvious why
that is a good thing, but it turns out to be one of the most
magical things a program can do. Here’s an example:

def countdown(n):

 if n <= 0:

 print('Blastoff!')

 else:

 print(n)

 countdown(n-1)

If n is 0 or negative, countdown outputs the word, “Blastoff!”.
Otherwise, it outputs n and then calls itself, passing n-1 as an
argument.

Here’s what happens when we call this function with the
argument 3 :

countdown(3)

3

2

1

Blastoff!

The execution of countdown begins with n=3 , and since n
is greater than 0 , it displays 3 , and then calls itself…

The execution of countdown begins with n=2 , and
since n is greater than 0 , it displays 2 , and then calls
itself…

The execution of countdown begins with n=1 ,
and since n is greater than 0 , it displays 1 , and
then calls itself…

The execution of countdown begins with
n=0 , and since n is not greater than 0 , it
displays “Blastoff!” and returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

A function that calls itself is recursive. As another example, we
can write a function that prints a string n times:

def print_n_times(string, n):

 if n > 0:

 print(string)

 print_n_times(string, n-1)

If n is positive, print_n_times displays the value of string
and then calls itself, passing along string and n-1 as
arguments.

If n is 0 or negative, the condition is false and
print_n_times does nothing.

Here’s how it works:

print_n_times('Spam ', 4)

Spam

Spam

Spam

Spam

For simple examples like this, it is probably easier to use a for
loop. But we will see examples later that are hard to write with
a for loop and easy to write with recursion, so it is good to
start early.

Stack Diagrams for Recursive
Functions

Here’s a stack diagram that shows the frames created when we
called countdown with n = 3 :

The four countdown frames have different values for the
parameter n . The bottom of the stack, where n=0 , is called the
base case. It does not make a recursive call, so there are no
more frames.

Infinite Recursion

If a recursion never reaches a base case, it goes on making
recursive calls forever, and the program never terminates. This
is known as infinite recursion, and it is generally not a good
idea. Here’s a minimal function with an infinite recursion:

def recurse():

 recurse()

Every time recurse is called, it calls itself, which creates
another frame. In Python, there is a limit to the number of
frames that can be on the stack at the same time.

If a program exceeds the limit, it causes a runtime error:

recurse()

RecursionError Traceba

Cell In[41], line 1

----> 1 recurse()

Cell In[39], line 2, in recurse()

 1 def recurse():

----> 2 recurse()

Cell In[39], line 2, in recurse()

 1 def recurse():

----> 2 recurse()

 [... skipping similar frames: recurse at line

Cell In[39], line 2, in recurse()

 1 def recurse():

----> 2 recurse()

RecursionError: maximum recursion depth exceeded

The traceback indicates that there were almost three thousand
frames on the stack when the error occurred.

If you encounter an infinite recursion by accident, review your
function to confirm that there is a base case that does not make
a recursive call. And if there is a base case, check whether you
are guaranteed to reach it.

Keyboard Input

The programs we have written so far accept no input from the
user. They just do the same thing every time.

Python provides a built-in function called input that stops the
program and waits for the user to type something. When the
user presses Return or Enter the program resumes, and input
returns what the user typed as a string:

text = input()

Before getting input from the user, you might want to display a
prompt telling the user what to type. input can take a prompt
as an argument:

name = input('What...is your name?\n')

name

What...is your name?

It is Arthur, King of the Britons

'It is Arthur, King of the Britons'

The sequence \n at the end of the prompt represents a
newline, which is a special character that causes a line break—
that way the user’s input appears below the prompt.

If you expect the user to type an integer, you can use the int
function to convert the return value to int :

prompt = 'What...is the airspeed velocity of an u

speed = input(prompt)

speed

What...is the airspeed velocity of an unladen swa

What do you mean: an African or European swallow?

'What do you mean: an African or European swallow

But if they type something that’s not an integer, you’ll get a
runtime error.

int(speed)

ValueError: invalid literal for int() with base 1

 an African or European swallow?'

We will see how to handle this kind of error later.

Debugging

When a syntax or runtime error occurs, the error message
contains a lot of information, but it can be overwhelming. The
most useful parts are usually:

What kind of error it was, and
Where it occurred.

Syntax errors are usually easy to find, but there are a few
gotchas. Errors related to spaces and tabs can be tricky because
they are invisible and we are used to ignoring them:

x = 5

y = 6

Cell In[50], line 2

 y = 6

 ^

IndentationError: unexpected indent

In this example, the problem is that the second line is indented
by one space. But the error message points to y , which is
misleading. Error messages indicate where the problem was
discovered, but the actual error might be earlier in the code.

The same is true of runtime errors. For example, suppose you
are trying to convert a ratio to decibels, like this:

import math

numerator = 9

denominator = 10

ratio = numerator // denominator

decibels = 10 * math.log10(ratio)

ValueError Traceba

Cell In[52], line 5

 3 denominator = 10

 4 ratio = numerator // denominator

----> 5 decibels = 10 * math.log10(ratio)

ValueError: math domain error

The error message indicates line 5, but there is nothing wrong
with that line. The problem is in line 4, which uses floor
division instead of floating-point division—as a result, the value
of ratio is 0 . When we call math.log10 , we get a
ValueError with the message math domain error , because
0 is not in the “domain” of valid arguments for math.log10 ,
because the logarithm of 0 is undefined.

In general, you should take the time to read error messages
carefully, but don’t assume that everything they say is correct.

Glossary

recursion: The process of calling the function that is currently
executing.

modulus operator: An operator, % , that works on integers and
returns the remainder when one number is divided by another.

boolean expression: An expression whose value is either
True or False .

relational operator: One of the operators that compares its
operands: == , != , > , < , >= , and <= .

logical operator: One of the operators that combines boolean
expressions, including and , or , and not .

conditional statement: A statement that controls the flow of
execution, depending on some condition.

block: One or more statements indented to indicate they are
part of another statement.

condition: The boolean expression in a conditional statement
that determines which branch runs.

branch: One of the alternative sequences of statements in a
conditional statement.

chained conditional: A conditional statement with a series of
alternative branches.

nested conditional: A conditional statement that appears in
one of the branches of another conditional statement.

recursive: A function that calls itself.

base case: A conditional branch in a recursive function that
does not make a recursive call.

infinite recursion: A recursion that doesn’t have a base case,
or never reaches it. Eventually, an infinite recursion causes a
runtime error.

newline: A character that creates a line break between two
parts of a string.

Exercises

Ask a Virtual Assistant

Ask a virtual assistant, “What are some uses of the modulus
operator?”
Python provides operators to compute the logical
operations and , or , and not , but it doesn’t have an
operator that computes the exclusive or operation, usually
written xor . Ask an assistant “What is the logical xor
operation and how do I compute it in Python?”

In this chapter, we saw two ways to write an if statement with
three branches, using a chained conditional or a nested
conditional. You can use a virtual assistant to convert from one

to the other. For example, ask a virtual assistant, “Convert this
statement to a chained conditional”:

if x == y:

 print('x and y are equal')

else:

 if x < y:

 print('x is less than y')

 else:

 print('x is greater than y')

x is less than y

Ask a virtual assistant, “Rewrite this statement with a single
conditional”:

if 0 < x:

 if x < 10:

 print('x is a positive single-digit numbe

x is a positive single-digit number.

See if a virtual assistant can simplify this unnecessary
complexity:

if not x <= 0 and not x >= 10:

 print('x is a positive single-digit number.')

x is a positive single-digit number.

Here’s an attempt at a recursive function that counts down by
two:

def countdown_by_two(n):

 if n == 0:

 print('Blastoff!')

 else:

 print(n)

 countdown_by_two(n-2)

It seems to work:

countdown_by_two(6)

6

4

2

Blastoff!

But it has an error. Ask a virtual assistant what’s wrong and
how to fix it. Paste the solution it provides here and test it.

Exercise

The time module provides a function, also called time , that
returns the number of seconds since the “Unix epoch,” which is
January 1, 1970, 00:00:00 UTC (Coordinated Universal Time):

from time import time

now = time()

now

1709908595.7334914

Use floor division and the modulus operator to compute the
number of days since January 1, 1970, and the current time of
day in hours, minutes, and seconds.

Exercise

If you are given three sticks, you may or may not be able to
arrange them in a triangle. For example, if one of the sticks is 12
inches long and the other two are 1 inch long, you will not be
able to get the short sticks to meet in the middle. For any three
lengths, there is a test to see if it is possible to form a triangle:

If any of the three lengths is greater than the sum of the
other two, then you cannot form a triangle. Otherwise, you
can. (If the sum of two lengths equals the third, they form
what is called a “degenerate” triangle.)

Write a function named is_triangle that takes three
integers as arguments, and that prints either “Yes” or “No,”
depending on whether you can or cannot form a triangle from
sticks with the given lengths. Hint: use a chained conditional.

Exercise

What is the output of the following program? Draw a stack
diagram that shows the state of the program when it prints the
result.

def recurse(n, s):

 if n == 0:

 print(s)

 else:

 recurse(n-1, n+s)

recurse(3, 0)

6

Exercise

The following exercises use the jupyturtle module,
described in Chapter 4.

Read the following function and see if you can figure out what
it does. Then run it and see if you got it right. Adjust the values
of length , angle , and factor and see what effect they have
on the result. If you are not sure you understand how it works,
try asking a virtual assistant.

from jupyturtle import forward, left, right, back

def draw(length):

 angle = 50

 factor = 0.6

 if length > 5:

 forward(length)

 left(angle)

 draw(factor * length)

 right(2 * angle)

 draw(factor * length)

 left(angle)

 back(length)

Exercise

Ask a virtual assistant, “What is the Koch curve?”

To draw a Koch curve with length x , all you have to do is:

1. Draw a Koch curve with length x/3 .
2. Turn left 60 degrees.
3. Draw a Koch curve with length x/3 .
4. Turn right 120 degrees.
5. Draw a Koch curve with length x/3 .
6. Turn left 60 degrees.
7. Draw a Koch curve with length x/3 .

The exception is if x is less than 5 —in that case, you can just
draw a straight line with length x .

Write a function called koch that takes x as a parameter and
draws a Koch curve with the given length. The result should

look like this:

make_turtle(delay=0)

koch(120)

Exercise

Virtual assistants know about the functions in the jupyturtle
module, but because there are many versions of these

functions, with different names, it might not know which one
you are talking about.

To solve this problem, you can provide additional information
before you ask a question. For example, you could start a
prompt with “Here’s a program that uses the jupyturtle
module,” and then paste in one of the examples from this
chapter. After that, the virtual assistant should be able to
generate code that uses this module.

As an example, ask a virtual assistant for a program that draws
a Sierpiński triangle. The code you get should be a good starting
place, but you might have to do some debugging. If the first
attempt doesn’t work, you can tell the virtual assistant what
happened and ask for help—or you can debug it yourself.

Here’s what the result might look like, although the version you
get might be different:

make_turtle(delay=0, height=200)

draw_sierpinski(100, 3)

Chapter 6. Return Values

In previous chapters, we’ve used built-in functions—like abs
and round —and functions in the math module—like sqrt
and pow . When you call one of these functions, it returns a
value you can assign to a variable or use as part of an
expression.

The functions we have written so far are different. Some use
the print function to display values, and some use Turtle
functions to draw figures. But they don’t return values we
assign to variables or use in expressions.

In this chapter, we’ll see how to write functions that return
values.

Some Functions Have Return Values

When you call a function like math.sqrt , the result is called a
return value. If the function call appears at the end of a cell,
Jupyter displays the return value immediately:

import math

math.sqrt(42 / math.pi)

3.656366395715726

If you assign the return value to a variable, it doesn’t get
displayed:

radius = math.sqrt(42 / math.pi)

But you can display it later:

radius

3.656366395715726

Or you can use the return value as part of an expression:

radius + math.sqrt(42 / math.pi)

7.312732791431452

Here’s an example of a function that returns a value:

def circle_area(radius):

 area = math.pi * radius**2

 return area

circle_area takes radius as a parameter and computes the
area of a circle with that radius.

The last line is a return statement that returns the value of
area .

If we call the function like this, Jupyter displays the return
value:

circle_area(radius)

42.00000000000001

We can assign the return value to a variable:

a = circle_area(radius)

Or use it as part of an expression:

circle_area(radius) + 2 * circle_area(radius / 2)

63.000000000000014

Later, we can display the value of the variable we assigned the
result to:

a

42.00000000000001

But we can’t access area :

area

NameError: name 'area' is not defined

area is a local variable in a function, so we can’t access it from
outside the function.

And Some Have None

If a function doesn’t have a return statement, it returns
None , which is a special value like True and False . For
example, here’s the repeat function from Chapter 3:

def repeat(word, n):

 print(word * n)

If we call it like this, it displays the first line of the Monty
Python song “Finland”:

repeat('Finland, ', 3)

Finland, Finland, Finland,

This function uses the print function to display a string, but it
does not use a return statement to return a value. If we assign
the result to a variable, it displays the string anyway:

result = repeat('Finland, ', 3)

Finland, Finland, Finland,

And if we display the value of the variable, we get nothing:

result

result actually has a value, but Jupyter doesn’t show it.
However, we can display it like this:

print(result)

None

The return value from repeat is None .

Now here’s a function similar to repeat except that it has a
return value:

def repeat_string(word, n):

 return word * n

Notice that we can use an expression in a return statement,
not just a variable.

With this version, we can assign the result to a variable. When
the function runs, it doesn’t display anything:

line = repeat_string('Spam, ', 4)

But later we can display the value assigned to line :

line

'Spam, Spam, Spam, Spam, '

A function like this is called a pure function because it doesn’t
display anything or have any other effect—other than returning
a value.

Return Values and Conditionals

If Python did not provide abs , we could write it like this:

def absolute_value(x):

 if x < 0:

 return -x

 else:

 return x

If x is negative, the first return statement returns -x and
the function ends immediately. Otherwise, the second return
statement returns x and the function ends. So this function is
correct.

However, if you put return statements in a conditional, you
have to make sure that every possible path through the
program hits a return statement. For example, here’s an
incorrect version of absolute_value :

def absolute_value_wrong(x):

 if x < 0:

 return -x

 if x > 0:

 return x

Here’s what happens if we call this function with 0 as an
argument:

absolute_value_wrong(0)

We get nothing! Here’s the problem: when x is 0 , neither
condition is true, and the function ends without hitting a
return statement, which means that the return value is
None , so Jupyter displays nothing.

As another example, here’s a version of absolute_value with
an extra return statement at the end:

def absolute_value_extra_return(x):

 if x < 0:

 return -x

 else:

 return x

 return 'This is dead code'

If x is negative, the first return statement runs and the
function ends. Otherwise the second return statement runs
and the function ends. Either way, we never get to the third
return statement—so it can never run.

Code that can never run is called dead code. In general, dead
code doesn’t do any harm, but it often indicates a

misunderstanding, and it might be confusing to someone trying
to understand the program.

Incremental Development

As you write larger functions, you might find yourself spending
more time debugging. To deal with increasingly complex
programs, you might want to try incremental development,
which is a way of adding and testing only a small amount of
code at a time.

As an example, suppose you want to find the distance between
two points represented by the coordinates (x1, y1) and (x2, y2).
By the Pythagorean theorem, the distance is:

distance = √(x2 − x1)
2 + (y2 − y1)

2

The first step is to consider what a distance function should
look like in Python—that is, what are the inputs (parameters)
and what is the output (return value)?

For this function, the inputs are the coordinates of the points.
The return value is the distance. Immediately you can write an
outline of the function:

def distance(x1, y1, x2, y2):

 return 0.0

This version doesn’t compute distances yet—it always returns
zero. But it is a complete function with a return value, which
means that you can test it before you make it more complicated.

To test the new function, we’ll call it with sample arguments:

distance(1, 2, 4, 6)

0.0

I chose these values so that the horizontal distance is 3 and the
vertical distance is 4 . That way, the result is 5 , the hypotenuse
of a 3-4-5 right triangle. When testing a function, it is useful
to know the right answer.

At this point we have confirmed that the function runs and
returns a value, and we can start adding code to the body. A
good next step is to find the differences x2 - x1 and y2 -
y1 . Here’s a version that stores those values in temporary
variables and displays them:

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 print('dx is', dx)

 print('dy is', dy)

 return 0.0

If the function is working, it should display dx is 3 and dy
is 4 . If so, we know that the function is getting the right
arguments and performing the first computation correctly. If
not, there are only a few lines to check:

distance(1, 2, 4, 6)

dx is 3

dy is 4

0.0

Good so far. Next we compute the sum of squares of dx and
dy :

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 dsquared = dx**2 + dy**2

 print('dsquared is: ', dsquared)

 return 0.0

Again, we can run the function and check the output, which
should be 25 :

distance(1, 2, 4, 6)

dsquared is: 25

0.0

Finally, we can use math.sqrt to compute the distance:

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 dsquared = dx**2 + dy**2

 result = math.sqrt(dsquared)

 print("result is", result)

And test it:

distance(1, 2, 4, 6)

result is 5.0

The result is correct, but this version of the function displays
the result rather than returning it, so the return value is None .
We can fix that by replacing the print function with a
return statement:

def distance(x1, y1, x2, y2):

 dx = x2 - x1

 dy = y2 - y1

 dsquared = dx**2 + dy**2

 result = math.sqrt(dsquared)

 return result

This version of distance is a pure function. If we call it like
this, only the result is displayed:

distance(1, 2, 4, 6)

5.0

And if we assign the result to a variable, nothing is displayed:

d = distance(1, 2, 4, 6)

The print statements we wrote are useful for debugging, but
once the function is working, we can remove them. Code like
that is called scaffolding because it is helpful for building the
program but is not part of the final product. This example
demonstrates incremental development. The key aspects of this
process are:

1. Start with a working program, make small changes, and test
after every change.

2. Use variables to hold intermediate values so you can
display and check them.

3. Once the program is working, remove the scaffolding.

At any point, if there is an error, you should have a good idea
where it is. Incremental development can save you a lot of
debugging time.

Boolean Functions

Functions can return the boolean values True and False ,
which is often convenient for encapsulating a complex test in a
function. For example, is_divisible checks whether x is
divisible by y with no remainder:

def is_divisible(x, y):

 if x % y == 0:

 return True

 else:

 return False

Here’s how we use it:

is_divisible(6, 4)

False

is_divisible(6, 3)

True

Inside the function, the result of the == operator is a boolean,
so we can write the function more concisely by returning it
directly:

def is_divisible(x, y):

 return x % y == 0

Boolean functions are often used in conditional statements:

if is_divisible(6, 2):

 print('divisible')

divisible

It might be tempting to write something like this:

if is_divisible(6, 2) == True:

 print('divisible')

divisible

But the comparison is unnecessary.

Recursion with Return Values

Now that we can write functions with return values, we can
write recursive functions with return values, and with that
capability, we have passed an important threshold—the subset
of Python we have is now Turing complete, which means that
we can perform any computation that can be described by an
algorithm.

To demonstrate recursion with return values, we’ll evaluate a
few recursively defined mathematical functions. A recursive
definition is similar to a circular definition, in the sense that the
definition refers to the thing being defined. A truly circular
definition is not very useful:

vorpal: An adjective used to describe something that is
vorpal.

If you saw that definition in the dictionary, you might be
annoyed. On the other hand, if you looked up the definition of
the factorial function, denoted with the symbol !, you might get
something like this:

0! = 1

n! = n (n − 1)!

This definition says that the factorial of 0 is 1, and the factorial
of any other value, n, is n multiplied by the factorial of n − 1.

If you can write a recursive definition of something, you can
write a Python program to evaluate it. Following an
incremental development process, we’ll start with a function
that takes n as a parameter and always returns 0 :

def factorial(n):

 return 0

Now let’s add the first part of the definition—if the argument
happens to be 0, all we have to do is return 1:

def factorial(n):

 if n == 0:

 return 1

 else:

 return 0

Now let’s fill in the second part—if n is not 0 , we have to make
a recursive call to find the factorial of n − 1 and then multiply

the result by n:

def factorial(n):

 if n == 0:

 return 1

 else:

 recurse = factorial(n-1)

 return n * recurse

The flow of execution for this program is similar to the flow of
countdown in Chapter 5. If we call factorial with the value
3 :

Since 3 is not 0 , we take the second branch and calculate
the factorial of n-1 …

Since 2 is not 0 , we take the second branch and
calculate the factorial of n-1 …

Since 1 is not 0 , we take the second branch and
calculate the factorial of n-1 …

Since 0 equals 0 , we take the first branch
and return 1 without making any more
recursive calls.

The return value, 1 , is multiplied by n , which is
1 , and the result is returned.

The return value, 1 , is multiplied by n , which is 2 ,
and the result is returned.

The return value 2 is multiplied by n , which is 3 , and the
result, 6 , becomes the return value of the function call that
started the whole process.

The following figure shows the stack diagram for this sequence
of function calls:

The return values are shown being passed back up the stack. In
each frame, the return value is the product of n and recurse .

In the last frame, the local variable recurse does not exist
because the branch that creates it does not run.

Leap of Faith

Following the flow of execution is one way to read programs,
but it can quickly become overwhelming. An alternative is what
I call the “leap of faith.” When you come to a function call,
instead of following the flow of execution, you assume that the
function works correctly and returns the right result.

In fact, you are already practicing this leap of faith when you
use built-in functions. When you call abs or math.sqrt , you
don’t examine the bodies of those functions—you just assume
that they work.

The same is true when you call one of your own functions. For
example, earlier we wrote a function called is_divisible
that determines whether one number is divisible by another.
Once we convince ourselves that this function is correct, we can
use it without looking at the body again.

The same is true of recursive programs. When you get to the
recursive call, instead of following the flow of execution, you
should assume that the recursive call works and then ask
yourself, “Assuming that I can compute the factorial of n − 1,
can I compute the factorial of n?” The recursive definition of
factorial implies that you can, by multiplying by n.

Of course, it’s a bit strange to assume that the function works
correctly when you haven’t finished writing it, but that’s why
it’s called a leap of faith!

Fibonacci

After factorial , the most common example of a recursive
function is fibonacci , which has the following definition:

Translated into Python, it looks like this:

def fibonacci(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return fibonacci(n-1) + fibonacci(n-2)

fibonacci(0) = 0

fibonacci(1) = 1

fibonacci(n) = fibonacci(n − 1) + fibonacci(n − 2)

If you try to follow the flow of execution here, even for small
values of n, your head explodes. But according to the leap of
faith, if you assume that the two recursive calls work correctly,
you can be confident that the last return statement is correct.

As an aside, this way of computing Fibonacci numbers is very
inefficient. In “Memos” I’ll explain why and suggest a way to
improve it.

Checking Types

What happens if we call factorial and give it 1.5 as an
argument?

factorial(1.5)

RecursionError: maximum recursion depth exceeded

It looks like an infinite recursion. How can that be? The
function has a base case—when n == 0 . But if n is not an

integer, we can miss the base case and recurse forever.

In this example, the initial value of n is 1.5 . In the first
recursive call, the value of n is 0.5 . In the next, it is -0.5 .
From there, it gets smaller (more negative), but it will never be
0 .

To avoid infinite recursion we can use the built-in function
isinstance to check the type of the argument. Here’s how we
check whether a value is an integer:

isinstance(3, int)

True

isinstance(1.5, int)

False

Now here’s a version of factorial with error checking:

def factorial(n):

 if not isinstance(n, int):

 print('factorial is only defined for inte

 return None

 elif n < 0:

 print('factorial is not defined for negat

 return None

 elif n == 0:

 return 1

 else:

 return n * factorial(n-1)

First, it checks whether n is an integer. If not, it displays an
error message and returns None :

factorial('crunchy frog')

factorial is only defined for integers.

Then it checks whether n is negative. If so, it displays an error
message and returns None :

factorial(-2)

factorial is not defined for negative numbers.

If we get past both checks, we know that n is a nonnegative
integer, so we can be confident the recursion will terminate.
Checking the parameters of a function to make sure they have
the correct types and values is called input validation.

Debugging

Breaking a large program into smaller functions creates natural
checkpoints for debugging. If a function is not working, there
are three possibilities to consider:

There is something wrong with the arguments the function
is getting—that is, a precondition is violated.
There is something wrong with the function—that is, a
postcondition is violated.
The caller is doing something wrong with the return value.

To rule out the first possibility, you can add a print statement
at the beginning of the function that displays the values of the
parameters (and maybe their types). Or you can write code that
checks the preconditions explicitly.

If the parameters look good, you can add a print statement
before each return statement and display the return value. If
possible, call the function with arguments that make it easy
check the result.

If the function seems to be working, look at the function call to
make sure the return value is being used correctly—or used at
all!

Adding print statements at the beginning and end of a
function can help make the flow of execution more visible. For
example, here is a version of factorial with print
statements:

def factorial(n):

 space = ' ' * (4 * n)

 print(space, 'factorial', n)

 if n == 0:

 print(space, 'returning 1')

 return 1

 else:

 recurse = factorial(n-1)

 result = n * recurse

 print(space, 'returning', result)

 return result

space is a string of space characters that controls the
indentation of the output. Here is the result of factorial(4) :

factorial(3)

 factorial 3

 factorial 2

 factorial 1

factorial 0

returning 1

 returning 1

 returning 2

 returning 6

6

If you are confused about the flow of execution, this kind of
output can be helpful. It takes some time to develop effective
scaffolding, but a little bit of scaffolding can save a lot of
debugging.

Glossary

return value: The result of a function. If a function call is used
as an expression, the return value is the value of the
expression.

pure function: A function that does not display anything or
have any other effect, other than returning a return value.

dead code: Part of a program that can never run, often because
it appears after a return statement.

incremental development: A program development plan
intended to avoid debugging by adding and testing only a small
amount of code at a time.

scaffolding: Code that is used during program development but
is not part of the final version.

Turing complete: A language, or subset of a language, is Turing
complete if it can perform any computation that can be
described by an algorithm.

input validation: Checking the parameters of a function to
make sure they have the correct types and values.

Exercises

Ask a Virtual Assistant

In this chapter, we saw an incorrect function that can end
without returning a value:

def absolute_value_wrong(x):

 if x < 0:

 return -x

 if x > 0:

 return x

And a version of the same function that has dead code at the
end:

def absolute_value_extra_return(x):

 if x < 0:

 return -x

 else:

 return x

 return 'This is dead code.'

And we saw the following example, which is correct but not
idiomatic:

def is_divisible(x, y):

 if x % y == 0:

 return True

 else:

 return False

Ask a virtual assistant what’s wrong with each of these
functions and see if it can spot the errors or improve the style.

Then ask “Write a function that takes coordinates of two points
and computes the distance between them.” See if the result
resembles the version of distance we wrote in this chapter.

Exercise

Use incremental development to write a function called hypot
that returns the length of the hypotenuse of a right triangle

given the lengths of the other two legs as arguments.

Note that there’s a function in the math module called hypot
that does the same thing, but you should not use it for this
exercise!

Even if you can write the function correctly on the first try, start
with a function that always returns 0 and practice making
small changes, testing as you go. When you are done, the
function should only return a value—it should not display
anything.

Exercise

Write a boolean function, is_between(x, y, z) , that
returns True if x < y < z or if z < y < x, and False
otherwise.

Exercise

The Ackermann function, A(m,n), is defined as:

A (m,n) =

n + 1 if m = 0

A(m − 1, 1) if m > 0 and n = 0

A(m − 1,A(m,n − 1)) if m > 0 and n > 0.

Write a function named ackermann that evaluates the
Ackermann function. What happens if you call ackermann(5,
5) ?

Exercise

The greatest common divisor (GCD) of a and b is the largest
number that divides both of them with no remainder.

One way to find the GCD of two numbers is based on the
observation that if r is the remainder when a is divided by b,
then gcd(a, b) = gcd(b, r). As a base case, we can use
gcd(a, 0) = a.

Write a function called gcd that takes parameters a and b
and returns their greatest common divisor.

Chapter 7. Iteration and Search

In 1939, Ernest Vincent Wright published a 50,000-word novel
called Gadsby that does not contain the letter “e.” Since “e” is
the most common letter in English, writing even a few words
without using it is difficult. To get a sense of how difficult, in
this chapter we’ll compute the fraction of English words have at
least one “e.”

For that, we’ll use for statements to loop through the letters in
a string and the words in a file, and we’ll update variables in a
loop to count the number of words that contain an “e.” We’ll use
the in operator to check whether a letter appears in a word,
and you’ll learn a programming pattern called a “linear
search.”

As an exercise, you’ll use these tools to solve a word puzzle
called “Spelling Bee.”

Loops and Strings

In Chapter 3 we saw a for loop that uses the range function
to display a sequence of numbers:

for i in range(3):

 print(i, end=' ')

0 1 2

This version uses the keyword argument end , so the print
function puts a space after each number rather than a newline.

We can also use a for loop to display the letters in a string:

for letter in 'Gadsby':

 print(letter, end=' ')

G a d s b y

Notice that I changed the name of the variable from i to
letter , which provides more information about the value it

refers to. The variable defined in a for loop is called the loop
variable.

Now that we can loop through the letters in a word, we can
check whether it contains the letter “e”:

for letter in "Gadsby":

 if letter == 'E' or letter == 'e':

 print('This word has an "e"')

Before we go on, let’s encapsulate that loop in a function:

def has_e():

 for letter in "Gadsby":

 if letter == 'E' or letter == 'e':

 print('This word has an "e"')

And let’s make it a pure function that returns True if the word
contains an “e” and False otherwise:

def has_e():

 for letter in "Gadsby":

 if letter == 'E' or letter == 'e':

 return True

 return False

We can generalize it to take the word as a parameter:

def has_e(word):

 for letter in word:

 if letter == 'E' or letter == 'e':

 return True

 return False

Now we can test it like this:

has_e('Gadsby')

False

has_e('Emma')

True

Reading the Word List

To see how many words contain an “e,” we’ll need a word list.
The one we’ll use is a list of about 114,000 official crosswords;
that is, words that are considered valid in crossword puzzles
and other word games.

The word list is in a file called words.txt, which is downloaded
in the notebook for this chapter. To read it, we’ll use the built-in
function open , which takes the name of the file as a parameter
and returns a file object we can use to read the file:

file_object = open('words.txt')

The file object provides a function called readline , which
reads characters from the file until it gets to a newline and
returns the result as a string:

file_object.readline()

'aa\n'

Notice that the syntax for calling readline is different from
functions we’ve seen so far. That’s because it is a method,
which is a function associated with an object. In this case
readline is associated with the file object, so we call it using
the name of the object, the dot operator, and the name of the
method.

The first word in the list is “aa,” which is a type of lava. The
sequence \n represents the newline character that separates
this word from the next.

The file object keeps track of where it is in the file, so if you call
readline again, you get the next word:

line = file_object.readline()

line

'aah\n'

To remove the newline from the end of the word, we can use
strip , which is a method associated with strings, so we can
call it like this:

word = line.strip()

word

'aah'

strip removes whitespace characters—including spaces, tabs,
and newlines—from the beginning and end of the string.

You can also use a file object as part of a for loop. This
program reads words.txt and prints each word, one per line:

for line in open('words.txt'):

 word = line.strip()

 print(word)

Now that we can read the word list, the next step is to count the
words. For that, we will need the ability to update variables.

Updating Variables

As you may have discovered, it is legal to make more than one
assignment to the same variable. A new assignment makes an
existing variable refer to a new value (and stop referring to the
old value).

For example, here is an initial assignment that creates a
variable:

x = 5

x

5

And here is an assignment that changes the value of a variable:

x = 7

x

7

The following figure shows what these assignments look like in
a state diagram:

The dotted arrow indicates that x no longer refers to 5 . The
solid arrow indicates that it now refers to 7 .

A common kind of assignment is an update, where the new
value of the variable depends on the old:

x = x + 1

x

8

This statement means “get the current value of x , add one, and
assign the result back to x .”

If you try to update a variable that doesn’t exist, you get an
error, because Python evaluates the expression on the right

before it assigns a value to the variable on the left:

y = y + 1

Before you can update a variable, you have to initialize it,
usually with a simple assignment:

y = 0

y = y + 1

y

1

Increasing the value of a variable is called an increment;
decreasing the value is called a decrement.

Looping and Counting

The following program counts the number of words in the word
list:

total = 0

for line in open('words.txt'):

 word = line.strip()

 total = total + 1

It starts by initializing total to 0 . Each time through the loop,
it increments total by 1 . So when the loop exits, total
refers to the total number of words:

total

113783

A variable like this, used to count the number of times
something happens, is called a counter.

We can add a second counter to the program to keep track of
the number of words that contain an “e”:

total = 0

count = 0

for line in open('words.txt'):

 word = line.strip()

 total = total + 1

 if has_e(word):

 count = count + 1

Let’s see how many words contain an “e”:

count

76162

As a percentage of total , about two-thirds of the words use
the letter “e”:

count / total * 100

66.93618554617122

So you can understand why it’s difficult to craft a book without
using any such words.

The in Operator

The version of has_e we wrote in this chapter is more
complicated than it needs to be. Python provides an operator,
in , that checks whether a character appears in a string:

word = 'Gadsby'

'e' in word

False

So we can rewrite has_e like this:

def has_e(word):

 if 'E' in word or 'e' in word:

 return True

 else:

 return False

And because the conditional of the if statement has a boolean
value, we can eliminate the if statement and return the
boolean directly:

def has_e(word):

 return 'E' in word or 'e' in word

We can simplify this function even more using the method
lower , which converts the letters in a string to lowercase.
Here’s an example:

word.lower()

'gadsby'

lower makes a new string—it does not modify the existing
string—so the value of word is unchanged:

word

'Gadsby'

Here’s how we can use lower in has_e :

def has_e(word):

 return 'e' in word.lower()

has_e('Gadsby')

False

has_e('Emma')

True

Search

Based on this simpler version of has_e , let’s write a more
general function called uses_any that takes a second
parameter that is a string of letters. It returns True if the word
uses any of the letters, and False otherwise:

def uses_any(word, letters):

 for letter in word.lower():

 if letter in letters.lower():

 return True

 return False

Here’s an example where the result is True :

uses_any('banana', 'aeiou')

True

And another where it is False :

uses_any('apple', 'xyz')

False

uses_only converts word and letters to lowercase, so it
works with any combination of cases:

uses_any('Banana', 'AEIOU')

True

The structure of uses_any is similar to has_e . It loops
through the letters in word and checks them one at a time. If it
finds one that appears in letters , it returns True

immediately. If it gets all the way through the loop without
finding any, it returns False .

This pattern is called a linear search. In the exercises at the
end of this chapter, you’ll write more functions that use this
pattern.

Doctest

In “Docstrings” we used a docstring to document a function—
that is, to explain what it does. It is also possible to use a
docstring to test a function. Here’s a version of uses_any with
a docstring that includes tests:

def uses_any(word, letters):

 """Checks if a word uses any of a list of let

 >>> uses_any('banana', 'aeiou')

 True

 >>> uses_any('apple', 'xyz')

 False

 """

 for letter in word.lower():

 if letter in letters.lower():

 return True

 return False

Each test begins with >>> , which is used as a prompt in some
Python environments to indicate where the user can type code.
In a doctest, the prompt is followed by an expression, usually a
function call. The following line indicates the value the
expression should have if the function works correctly.

In the first example, 'banana' uses 'a' , so the result should
be True . In the second example, 'apple' does not use any of
'xyz' , so the result should be False .

To run these tests, we have to import the doctest module and
run a function called run_docstring_examples . To make this
function easier to use, I wrote the following function, which
takes a function object as an argument:

from doctest import run_docstring_examples

def run_doctests(func):

 run_docstring_examples(func, globals(), name=

We haven’t learned about globals and __name__ yet—you
can ignore them. Now we can test uses_any like this:

run_doctests(uses_any)

run_doctests finds the expressions in the docstring and
evaluates them. If the result is the expected value, the test
passes. Otherwise it fails.

If all tests pass, run_doctests displays no output—in that
case, no news is good news. To see what happens when a test
fails, here’s an incorrect version of uses_any :

def uses_any_incorrect(word, letters):

 """Checks if a word uses any of a list of let

 >>> uses_any_incorrect('banana', 'aeiou')

 True

 >>> uses_any_incorrect('apple', 'xyz')

 False

 """

 for letter in word.lower():

 if letter in letters.lower():

 return True

 else:

 return False # INCORRECT!

And here’s what happens when we test it:

run_doctests(uses_any_incorrect)

File "__main__", line 4, in uses_any_incorrect

Failed example:

 uses_any_incorrect('banana', 'aeiou')

Expected:

 True

Got:

 False

The output includes the example that failed, the value the
function was expected to produce, and the value the function

actually produced. If you are not sure why this test failed, you’ll
have a chance to debug it as an exercise.

Glossary

loop variable: A variable defined in the header of a for loop.

file object: An object that represents an open file and keeps
track of which parts of the file have been read or written.

method: A function associated with an object and called using
the dot operator.

update: An assignment statement that gives a new value to a
variable that already exists, rather than creating a new
variable.

initialize: Create a new variable and give it a value.

increment: Increase the value of a variable.

decrement: Decrease the value of a variable.

counter: A variable used to count something, usually initialized
to zero and then incremented.

linear search: A computational pattern that searches through a
sequence of elements and stops when it finds what it is looking
for.

pass: If a test runs and the result is as expected, the test passes.

fail: If a test runs and the result is not as expected, the test fails.

Exercises

Ask a Virtual Assistant

In uses_any , you might have noticed that the first return
statement is inside the loop and the second is outside:

def uses_any(word, letters):

 for letter in word.lower():

 if letter in letters.lower():

 return True

 return False

When people first write functions like this, it is a common error
to put both return statements inside the loop, like this:

def uses_any_incorrect(word, letters):

 for letter in word.lower():

 if letter in letters.lower():

 return True

 else:

 return False # INCORRECT!

Ask a virtual assistant what’s wrong with this version.

Exercise

Write a function named uses_none that takes a word and a
string of forbidden letters, and returns True if the word does
not use any of the forbidden letters.

Here’s an outline of the function that includes two doctests. Fill
in the function so it passes these tests, and add at least one
more doctest:

def uses_none(word, forbidden):

 """Checks whether a word avoid forbidden lett

 >>> uses_none('banana', 'xyz')

 True

 >>> uses_none('apple', 'efg')

 False

 """

 return None

Exercise

Write a function called uses_only that takes a word and a
string of letters, and that returns True if the word contains
only letters in the string.

Here’s an outline of the function that includes two doctests. Fill
in the function so it passes these tests, and add at least one
more doctest:

def uses_only(word, available):

 """Checks whether a word uses only the availa

 >>> uses_only('banana', 'ban')

 True

 >>> uses_only('apple', 'apl')

 False

 """

 return None

Exercise

Write a function called uses_all that takes a word and a
string of letters, and that returns True if the word contains all
of the letters in the string at least once.

Here’s an outline of the function that includes two doctests. Fill
in the function so it passes these tests, and add at least one
more doctest.

def uses_all(word, required):

 """Checks whether a word uses all required le

 >>> uses_all('banana', 'ban')

 True

 >>> uses_all('apple', 'api')

 False

 """

 return None

Exercise

The New York Times publishes a daily puzzle called “Spelling
Bee” that challenges readers to spell as many words as possible
using only seven letters, where one of the letters is required.
The words must have at least four letters.

For example, on the day I wrote this, the letters were ACDLORT,
with R as the required letter. So “color” is an acceptable word,
but “told” is not, because it does not use R, and “rat” is not
because it has only three letters. Letters can be repeated, so
“ratatat” is acceptable.

Write a function called check_word that checks whether a
given word is acceptable. It should take as parameters the word
to check, a string of seven available letters, and a string
containing the single required letter. You can use the functions
you wrote in previous exercises.

Here’s an outline of the function that includes doctests. Fill in
the function and then check that all tests pass:

def check_word(word, available, required):

 """Check whether a word is acceptable.

 >>> check_word('color', 'ACDLORT', 'R')

 True

 >>> check_word('ratatat', 'ACDLORT', 'R')

 True

 >>> check_word('rat', 'ACDLORT', 'R')

 False

 >>> check_word('told', 'ACDLORT', 'R')

 False

 >>> check_word('bee', 'ACDLORT', 'R')

 False

 """

 return False

According to the “Spelling Bee” rules:

Four-letter words are worth one point each.
Longer words earn one point per letter.
Each puzzle includes at least one “pangram” which uses
every letter. These are worth seven extra points!

Write a function called score_word that takes a word and a
string of available lessons and returns its score. You can assume
that the word is acceptable.

Again, here’s an outline of the function with doctests:

def word_score(word, available):

 """Compute the score for an acceptable word.

 >>> word_score('card', 'ACDLORT')

 1

 >>> word_score('color', 'ACDLORT')

 5

 >>> word_score('cartload', 'ACDLORT')

 15

 """

 return 0

Exercise

You might have noticed that the functions you wrote in the
previous exercises had a lot in common. In fact, they are so
similar you can often use one function to write another.

For example, if a word uses none of a set forbidden letters, that
means it doesn’t use any. So we can write a version of
uses_none like this:

def uses_none(word, forbidden):

 """Checks whether a word avoids forbidden let

 >>> uses_none('banana', 'xyz')

 True

 >>> uses_none('apple', 'efg')

 False

 >>> uses_none('', 'abc')

 True

 """

 return not uses_any(word, forbidden)

There is also a similarity between uses_only and uses_all
that you can take advantage of. If you have a working version
of uses_only , see if you can write a version of uses_all that
calls uses_only .

Exercise

If you got stuck on the previous question, try asking a virtual
assistant, “Given a function, uses_only , which takes two
strings and checks that the first uses only the letters in the
second, use it to write uses_all , which takes two strings and

checks whether the first uses all the letters in the second,
allowing repeats.”

Use run_doctests to check the answer.

Exercise

Now let’s see if we can write uses_all based on uses_any .

Ask a virtual assistant, “Given a function, uses_any , which
takes two strings and checks whether the first uses any of the
letters in the second, use it to write uses_all , which takes two
strings and checks whether the first uses all the letters in the
second, allowing repeats.”

If it says it can, be sure to test the result!

Chapter 8. Strings and Regular
Expressions

Strings are not like integers, floats, and booleans. A string is a
sequence, which means it contains multiple values in a
particular order. In this chapter we’ll see how to access the
values that make up a string, and we’ll use functions that
process strings.

We’ll also use regular expressions, which are a powerful tool
for finding patterns in a string and performing operations like
search and replace.

As an exercise, you’ll have a chance to apply these tools to a
word game called Wordle.

A String Is a Sequence

A string is a sequence of characters. A character can be a letter
(in almost any alphabet), a digit, a punctuation mark, or
whitespace.

You can select a character from a string with the bracket
operator. This example statement selects character number 1

from fruit and assigns it to letter :

fruit = 'banana'

letter = fruit[1]

The expression in brackets is an index, so called because it
indicates which character in the sequence to select. But the
result might not be what you expect:

letter

'a'

The letter with index 1 is actually the second letter of the
string. An index is an offset from the beginning of the string, so
the offset of the first letter is 0 :

fruit[0]

'b'

You can think of 'b' as the 0th letter of 'banana' —
pronounced “zero-eth.”

The index in brackets can be a variable:

i = 1

fruit[i]

'a'

Or an expression that contains variables and operators:

fruit[i+1]

'n'

But the value of the index has to be an integer—otherwise you
get a TypeError :

fruit[1.5]

TypeError: string indices must be integers

As we saw in Chapter 1, we can use the built-in function len to
get the length of a string:

n = len(fruit)

n

6

To get the last letter of a string, you might be tempted to write
this:

fruit[n]

IndexError: string index out of range

But that causes an IndexError because there is no letter in
'banana' with the index 6 . Because we started counting at
0 , the six letters are numbered 0 to 5 . To get the last
character, you have to subtract 1 from n :

fruit[n-1]

'a'

But there’s an easier way. To get the last letter in a string, you
can use a negative index, which counts backward from the end:

fruit[-1]

'a'

The index -1 selects the last letter, -2 selects the second to
last, and so on.

String Slices

A segment of a string is called a slice. Selecting a slice is similar
to selecting a character:

fruit = 'banana'

fruit[0:3]

'ban'

The operator [n:m] returns the part of the string from the
n th character to the m th character, including the first but
excluding the second. This behavior is counterintuitive, but it
might help to imagine the indices pointing between the
characters, as in this figure:

For example, the slice [3:6] selects the letters ana , which
means that 6 is legal as part of a slice, but not legal as an
index.

If you omit the first index, the slice starts at the beginning of the
string:

fruit[:3]

'ban'

If you omit the second index, the slice goes to the end of the
string:

fruit[3:]

'ana'

If the first index is greater than or equal to the second, the
result is an empty string, represented by two quotation marks:

fruit[3:3]

''

An empty string contains no characters and has a length of 0.

Continuing this example, what do you think fruit[:] means?
Try it and see.

Strings Are Immutable

It is tempting to use the [] operator on the left side of an
assignment, with the intention of changing a character in a
string, like this:

greeting = 'Hello, world!'

greeting[0] = 'J'

TypeError: 'str' object does not support item ass

The result is a TypeError . In the error message, the object
is the string and the item is the character we tried to assign.
For now, an object is the same thing as a value, but we will
refine that definition later.

The reason for this error is that strings are immutable, which
means you can’t change an existing string. The best you can do
is create a new string that is a variation of the original:

new_greeting = 'J' + greeting[1:]

new_greeting

'Jello, world!'

This example concatenates a new first letter onto a slice of
greeting . It has no effect on the original string:

greeting

'Hello, world!'

String Comparison

The relational operators work on strings. To see if two strings
are equal, we can use the == operator:

word = 'banana'

if word == 'banana':

 print('All right, banana.')

All right, banana.

Other relational operations are useful for putting words in
alphabetical order:

def compare_word(word):

 if word < 'banana':

 print(word, 'comes before banana.')

 elif word > 'banana':

 print(word, 'comes after banana.')

 else:

 print('All right, banana.')

compare_word('apple')

apple comes before banana.

Python does not handle uppercase and lowercase letters the
same way people do. All the uppercase letters come before all
the lowercase letters, so:

compare_word('Pineapple')

Pineapple comes before banana.

To solve this problem, we can convert strings to a standard
format, such as all lowercase, before performing the
comparison. Keep that in mind if you have to defend yourself
against a man armed with a pineapple.

String Methods

Strings provide methods that perform a variety of useful
operations. A method is similar to a function—it takes
arguments and returns a value—but the syntax is different. For
example, the method upper takes a string and returns a new
string with all uppercase letters.

Instead of the function syntax upper(word) , it uses the
method syntax word.upper() :

word = 'banana'

new_word = word.upper()

new_word

'BANANA'

This use of the dot operator specifies the name of the method,
upper , and the name of the string to apply the method to,
word . The empty parentheses indicate that this method takes
no arguments.

A method call is called an invocation; in this case, we would
say that we are invoking upper on word .

Writing Files

String operators and methods are useful for reading and
writing text files. As an example, we’ll work with the text of
Dracula, a novel by Bram Stoker that is available from Project

https://www.gutenberg.org/ebooks/345

Gutenberg. I’ve downloaded the book in a plain-text file called
pg345.txt, which we can open for reading like this:

reader = open('pg345.txt')

In addition to the text of the book, this file contains a section at
the beginning with information about the book and a section at
the end with information about the license. Before we process
the text, we can remove this extra material by finding the
special lines at the beginning and end that begin with '***' .

The following function takes a line and checks whether it is one
of the special lines. It uses the startswith method, which
checks whether a string starts with a given sequence of
characters:

def is_special_line(line):

 return line.startswith('*** ')

We can use this function to loop through the lines in the file and
print only the special lines:

https://www.gutenberg.org/ebooks/345

for line in reader:

 if is_special_line(line):

 print(line.strip())

*** START OF THE PROJECT GUTENBERG EBOOK DRACULA

*** END OF THE PROJECT GUTENBERG EBOOK DRACULA **

Now let’s create a new file, called pg345_cleaned.txt, that
contains only the text of the book. To loop through the book
again, we have to open it again for reading. And, to write a new
file, we can open it for writing:

reader = open('pg345.txt')

writer = open('pg345_cleaned.txt', 'w')

open takes an optional parameter that specifies the “mode”—
in this example, 'w' indicates that we’re opening the file for

writing. If the file doesn’t exist, it will be created; if it already
exists, the contents will be replaced.

As a first step, we’ll loop through the file until we find the first
special line:

for line in reader:

 if is_special_line(line):

 break

The break statement “breaks” out of the loop—that is, it
causes the loop to end immediately, before we get to the end of
the file.

When the loop exits, line contains the special line that made
the conditional true:

line

'*** START OF THE PROJECT GUTENBERG EBOOK DRACULA

Because reader keeps track of where it is in the file, we can
use a second loop to pick up where we left off.

The following loop reads the rest of the file, one line at a time.
When it finds the special line that indicates the end of the text,
it breaks out of the loop. Otherwise, it writes the line to the
output file:

for line in reader:

 if is_special_line(line):

 break

 writer.write(line)

When this loop exits, line contains the second special line:

line

'*** END OF THE PROJECT GUTENBERG EBOOK DRACULA *

At this point reader and writer are still open, which means
we could keep reading lines from reader or writing lines to
writer . To indicate that we’re done, we can close both files by
invoking the close method:

reader.close()

writer.close()

To check whether this process was successful, we can read the
first few lines from the new file we just created:

for line in open('pg345_cleaned.txt'):

 line = line.strip()

 if len(line) > 0:

 print(line)

 if line.endswith('Stoker'):

 break

DRACULA

by

Bram Stoker

The endswith method checks whether a string ends with a
given sequence of characters.

Find and Replace

In the Icelandic translation of Dracula from 1901, the name of
one of the characters was changed from “Jonathan” to
“Thomas.” To make this change in the English version, we can
loop through the book, use the replace method to replace one
name with another, and write the result to a new file.

We’ll start by counting the lines in the cleaned version of the
file:

total = 0

for line in open('pg345_cleaned.txt'):

 total += 1

total

15499

To see whether a line contains “Jonathan,” we can use the in
operator, which checks whether this sequence of characters
appears anywhere in the line:

total = 0

for line in open('pg345_cleaned.txt'):

 if 'Jonathan' in line:

 total += 1

total

199

There are 199 lines that contain the name, but that’s not quite
the total number of times it appears, because it can appear
more than once in a line. To get the total, we can use the count
method, which returns the number of times a sequence appears
in a string:

total = 0

 for line in open('pg345_cleaned.txt'):

 total += line.count('Jonathan')

total

200

Now we can replace 'Jonathan' with 'Thomas' like this:

writer = open('pg345_replaced.txt', 'w')

for line in open('pg345_cleaned.txt'):

 line = line.replace('Jonathan', 'Thomas')

 writer.write(line)

The result is a new file called pg345_replaced.txt that contains a
version of Dracula where Jonathan Harker is called Thomas.

Regular Expressions

If we know exactly what sequence of characters we’re looking
for, we can use the in operator to find it and the replace
method to replace it. But there is another tool, called a regular
expression, that can also perform these operations—and a lot
more.

To demonstrate, I’ll start with a simple example and we’ll work
our way up. Suppose, again, that we want to find all lines that
contain a particular word. For a change, let’s look for references
to the titular character of the book, Count Dracula. Here’s a line
that mentions him:

text = "I am Dracula; and I bid you welcome, Mr.

And here’s the pattern we’ll use to search:

pattern = 'Dracula'

A module called re provides functions related to regular
expressions. We can import it like this and use the search
function to check whether the pattern appears in the text:

import re

result = re.search(pattern, text)

result

<re.Match object; span=(5, 12), match='Dracula'>

If the pattern appears in the text, search returns a Match
object that contains the results of the search. Among other

information, it has a variable named string that contains the
text that was searched:

result.string

'I am Dracula; and I bid you welcome, Mr. Harker,

It also provides a function called group that returns the part of
the text that matched the pattern:

result.group()

'Dracula'

And it provides a function called span that returns the index
in the text where the pattern starts and ends:

result.span()

(5, 12)

If the pattern doesn’t appear in the text, the return value from
search is None :

result = re.search('Count', text)

print(result)

None

So we can check whether the search was successful by checking
whether the result is None :

result == None

True

Putting all that together, here’s a function that loops through the
lines in the book until it finds one that matches the given
pattern, and returns the Match object:

def find_first(pattern):

 for line in open('pg345_cleaned.txt'):

 result = re.search(pattern, line)

 if result != None:

 return result

We can use it to find the first mention of a character:

result = find_first('Harker')

result.string

'CHAPTER I. Jonathan Harker’s Journal\n'

For this example, we didn’t have to use regular expressions—
we could have done the same thing more easily with the in
operator. But regular expressions can do things the in
operator cannot.

For example, if the pattern includes the vertical bar character,
'|' , it can match either the sequence on the left or the
sequence on the right. Suppose we want to find the first
mention of Mina Murray in the book, but we are not sure
whether she is referred to by first name or last. We can use the
following pattern, which matches either name:

pattern = r'Mina|Murray'

result = find_first(pattern)

result.string

'CHAPTER V. Letters—Lucy and Mina\n'

We can use a pattern like this to see how many times a
character is mentioned by either name. Here’s a function that
loops through the book and counts the number of lines that
match the given pattern:

def count_matches(pattern):

 count = 0

 for line in open('pg345_cleaned.txt'):

 result = re.search(pattern, line)

 if result != None:

 count += 1

 return count

Now let’s see how many times Mina is mentioned:

count_matches('Mina|Murray')

229

The special character '^' matches the beginning of a string, so
we can find a line that starts with a given pattern:

result = find_first('^Dracula')

result.string

'Dracula, jumping to his feet, said:--\n'

And the special character '$' matches the end of a string, so
we can find a line that ends with a given pattern (ignoring the
newline at the end):

result = find_first('Harker$')

result.string

"by five o'clock, we must start off; for it won't

String Substitution

Bram Stoker was born in Ireland, and when Dracula was
published in 1897, he was living in England. So we would
expect him to use the British spelling of words like “centre” and
“colour.” To check, we can use the following pattern, which
matches either “centre” or the American spelling “center.”

pattern = 'cent(er|re)'

In this pattern, the parentheses enclose the part of the pattern
the vertical bar applies to. So this pattern matches a sequence
that starts with 'cent' and ends with either 'er' or 're' :

result = find_first(pattern)

result.string

'horseshoe of the Carpathians, as if it were the

As expected, he used the British spelling.

We can also check whether he used the British spelling of
“colour.” The following pattern uses the special character '?' ,
which means that the previous character is optional:

pattern = 'colou?r'

This pattern matches either “colour” with the 'u' or “color”
without it:

result = find_first(pattern)

line = result.string

line

'undergarment with long double apron, front, and

Again, as expected, he used the British spelling.

Now suppose we want to produce an edition of the book with
American spellings. We can use the sub function in the re
module, which does string substitution:

re.sub(pattern, 'color', line)

'undergarment with long double apron, front, and

The first argument is the pattern we want to find and replace,
the second is what we want to replace it with, and the third is
the string we want to search. In the result, you can see that
“colour” has been replaced with “color.”

Debugging

When you are reading and writing files, debugging can be
tricky. If you are working in a Jupyter notebook, you can use
shell commands to help. For example, to display the first few
lines of a file, you can use the command !head , like this:

!head pg345_cleaned.txt

The initial exclamation point, ! , indicates that this is a shell
command, which is not part of Python. To display the last few
lines, you can use !tail :

!tail pg345_cleaned.txt

When you are working with large files, debugging can be
difficult because there might be too much output to check by
hand. A good debugging strategy is to start with just part of the
file, get the program working, and then run it with the whole
file.

To make a small file that contains part of a larger file, we can
use !head again with the redirect operator, > , which indicates
that the results should be written to a file rather than displayed:

!head pg345_cleaned.txt > pg345_cleaned_10_lines

By default, !head reads the first 10 lines, but it takes an
optional argument that indicates the number of lines to read:

!head -100 pg345_cleaned.txt > pg345_cleaned_100_

This shell command reads the first 100 lines from
pg345_cleaned.txt and writes them to a file called
pg345_cleaned_100_lines.txt.

Note that the shell commands !head and !tail are not
available on all operating systems. If they don’t work for you,
we can write similar functions in Python. See the first exercise
at the end of this chapter for suggestions.

Glossary

sequence: An ordered collection of values where each value is
identified by an integer index.

character: An element of a string, including letters, numbers,
and symbols.

index: An integer value used to select an item in a sequence,
such as a character in a string. In Python, indices start from 0 .

slice: A part of a string specified by a range of indices.

empty string: A string that contains no characters and has
length 0 .

object: Something a variable can refer to. An object has a type
and a value.

immutable: If the elements of an object cannot be changed, the
object is immutable.

invocation: An expression—or part of an expression—that calls
a method.

regular expression: A sequence of characters that defines a
search pattern.

pattern: A rule that specifies the requirements a string has to
meet to constitute a match.

string substitution: Replacement of a string, or part of a string,
with another string.

shell command: A statement in a shell language, which is a
language used to interact with an operating system.

raw string: A Python string that is preceded by the letter r ,
which indicates that backslashes that appear in the string
should not be considered part of a special sequence.

Exercises

Ask a Virtual Assistant

In this chapter, we only scratched the surface of what regular
expressions can do. To get an idea of what’s possible, ask a
virtual assistant, “What are the most common special
characters used in Python regular expressions?”

You can also ask for a pattern that matches particular kinds of
strings. For example, try asking:

“Write a Python regular expression that matches a 10-digit
phone number with hyphens.”
“Write a Python regular expression that matches a street
address with a number and a street name, followed by ST
or AVE .”
“Write a Python regular expression that matches a full
name with any common title like Mr or Mrs , followed by
any number of names beginning with capital letters,
possibly with hyphens between some names.”

And if you want to see something more complicated, try asking
for a regular expression that matches any legal URL.

A regular expression often has the letter r before the
quotation mark, which indicates that it is a raw string. For
more information, ask a virtual assistant, “What is a raw string
in Python?”

Exercise

See if you can write a function that does the same thing as the
shell command !head . It should take as arguments the name

of a file to read, the number of lines to read, and the name of
the file to write the lines into. If the third parameter is None , it
should display the lines rather than write them to a file.

Consider asking a virtual assistant for help, but if you do, tell it
not to use a with statement or a try statement.

Exercise

“Wordle” is an online word game where the objective is to
guess a five-letter word in six or fewer attempts. Each attempt
has to be recognized as a word, not including proper nouns.
After each attempt, you get information about which of the
letters you guessed appear in the target word, and which ones
are in the correct position.

For example, suppose the target word is MOWER and you guess
TRIED . You would learn that E is in the word and in the
correct position, R is in the word but not in the correct
position, and T , I , and D are not in the word.

As a different example, suppose you have guessed the words
SPADE and CLERK , and you’ve learned that E is in the word,
but not in either of those positions, and none of the other letters
appear in the word.

Of the words in the word list, how many could be the target
word? Write a function called check_word that takes a five-
letter word and checks whether it could be the target word.

You can use any of the functions from the previous chapter, like
uses_any .

Exercise

Continuing the previous exercise, suppose you guess the word
TOTEM and learn that the E is still not in the right place, but
the M is. How many words are left?

Exercise

The Count of Monte Cristo is a novel by Alexandre Dumas that is
considered a classic. Nevertheless, in the introduction of an
English translation of the book, the writer Umberto Eco
confesses that he found the book to be “one of the most badly
written novels of all time.”

In particular, he says it is “shameless in its repetition of the
same adjective,” and mentions in particular the number of
times “its characters either shudder or turn pale.”

To see whether his objection is valid, let’s count the number of
times the word pale appears in any form, including pale ,
pales , paled , and paleness , as well as the related word
pallor . Use a single regular expression that matches all of
these words and no others.

Chapter 9. Lists

This chapter presents one of Python’s most useful built-in types,
lists. You will also learn more about objects and what can
happen when multiple variables refer to the same object.

In the exercises at the end of the chapter, we’ll make a word list
and use it to search for special words like palindromes and
anagrams.

A List Is a Sequence

Like a string, a list is a sequence of values. In a string, the
values are characters; in a list, they can be any type. The values
in a list are called elements.

There are several ways to create a new list; the simplest is to
enclose the elements in square brackets ([and]). For
example, here is a list of two integers:

numbers = [42, 123]

And here’s a list of three strings:

cheeses = ['Cheddar', 'Edam', 'Gouda']

The elements of a list don’t have to be the same type. The
following list contains a string, a float, an integer, and even
another list:

t = ['spam', 2.0, 5, [10, 20]]

A list within another list is nested.

A list that contains no elements is called an empty list; you can
create one with empty brackets, [] :

empty = []

The len function returns the length of a list:

len(cheeses)

3

The length of an empty list is 0 .

The following figure shows the state diagram for cheeses ,
numbers , and empty :

Lists are represented by boxes with the word “list” outside and
the numbered elements of the list inside.

Lists Are Mutable

To read an element of a list, we can use the bracket operator.
The index of the first element is 0 :

cheeses[0]

'Cheddar'

Unlike strings, lists are mutable. When the bracket operator
appears on the left side of an assignment, it identifies the
element of the list that will be assigned:

numbers[1] = 17

numbers

[42, 17]

The second element of numbers , which used to be 123 , is now
17 .

List indices work the same way as string indices:

Any integer expression can be used as an index.

If you try to read or write an element that does not exist,
you get an IndexError .
If an index has a negative value, it counts backward from
the end of the list.

The in operator works on lists—it checks whether a given
element appears anywhere in the list:

'Edam' in cheeses

True

'Wensleydale' in cheeses

False

Although a list can contain another list, the nested list still
counts as a single element—so in the following list, there are
only four elements:

t = ['spam', 2.0, 5, [10, 20]]

len(t)

4

And 10 is not considered to be an element of t because it is
an element of a nested list, not t :

10 in t

False

List Slices

The slice operator works on lists the same way it works on
strings. The following example selects the second and third
elements from a list of four letters:

letters = ['a', 'b', 'c', 'd']

letters[1:3]

['b', 'c']

If you omit the first index, the slice starts at the beginning:

letters[:2]

['a', 'b']

If you omit the second, the slice goes to the end:

letters[2:]

['c', 'd']

So if you omit both, the slice is a copy of the whole list:

letters[:]

['a', 'b', 'c', 'd']

Another way to copy a list is to use the list function:

list(letters)

['a', 'b', 'c', 'd']

Because list is the name of a built-in function, you should
avoid using it as a variable name.

List Operations

The + operator concatenates lists:

t1 = [1, 2]

t2 = [3, 4]

t1 + t2

[1, 2, 3, 4]

The * operator repeats a list a given number of times:

['spam'] * 4

['spam', 'spam', 'spam', 'spam']

No other mathematical operators work with lists, but the built-
in function sum adds up the elements:

sum(t1)

3

And min and max find the smallest and largest elements:

min(t1)

1

max(t2)

4

List Methods

Python provides methods that operate on lists. For example,
append adds a new element to the end of a list:

letters.append('e')

letters

['a', 'b', 'c', 'd', 'e']

extend takes a list as an argument and appends all of the
elements:

letters.extend(['f', 'g'])

letters

['a', 'b', 'c', 'd', 'e', 'f', 'g']

There are two methods that remove elements from a list. If you
know the index of the element you want, you can use pop :

t = ['a', 'b', 'c']

t.pop(1)

'b'

The return value is the element that was removed. And we can
confirm that the list has been modified:

t

['a', 'c']

If you know the element you want to remove (but not the
index), you can use remove :

t = ['a', 'b', 'c']

t.remove('b')

The return value from remove is None . But we can confirm
that the list has been modified:

t

['a', 'c']

If the element you ask for is not in the list, that’s a
ValueError :

t.remove('d')

ValueError: list.remove(x): x not in list

Lists and Strings

A string is a sequence of characters and a list is a sequence of
values, but a list of characters is not the same as a string. To

convert from a string to a list of characters, you can use the
list function:

s = 'spam'

t = list(s)

t

['s', 'p', 'a', 'm']

The list function breaks a string into individual letters. If you
want to break a string into words, you can use the split
method:

s = 'pining for the fjords'

t = s.split()

t

['pining', 'for', 'the', 'fjords']

An optional argument called a delimiter specifies which
characters to use as word boundaries. The following example
uses a hyphen as a delimiter:

s = 'ex-parrot'

t = s.split('-')

t

['ex', 'parrot']

If you have a list of strings, you can concatenate them into a
single string using join . join is a string method, so you have
to invoke it on the delimiter and pass the list as an argument:

delimiter = ' '

t = ['pining', 'for', 'the', 'fjords']

s = delimiter.join(t)

s

'pining for the fjords'

In this case the delimiter is a space character, so join puts a
space between words. To join strings without spaces, you can
use the empty string, '' , as a delimiter.

Looping Through a List

You can use a for statement to loop through the elements of a
list:

for cheese in cheeses:

print(cheese)

Cheddar

Edam

Gouda

For example, after using split to make a list of words, we can
use for to loop through them:

s = 'pining for the fjords'

for word in s.split():

 print(word)

pining

for

the

fjords

A for loop over an empty list never runs the indented
statements:

for x in []:

 print('This never happens.')

Sorting Lists

Python provides a built-in function called sorted that sorts
the elements of a list:

scramble = ['c', 'a', 'b']

sorted(scramble)

['a', 'b', 'c']

The original list is unchanged:

scramble

['c', 'a', 'b']

sorted works with any kind of sequence, not just lists. So we
can sort the letters in a string like this:

sorted('letters')

['e', 'e', 'l', 'r', 's', 't', 't']

The result is a list. To convert the list to a string, we can use
join :

''.join(sorted('letters'))

'eelrstt'

With an empty string as the delimiter, the elements of the list
are joined with nothing between them.

Objects and Values

If we run these assignment statements, we know that a and b
both refer to a string, but we don’t know whether they refer to
the same string:

a = 'banana'

b = 'banana'

There are two possible states, shown in the following figure:

In the diagram on the left, a and b refer to two different
objects that have the same value. In the diagram on the right,
they refer to the same object. To check whether two variables
refer to the same object, you can use the is operator:

a = 'banana'

b = 'banana'

a is b

True

In this example, Python only created one string object, and both
a and b refer to it. But when you create two lists, you get two
objects:

a = [1, 2, 3]

b = [1, 2, 3]

a is b

False

So the state diagram looks like this:

In this case we would say that the two lists are equivalent
because they have the same elements, but are not identical
because they are not the same object. If two objects are
identical, they are also equivalent, but if they are equivalent,
they are not necessarily identical.

Aliasing

If a refers to an object and you assign b = a , then both
variables refer to the same object:

a = [1, 2, 3]

b = a

b is a

True

So the state diagram looks like this:

The association of a variable with an object is called a
reference. In this example, there are two references to the
same object.

An object with more than one reference has more than one
name, so we say the object is aliased. If the aliased object is

mutable, changes made with one name affect the other. In this
example, if we change the object b refers to, we are also
changing the object a refers to:

b[0] = 5

a

[5, 2, 3]

So we would say that a “sees” this change. Although this
behavior can be useful, it is error prone. In general, it is safer to
avoid aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a
problem. In this example it almost never makes a difference
whether a and b refer to the same string or not:

a = 'banana'

b = 'banana'

List Arguments

When you pass a list to a function, the function gets a reference
to the list. If the function modifies the list, the caller sees the
change. For example, pop_first uses the list method pop to
remove the first element from a list:

def pop_first(lst):

 return lst.pop(0)

We can use it like this:

letters = ['a', 'b', 'c']

 pop_first(letters)

'a'

The return value is the first element, which has been removed
from the list—as we can see by displaying the modified list:

letters

['b', 'c']

In this example, the parameter lst and the variable letters
are aliases for the same object, so the stack diagram looks like
this:

Passing a reference to an object as an argument to a function
creates a form of aliasing. If the function modifies the object,
those changes persist after the function is done.

Making a Word List

In the previous chapter, we read the file words.txt and searched
for words with certain properties, like using the letter e . But
we read the entire file many times, which is not efficient. It is
better to read the file once and put the words in a list. The
following loop shows how:

word_list = []

for line in open('words.txt'):

 word = line.strip()

 word_list.append(word)

len(word_list)

113783

Before the loop, word_list is initialized with an empty list.
Each time through the loop, the append method adds a word
to the end. When the loop is done, there are more than 113,000
words in the list.

Another way to do the same thing is to use read to read the
entire file into a string:

string = open('words.txt').read()

len(string)

1016511

The result is a single string with more than a million characters.
We can use the split method to split it into a list of words:

word_list = string.split()

len(word_list)

113783

Now, to check whether a string appears in the list, we can use
the in operator. For example, 'demotic' is in the list:

'demotic' in word_list

True

But 'contrafibularities' is not:

'contrafibularities' in word_list

False

And I have to say, I’m anaspeptic about it.

Debugging

Note that most list methods modify the argument and return
None . This is the opposite of the string methods, which return
a new string and leave the original alone.

If you are used to writing string code like this:

word = 'plumage!'

word = word.strip('!')

word

'plumage'

It is tempting to write list code like this:

t = [1, 2, 3]

t = t.remove(3) # WRONG!

remove modifies the list and returns None , so the next
operation you perform with t is likely to fail:

t.remove(2)

AttributeError: 'NoneType' object has no attribut

This error message takes some explaining. An attribute of an
object is a variable or method associated with it. In this case,
the value of t is None , which is a NoneType object, which
does not have an attribute named remove , so the result is an
AttributeError .

If you see an error message like this, you should look backward
through the program and see if you might have called a list
method incorrectly.

Glossary

list: An object that contains a sequence of values.

element: One of the values in a list or other sequence.

nested list: A list that is an element of another list.

delimiter: A character or string used to indicate where a string
should be split.

equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

reference: The association between a variable and its value.

aliased: If there is more than one variable that refers to an
object, the object is aliased.

attribute: One of the named values associated with an object.

Exercises

Ask a Virtual Assistant

In this chapter, I used the words “contrafibularities” and
“anaspeptic,” but they are not actually English words. They are
used in the British television show Black Adder, Season 2,
Episode 2, “Ink and Incapability.”

However, when I asked ChatGPT 3.5 (August 3, 2023 version)
where those words come from, it initially claimed they are from
Monty Python, and later claimed they are from the Tom
Stoppard play Rosencrantz and Guildenstern Are Dead.

If you ask now, you might get different results. But this example
is a reminder that virtual assistants are not always accurate, so
you should check whether the results are correct. As you gain
experience, you will get a sense of which questions virtual
assistants can answer reliably. In this example, a conventional
web search can quickly identify the source of these words.

If you get stuck on any of the exercises in this chapter, consider
asking a virtual assistant for help. If you get a result that uses
features we haven’t learned yet, you can assign the VA a “role.”

For example, before you ask a question try typing “Role: Basic
Python Programming Instructor.” Then the responses you get
should use only basic features. If you still see features you
haven’t learned, you can follow up with “Can you write that
using only basic Python features?”

Exercise

Two words are anagrams if you can rearrange the letters from
one to spell the other. For example, tops is an anagram of
stop . One way to check whether two words are anagrams is to
sort the letters in both words. If the lists of sorted letters are the
same, the words are anagrams.

Write a function called is_anagram that takes two strings and
returns True if they are anagrams. Using your function and
the word list, find all the anagrams of takes .

Exercise

Python provides a built-in function called reversed that takes
as an argument a sequence of elements—like a list or string—
and returns a reversed object that contains the elements in
reverse order:

reversed('parrot')

<reversed at 0x7fe3de636b60>

If you want the reversed elements in a list, you can use the
list function:

list(reversed('parrot'))

['t', 'o', 'r', 'r', 'a', 'p']

Or if you want them in a string, you can use the join method:

''.join(reversed('parrot'))

'torrap'

So we can write a function that reverses a word like this:

def reverse_word(word):

 return ''.join(reversed(word))

A palindrome is a word that is spelled the same backward and
forward, like “noon” and “rotator.” Write a function called

is_palindrome that takes a string argument and returns
True if it is a palindrome and False otherwise.

You can use the following loop to find all of the palindromes in
the word list with at least seven letters:

for word in word_list:

 if len(word) >= 7 and is_palindrome(word):

 print(word)

Exercise

Write a function called reverse_sentence that takes as an
argument a string that contains any number of words separated
by spaces. It should return a new string that contains the same
words in reverse order. For example, if the argument is
“Reverse this sentence,” the result should be “Sentence this
reverse.”

Hint: you can use the capitalize methods to capitalize the
first word and convert the other words to lowercase.

Exercise

Write a function called total_length that takes a list of
strings and returns the total length of the strings. The total
length of the words in word_list should be 902,728.

Chapter 10. Dictionaries

This chapter presents a built-in type called a dictionary. It is one
of Python’s best features—and the building block of many
efficient and elegant algorithms.

We’ll use dictionaries to compute the number of unique words
in a book and the number of times each one appears. And in the
exercises, we’ll use dictionaries to solve word puzzles.

A Dictionary Is a Mapping

A dictionary is like a list, but more general. In a list, the indices
have to be integers; in a dictionary they can be (almost) any
type. For example, suppose we make a list of number words,
like this:

lst = ['zero', 'one', 'two']

We can use an integer as an index to get the corresponding
word:

lst[1]

'one'

But suppose we want to go in the other direction, and look up a
word to get the corresponding integer. We can’t do that with a
list, but we can with a dictionary. We’ll start by creating an
empty dictionary and assigning it to numbers :

numbers = {}

numbers

{}

The curly braces, {} , represent an empty dictionary. To add
items to the dictionary, we’ll use square brackets:

numbers['zero'] = 0

This assignment adds to the dictionary an item, which
represents the association of a key and a value. In this
example, the key is the string 'zero' and the value is the
integer 0 . If we display the dictionary, we see that it contains
one item, which contains a key and a value separated by a
colon:

numbers

{'zero': 0}

We can add more items like this:

numbers['one'] = 1

numbers['two'] = 2

numbers

{'zero': 0, 'one': 1, 'two': 2}

Now the dictionary contains three items.

To look up a key and get the corresponding value, we use the
bracket operator:

numbers['two']

2

If the key isn’t in the dictionary, we get a KeyError :

numbers['three']

KeyError: 'three'

The len function works on dictionaries; it returns the number
of items:

len(numbers)

3

In mathematical language, a dictionary represents a mapping
from keys to values, so you can also say that each key “maps to”
a value. In this example, each number word maps to the
corresponding integer.

The following figure shows the state diagram for numbers :

A dictionary is represented by a box with the word dict
outside and the items inside. Each item is represented by a key
and an arrow pointing to a value. The quotation marks indicate
that the keys here are strings, not variable names.

Creating Dictionaries

In the previous section we created an empty dictionary and
added items one at a time using the bracket operator. Instead,
we could have created the dictionary all at once like this:

numbers = {'zero': 0, 'one': 1, 'two': 2}

Each item consists of a key and a value separated by a colon.
The items are separated by commas and enclosed in curly
braces.

Another way to create a dictionary is to use the dict function.
We can make an empty dictionary like this:

empty = dict()

empty

{}

And we can make a copy of a dictionary like this:

numbers_copy = dict(numbers)

numbers_copy

{'zero': 0, 'one': 1, 'two': 2}

It is often useful to make a copy before performing operations
that modify dictionaries.

The in Operator

The in operator works on dictionaries, too; it tells you whether
something appears as a key in the dictionary:

'one' in numbers

True

The in operator does not check whether something appears as
a value:

1 in numbers

False

To see whether something appears as a value in a dictionary,
you can use the method values , which returns a sequence of
values, and then use the in operator:

1 in numbers.values()

True

The items in a Python dictionary are stored in a hash table,
which is a way of organizing data that has a remarkable
property: the in operator takes about the same amount of time

no matter how many items are in the dictionary. That makes it
possible to write some remarkably efficient algorithms.

To demonstrate, we’ll compare two algorithms for finding pairs
of words where one is the reverse of another—like stressed
and desserts . We’ll start by reading the word list:

word_list = open('words.txt').read().split()

len(word_list)

113783

And here’s reverse_word from the previous chapter:

def reverse_word(word):

 return ''.join(reversed(word))

The following function loops through the words in the list. For
each one, it reverses the letters and then checks whether the

reversed word is in the word list:

def too_slow():

 count = 0

 for word in word_list:

 if reverse_word(word) in word_list:

 count += 1

 return count

This function takes more than a minute to run. The problem is
that the in operator checks the words in the list one at a time,
starting at the beginning. If it doesn’t find what it’s looking for—
which happens most of the time—it has to search all the way to
the end.

The in operator is inside the loop, so it runs once for each
word. Since there are more than 100,000 words in the list, and
for each one we check more than 100,000 words, the total
number of comparisons is the number of words squared—
roughly—which is almost 13 billion:

len(word_list)**2

12946571089

We can make this function much faster with a dictionary. The
following loop creates a dictionary that contains the words as
keys:

word_dict = {}

 for word in word_list:

 word_dict[word] = 1

The values in word_dict are all 1 , but they could be
anything, because we won’t ever look them up—we will only
use this dictionary to check whether a key exists.

Now here’s a version of the previous function that replaces
word_list with word_dict :

def much_faster():

 count = 0

 for word in word_dict:

 if reverse_word(word) in word_dict:

 count += 1

 return count

This function takes less than one hundredth of a second, so it’s
about 10,000 times faster than the previous version.

In general, the time it takes to find an element in a list is
proportional to the length of the list. The time it takes to find a
key in a dictionary is almost constant—regardless of the
number of items:

d = {'a': 1, 'b': 2}

d['a'] = 3

d

{'a': 3, 'b': 2}

A Collection of Counters

Suppose you are given a string and you want to count how
many times each letter appears. A dictionary is a good tool for
this job. We’ll start with an empty dictionary:

counter = {}

As we loop through the letters in the string, suppose we see the
letter 'a' for the first time. We can add it to the dictionary like
this:

counter['a'] = 1

The value 1 indicates that we have seen the letter once. Later,
if we see the same letter again, we can increment the counter
like this:

counter['a'] += 1

Now the value associated with 'a' is 2 , because we’ve seen
the letter twice:

counter

{'a': 2}

The following function uses these features to count the number
of times each letter appears in a string:

def value_counts(string):

 counter = {}

 for letter in string:

 if letter not in counter:

 counter[letter] = 1

 else:

 counter[letter] += 1

 return counter

Each time through the loop, if letter is not in the dictionary,
we create a new item with key letter and value 1 . If
letter is already in the dictionary we increment the value
associated with letter . Here’s an example:

counter = value_counts('brontosaurus')

counter

{'b': 1, 'r': 2, 'o': 2, 'n': 1, 't': 1, 's': 2,

The items in counter show that the letter 'b' appears once,
'r' appears twice, and so on.

Looping and Dictionaries

If you use a dictionary in a for statement, it traverses the keys
of the dictionary. To demonstrate, let’s make a dictionary that
counts the letters in 'banana' :

counter = value_counts('banana')

counter

{'b': 1, 'a': 3, 'n': 2}

The following loop prints the keys, which are the letters:

for key in counter:

 print(key)

b

a

n

To print the values, we can use the values method:

for value in counter.values():

 print(value)

1

3

2

To print the keys and values, we can loop through the keys and
look up the corresponding values:

for key in counter:

 value = counter[key]

 print(key, value)

b 1

a 3

n 2

In Chapter 11, we’ll see a more concise way to do the same
thing.

Lists and Dictionaries

You can put a list in a dictionary as a value. For example, here’s
a dictionary that maps from the number 4 to a list of four
letters:

d = {4: ['r', 'o', 'u', 's']}

d

{4: ['r', 'o', 'u', 's']}

But you can’t put a list in a dictionary as a key. Here’s what
happens if we try:

letters = list('abcd')

d[letters] = 4

TypeError: unhashable type: 'list'

I mentioned earlier that dictionaries use hash tables, and that
means that the keys have to be hashable.

A hash is a function that takes a value (of any kind) and returns
an integer. Dictionaries use these integers, called hash values, to
store and look up keys.

This system only works if a key is immutable, so its hash value
is always the same. But if a key is mutable, its hash value could
change, and the dictionary would not work. That’s why keys
have to be hashable, and why mutable types like lists aren’t.

Since dictionaries are mutable, they can’t be used as keys either.
But they can be used as values.

Accumulating a List

For many programming tasks, it is useful to loop through one
list or dictionary while building another. As an example, we’ll
loop through the words in word_dict and make a list of
palindromes—that is, words that are spelled the same
backward and forward, like “noon” and “rotator.”

In the previous chapter, one of the exercises asked you to write
a function that checks whether a word is a palindrome. Here’s a
solution that uses reverse_word :

def is_palindrome(word):

 """Check if a word is a palindrome."""

 return reverse_word(word) == word

If we loop through the words in word_dict , we can count the
number of palindromes like this:

count = 0

for word in word_dict:

 if is_palindrome(word):

 count +=1

count

91

By now, this pattern is familiar.

Before the loop, count is initialized to 0 .
Inside the loop, if word is a palindrome, we increment
count .
When the loop ends, count contains the total number of
palindromes.

We can use a similar pattern to make a list of palindromes:

palindromes = []

for word in word_dict:

 if is_palindrome(word):

 palindromes.append(word)

palindromes[:10]

['aa', 'aba', 'aga', 'aha', 'ala', 'alula', 'ama

Here’s how it works:

Before the loop, palindromes is initialized with an empty
list.
Inside the loop, if word is a palindrome, we append it to
the end of palindromes .
When the loop ends, palindromes is a list of palindromes.

In this loop, palindromes is used as an accumulator, which is
a variable that collects or accumulates data during a
computation.

Now suppose we want to select only palindromes with seven or
more letters. We can loop through palindromes and make a
new list that contains only long palindromes:

long_palindromes = []

for word in palindromes:

 if len(word) >= 7:

 long_palindromes.append(word)

long_palindromes

['deified', 'halalah', 'reifier', 'repaper', 'rev

Looping through a list like this, selecting some elements and
omitting others, is called filtering.

Memos

If you ran the fibonacci function from “Fibonacci”, maybe
you noticed that the bigger the argument you provide, the
longer the function takes to run:

def fibonacci(n):

 if n == 0:

 return 0

 if n == 1:

 return 1

 return fibonacci(n-1) + fibonacci(n-2)

Furthermore, the run time increases quickly. To understand
why, consider the following figure, which shows the call graph
for fibonacci with n=3 :

A call graph shows a set of function frames, with lines
connecting each frame to the frames of the functions it calls. At
the top of the graph, fibonacci with n=4 calls fibonacci
with n=3 and n=2 . In turn, fibonacci with n=3 calls
fibonacci with n=2 and n=1 . And so on.

Count how many times fibonacci(0) and fibonacci(1)
are called. This is an inefficient solution to the problem, and it
gets worse as the argument gets bigger.

One solution is to keep track of values that have already been
computed by storing them in a dictionary. A previously
computed value that is stored for later use is called a memo.
Here is a “memoized” version of fibonacci :

known = {0:0, 1:1}

def fibonacci_memo(n):

 if n in known:

 return known[n]

 res = fibonacci_memo(n-1) + fibonacci_memo(n-

 known[n] = res

 return res

known is a dictionary that keeps track of the Fibonacci
numbers we already know. It starts with two items: 0 maps to
0 , and 1 maps to 1 .

Whenever fibonacci_memo is called, it checks known . If the
result is already there, it can return immediately. Otherwise it
has to compute the new value, add it to the dictionary, and
return it.

Comparing the two functions, fibonacci(40) takes about 30
seconds to run. fibonacci_memo(40) takes about 30
microseconds, so it’s a million times faster. In the notebook for
this chapter, you’ll see where these measurements come from.

Debugging

As you work with bigger datasets it can become unwieldy to
debug by printing and checking the output by hand. Here are
some suggestions for debugging large datasets:

Scale down the input

If possible, reduce the size of the dataset. For example, if
the program reads a text file, start with just the first 10
lines, or with the smallest example you can find. You can
either edit the files, or (better) modify the program so it
reads only the first n lines.

If there is an error, you can reduce n to the smallest
value where the error occurs. As you find and correct
errors, you can increase n gradually.

Check summaries and types

Instead of printing and checking the entire dataset,
consider printing summaries of the data—for example,
the number of items in a dictionary or the total of a list of
numbers.

A common cause of runtime errors is a value that is not
the right type. For debugging this kind of error, it is often
enough to print the type of a value.

Write self-checks

Sometimes you can write code to check for errors
automatically. For example, if you are computing the
average of a list of numbers, you could check that the
result is not greater than the largest element in the list or
less than the smallest. This is called a “sanity check”
because it detects results that are “insane.”

Another kind of check compares the results of two
different computations to see if they are consistent. This is
called a “consistency check.”

Format the output

Formatting debugging output can make it easier to spot an
error. We saw an example in “Debugging”. Another tool
you might find useful is the pprint module, which
provides a pprint function that displays built-in types in
a more human-readable format (pprint stands for
“pretty print”).

Again, time you spend building scaffolding can reduce the
time you spend debugging.

Glossary

dictionary: An object that contains key-value pairs, also called
items.

item: In a dictionary, another name for a key-value pair.

key: An object that appears in a dictionary as the first part of a
key-value pair.

value: An object that appears in a dictionary as the second part
of a key-value pair. This is more specific than our previous use
of the word “value.”

mapping: A relationship in which each element of one set
corresponds to an element of another set.

hash table: A collection of key-value pairs organized so that we
can look up a key and find its value efficiently.

hashable: Immutable types like integers, floats, and strings are
hashable. Mutable types like lists and dictionaries are not.

hash function: A function that takes an object and computes an
integer that is used to locate a key in a hash table.

accumulator: A variable used in a loop to add up or
accumulate a result.

filtering: Looping through a sequence and selecting or omitting
elements.

call graph: A diagram that shows every frame created during
the execution of a program, with an arrow from each caller to
each callee.

memo: A computed value stored to avoid unnecessary future
computation.

Exercises

Ask a Virtual Assistant

In this chapter, I said the keys in a dictionary have to be
hashable and I gave a short explanation. If you would like more
details, ask a virtual assistant, “Why do keys in Python
dictionaries have to be hashable?”

In “The in Operator”, we stored a list of words as keys in a
dictionary so that we could use an efficient version of the in
operator. We could have done the same thing using a set ,
which is another built-in data type. Ask a virtual assistant,
“How do I make a Python set from a list of strings and check
whether a string is an element of the set?”

Exercise

Dictionaries have a method called get that takes a key and a
default value. If the key appears in the dictionary, get returns
the corresponding value; otherwise it returns the default value.
For example, here’s a dictionary that maps from the letters in a
string to the number of times they appear:

counter = value_counts('brontosaurus')

If we look up a letter that appears in the word, get returns the
number of times it appears:

counter.get('b', 0)

1

If we look up a letter that doesn’t appear, we get the default
value, 0 :

counter.get('c', 0)

0

Use get to write a more concise version of value_counts .
You should be able to eliminate the if statement.

Exercise

What is the longest word you can think of where each letter
appears only once? Let’s see if we can find one longer than
unpredictably .

Write a function named has_duplicates that takes a
sequence—like a list or string—as a parameter and returns
True if there is any element that appears in the sequence more
than once.

Exercise

Write a function called find_repeats that takes a dictionary
that maps from each key to a counter, like the result from
value_counts . It should loop through the dictionary and
return a list of keys that have counts greater than 1 . You can
use the following outline to get started:

def find_repeats(counter):

 """Makes a list of keys with values greater t

 counter: dictionary that maps from keys to co

 returns: list of keys

 """

 return []

Exercise

Suppose you run value_counts with two different words and
save the results in two dictionaries:

counter1 = value_counts('brontosaurus')

counter2 = value_counts('apatosaurus')

Each dictionary maps from a set of letters to the number of
times they appear. Write a function called add_counters that
takes two dictionaries like this and returns a new dictionary

that contains all of the letters and the total number of times
they appear in either word.

There are many ways to solve this problem. Once you have a
working solution, consider asking a virtual assistant for
different solutions.

Exercise

A word is “interlocking” if we can split it into two words by
taking alternating letters. For example, “schooled” is an
interlocking word because it can be split into “shoe” and “cold.”

To select alternating letters from a string, you can use a slice
operator with three components that indicate where to start,
where to stop, and the “step size” between the letters.

In the following slice, the first component is 0 , so we start with
the first letter. The second component is None , which means
we should go all the way to the end of the string. And the third
component is 2 , so there are two steps between the letters we
select:

word = 'schooled'

first = word[0:None:2]

first

'shoe'

Instead of providing None as the second component, we can
get the same effect by leaving it out altogether. For example, the
following slice selects alternating letters, starting with the
second letter:

second = word[1::2]

second

'cold'

Write a function called is_interlocking that takes a word as
an argument and returns True if it can be split into two
interlocking words.

Chapter 11. Tuples

This chapter introduces one more built-in type, the tuple, and
then shows how lists, dictionaries, and tuples work together. It
also presents tuple assignment and a useful feature for
functions with variable-length argument lists: the packing and
unpacking operators.

In the exercises, we’ll use tuples, along with lists and
dictionaries, to solve more word puzzles and implement
efficient algorithms.

One note: there are two ways to pronounce “tuple.” Some
people say “tuh-ple,” which rhymes with “supple.” But in the
context of programming, most people say “too-ple,” which
rhymes with “quadruple.”

Tuples Are Like Lists

A tuple is a sequence of values. The values can be any type, and
they are indexed by integers, so tuples are a lot like lists. The
important difference is that tuples are immutable.

To create a tuple, you can write a comma-separated list of
values:

t = 'l', 'u', 'p', 'i', 'n'

type(t)

tuple

Although it is not necessary, it is common to enclose tuples in
parentheses:

t = ('l', 'u', 'p', 'i', 'n')

type(t)

tuple

To create a tuple with a single element, you have to include a
final comma:

t1 = 'p',

type(t1)

tuple

A single value in parentheses is not a tuple:

t2 = ('p')

type(t2)

str

Another way to create a tuple is the built-in function tuple .
With no argument, it creates an empty tuple:

t = tuple()

t

()

If the argument is a sequence (string, list, or tuple), the result is
a tuple with the elements of the sequence:

t = tuple('lupin')

t

('l', 'u', 'p', 'i', 'n')

Because tuple is the name of a built-in function, you should
avoid using it as a variable name.

Most list operators also work with tuples. For example, the
bracket operator indexes an element:

t[0]

'l'

And the slice operator selects a range of elements:

t[1:3]

('u', 'p')

The + operator concatenates tuples:

tuple('lup') + ('i', 'n')

('l', 'u', 'p', 'i', 'n')

And the * operator duplicates a tuple a given number of times:

tuple('spam') * 2

('s', 'p', 'a', 'm', 's', 'p', 'a', 'm')

The sorted function works with tuples—but the result is a list,
not a tuple:

sorted(t)

['i', 'l', 'n', 'p', 'u']

The reversed function also works with tuples:

reversed(t)

<reversed at 0x7f56c0072110>

The result is a reversed object, which we can convert to a list
or tuple:

tuple(reversed(t))

('n', 'i', 'p', 'u', 'l')

Based on the examples so far, it might seem like tuples are the
same as lists.

But Tuples Are Immutable

If you try to modify a tuple with the bracket operator, you get a
TypeError :

t[0] = 'L'

TypeError: 'tuple' object does not support item a

And tuples don’t have any of the methods that modify lists, like
append and remove :

t.remove('l')

AttributeError: 'tuple' object has no attribute

Recall that an “attribute” is a variable or method associated
with an object—this error message means that tuples don’t
have a method named remove .

Because tuples are immutable, they are hashable, which means
they can be used as keys in a dictionary. For example, the
following dictionary contains two tuples as keys that map to
integers:

d = {}

d[1, 2] = 3

d[3, 4] = 7

We can look up a tuple in a dictionary like this:

d[1, 2]

3

Or if we have a variable that refers to a tuple, we can use it as a
key:

t = (3, 4)

d[t]

7

Tuples can also appear as values in a dictionary:

t = tuple('abc')

s = [1, 2, 3]

d = {t: s}

d

{('a', 'b', 'c'): [1, 2, 3]}

Tuple Assignment

You can put a tuple of variables on the left side of an
assignment, and a tuple of values on the right:

a, b = 1, 2

The values are assigned to the variables from left to right—in
this example, a gets the value 1 , and b gets the value 2 . We
can display the results like this:

a, b

(1, 2)

More generally, if the left side of an assignment is a tuple, the
right side can be any kind of sequence—string, list, or tuple. For
example, to split an email address into a username and a
domain, you could write:

email = 'monty@python.org'

username, domain = email.split('@')

The return value from split is a list with two elements—the
first element is assigned to username , the second to domain :

username, domain

('monty', 'python.org')

The number of variables on the left and the number of values
on the right have to be the same—otherwise you get a

ValueError :

a, b = 1, 2, 3

ValueError: too many values to unpack (expected 2

Tuple assignment is useful if you want to swap the values of
two variables. With conventional assignments, you have to use
a temporary variable, like this:

temp = a

a = b

b = temp

That works, but with tuple assignment we can do the same
thing without a temporary variable:

a, b = b, a

This works because all of the expressions on the right side are
evaluated before any of the assignments.

We can also use tuple assignment in a for statement. For
example, to loop through the items in a dictionary, we can use
the items method:

d = {'one': 1, 'two': 2}

for item in d.items():

 key, value = item

 print(key, '->', value)

one -> 1

two -> 2

Each time through the loop, item is assigned a tuple that
contains a key and the corresponding value.

We can write this loop more concisely, like this:

for key, value in d.items():

 print(key, '->', value)

one -> 1

two -> 2

Each time through the loop, a key and the corresponding value
are assigned directly to key and value .

Tuples as Return Values

Strictly speaking, a function can only return one value, but if
the value is a tuple, the effect is the same as returning multiple
values. For example, if you want to divide two integers and
compute the quotient and remainder, it is inefficient to compute
x//y and then x%y . It is better to compute them both at the
same time.

The built-in function divmod takes two arguments and returns
a tuple of two values, the quotient and remainder:

divmod(7, 3)

(2, 1)

We can use tuple assignment to store the elements of the tuple
in two variables:

quotient, remainder = divmod(7, 3)

quotient

2

remainder

1

Here is an example of a function that returns a tuple:

def min_max(t):

 return min(t), max(t)

max and min are built-in functions that find the largest and
smallest elements of a sequence. min_max computes both and
returns a tuple of two values:

min_max([2, 4, 1, 3])

(1, 4)

We can assign the results to variables like this:

low, high = min_max([2, 4, 1, 3])

low, high

(1, 4)

Argument Packing

Functions can take a variable number of arguments. A
parameter name that begins with the * operator packs
arguments into a tuple. For example, the following function
takes any number of arguments and computes their arithmetic
mean—that is, their sum divided by the number of arguments:

def mean(*args):

 return sum(args) / len(args)

The parameter can have any name you like, but args is
conventional. We can call the function like this:

mean(1, 2, 3)

2.0

If you have a sequence of values and you want to pass them to a
function as multiple arguments, you can use the * operator to
unpack the tuple. For example, divmod takes exactly two
arguments—if you pass a tuple as a parameter, you get an error:

t = (7, 3)

divmod(t)

TypeError: divmod expected 2 arguments, got 1

Even though the tuple contains two elements, it counts as a
single argument. But if you unpack the tuple, it is treated as two

arguments:

divmod(*t)

(2, 1)

Packing and unpacking can be useful if you want to adapt the
behavior of an existing function. For example, this function
takes any number of arguments, removes the lowest and
highest, and computes the mean of the rest:

def trimmed_mean(*args):

 low, high = min_max(args)

 trimmed = list(args)

 trimmed.remove(low)

 trimmed.remove(high)

 return mean(*trimmed)

First, it uses min_max to find the lowest and highest elements.
Then it converts args to a list so it can use the remove
method. Finally, it unpacks the list so the elements are passed to
mean as separate arguments, rather than as a single list.

Here’s an example that shows the effect:

mean(1, 2, 3, 10)

4.0

trimmed_mean(1, 2, 3, 10)

2.5

This kind of “trimmed” mean is used in some sports with
subjective judging—like diving and gymnastics—to reduce the
effect of a judge whose score deviates from the others.

Zip

Tuples are useful for looping through the elements of two
sequences and performing operations on corresponding
elements. For example, suppose two teams play a series of
seven games, and we record their scores in two lists, one for
each team:

scores1 = [1, 2, 4, 5, 1, 5, 2]

scores2 = [5, 5, 2, 2, 5, 2, 3]

Let’s see how many games each team won. We’ll use zip ,
which is a built-in function that takes two or more sequences
and returns a zip object, so-called because it pairs up the
elements of the sequences like the teeth of a zipper:

zip(scores1, scores2)

<zip at 0x7f3e9c74f0c0>

We can use the zip object to loop through the values in the
sequences pairwise:

for pair in zip(scores1, scores2):

 print(pair)

(1, 5)

(2, 5)

(4, 2)

(5, 2)

(1, 5)

(5, 2)

(2, 3)

Each time through the loop, pair gets assigned a tuple of
scores. So we can assign the scores to variables, and count the
victories for the first team, like this:

wins = 0

for team1, team2 in zip(scores1, scores2):

 if team1 > team2:

 wins += 1

wins

3

Sadly, the first team won only three games and lost the series.

If you have two lists and you want a list of pairs, you can use
zip and list :

t = list(zip(scores1, scores2))

t

[(1, 5), (2, 5), (4, 2), (5, 2), (1, 5), (5, 2),

The result is a list of tuples, so we can get the result of the last
game like this:

t[-1]

(2, 3)

If you have a list of keys and a list of values, you can use zip
and dict to make a dictionary. For example, here’s how we
can make a dictionary that maps from each letter to its position
in the alphabet:

letters = 'abcdefghijklmnopqrstuvwxyz'

numbers = range(len(letters))

letter_map = dict(zip(letters, numbers))

Now we can look up a letter and get its index in the alphabet:

letter_map['a'], letter_map['z']

(0, 25)

In this mapping, the index of 'a' is 0 , and the index of 'z'
is 25 .

If you need to loop through the elements of a sequence and
their indices, you can use the built-in function enumerate :

enumerate('abc')

<enumerate at 0x7f3e9c620cc0>

The result is an enumerate object that loops through a
sequence of pairs, where each pair contains an index (starting
from 0) and an element from the given sequence:

for index, element in enumerate('abc'):

 print(index, element)

0 a

1 b

2 c

Comparing and Sorting

The relational operators work with tuples and other sequences.
For example, if you use the < operator with tuples, it starts by
comparing the first element from each sequence. If they are

equal, it goes on to the next pair of elements, and so on, until it
finds a pair that differ:

(0, 1, 2) < (0, 3, 4)

True

Subsequent elements are not considered—even if they are
really big:

(0, 1, 2000000) < (0, 3, 4)

True

This way of comparing tuples is useful for sorting a list of
tuples, or finding the minimum or maximum. As an example,

let’s find the most common letter in a word. In Chapter 10, we
wrote value_counts , which takes a string and returns a
dictionary that maps from each letter to the number of times it
appears:

def value_counts(string):

 counter = {}

 for letter in string:

 if letter not in counter:

 counter[letter] = 1

 else:

 counter[letter] += 1

 return counter

Here is the result for the string 'banana' :

counter = value_counts('banana')

counter

{'b': 1, 'a': 3, 'n': 2}

With only three items, we can easily see that the most frequent
letter is 'a' , which appears three times. But if there were
more items, it would be useful to sort them automatically. We
can get the items from counter like this:

items = counter.items()

items

dict_items([('b', 1), ('a', 3), ('n', 2)])

The result is a dict_items object that behaves like a list of
tuples, so we can sort it, like this:

sorted(items)

[('a', 3), ('b', 1), ('n', 2)]

The default behavior is to use the first element from each tuple
to sort the list, and use the second element to break ties.

However, to find the items with the highest counts, we want to
use the second element to sort the list. We can do that by
writing a function that takes a tuple and returns the second
element:

def second_element(t):

 return t[1]

Then we can pass that function to sorted as an optional
argument called key , which indicates that this function should
be used to compute the sort key for each item:

sorted_items = sorted(items, key=second_element)

sorted_items

[('b', 1), ('n', 2), ('a', 3)]

The sort key determines the order of the items in the list. The
letter with the lowest count appears first, and the letter with the
highest count appears last. So we can find the most common
letter like this:

sorted_items[-1]

('a', 3)

If we only want the maximum, we don’t have to sort the list. We
can use max , which also takes key as an optional argument:

max(items, key=second_element)

('a', 3)

To find the letter with the lowest count, we could use min the
same way.

Inverting a Dictionary

Suppose you want to invert a dictionary so you can look up a
value and get the corresponding key. For example, if you have a
word counter that maps from each word to the number of times
it appears, you could make a dictionary that maps from integers
to the words that appear that number of times.

But there’s a problem—the keys in a dictionary have to be
unique, but the values don’t. For example, in a word counter,
there could be many words with the same count.

So one way to invert a dictionary is to create a new dictionary
where the values are lists of keys from the original. As an
example, let’s count the letters in parrot :

d = value_counts('parrot')

d

{'p': 1, 'a': 1, 'r': 2, 'o': 1, 't': 1}

If we invert this dictionary, the result should be {1: ['p',
'a', 'o', 't'], 2: ['r']} , which indicates that the letters
that appear once are 'p' , 'a' , 'o' , and 't' , and the letter
that appears twice is 'r' .

The following function takes a dictionary and returns its
inverse as a new dictionary:

def invert_dict(d):

 new = {}

 for key, value in d.items():

 if value not in new:

 new[value] = [key]

 else:

 new[value].append(key)

 return new

The for statement loops through the keys and values in d . If
the value is not already in the new dictionary, it is added and
associated with a list that contains a single element. Otherwise
it is appended to the existing list.

We can test it like this:

invert_dict(d)

{1: ['p', 'a', 'o', 't'], 2: ['r']}

And we get the result we expected.

This is the first example we’ve seen where the values in the
dictionary are lists. We will see more!

Debugging

Lists, dictionaries, and tuples are data structures. In this
chapter we are starting to see compound data structures, like
lists of tuples, or dictionaries that contain tuples as keys and
lists as values. Compound data structures are useful, but they
are prone to errors caused when a data structure has the wrong
type, size, or structure. For example, if a function expects a list
of integers and you give it a plain old integer (not in a list), it
probably won’t work.

To help debug these kinds of errors, I wrote a module called
structshape that provides a function, also called
structshape , that takes any kind of data structure as an
argument and returns a string that summarizes its structure.
You can download it from
https://raw.githubusercontent.com/AllenDowney/ThinkPython/v3/
structshape.py.

We can import it like this:

from structshape import structshape

https://raw.githubusercontent.com/AllenDowney/ThinkPython/v3/structshape.py

Here’s an example with a simple list:

t = [1, 2, 3]

structshape(t)

'list of 3 int'

Here’s a list of lists:

t2 = [[1,2], [3,4], [5,6]]

structshape(t2)

'list of 3 list of 2 int'

If the elements of the list are not the same type, structshape
groups them by type:

t3 = [1, 2, 3, 4.0, '5', '6', [7], [8], 9]

structshape(t3)

'list of (3 int, float, 2 str, 2 list of int, int

Here’s a list of tuples:

s = 'abc'

lt = list(zip(t, s))

structshape(lt)

'list of 3 tuple of (int, str)'

And here’s a dictionary with three items that map integers to
strings:

d = dict(lt)

structshape(d)

'dict of 3 int->str'

If you are having trouble keeping track of your data structures,
structshape can help.

Glossary

tuple: An immutable object that contains a sequence of values.

pack: Collect multiple arguments into a tuple.

unpack: Treat a tuple (or other sequence) as multiple
arguments.

zip object: The result of calling the built-in function zip , can
be used to loop through a sequence of tuples.

enumerate object: The result of calling the built-in function
enumerate , can be used to loop through a sequence of tuples.

sort key: A value, or function that computes a value, used to
sort the elements of a collection.

data structure: A collection of values, organized to perform
certain operations efficiently.

Exercises

Ask a Virtual Assistant

The exercises in this chapter might be more difficult than
exercises in previous chapters, so I encourage you to get help
from a virtual assistant. When you pose more difficult
questions, you might find that the answers are not correct on
the first attempt, so this is a chance to practice crafting good
prompts and following up with good refinements.

One strategy you might consider is to break a big problem into
pieces that can be solved with simple functions. Ask the virtual
assistant to write the functions and test them. Then, once they
are working, ask for a solution to the original problem.

For some of the following exercises, I make suggestions about
which data structures and algorithms to use. You might find
these suggestions useful when you work on the problems, but
they are also good prompts to pass along to a virtual assistant.

Exercise

In this chapter I said that tuples can be used as keys in
dictionaries because they are hashable, and they are hashable
because they are immutable. But that is not always true.

If a tuple contains a mutable value, like a list or a dictionary, the
tuple is no longer hashable because it contains elements that
are not hashable. As an example, here’s a tuple that contains
two lists of integers:

list0 = [1, 2, 3]

list1 = [4, 5]

t = (list0, list1)

t

([1, 2, 3], [4, 5])

Write a line of code that appends the value 6 to the end of the
second list in t . If you display t , the result should be ([1,
2, 3], [4, 5, 6]) :

t[1].append(6)

t

([1, 2, 3], [4, 5, 6])

Try to create a dictionary that maps from t to a string, and
confirm that you get a TypeError .

For more on this topic, ask a virtual assistant, “Are Python
tuples always hashable?”

Exercise

In this chapter we made a dictionary that maps from each letter
to its index in the alphabet:

letters = 'abcdefghijklmnopqrstuvwxyz'

numbers = range(len(letters))

letter_map = dict(zip(letters, numbers))

For example, the index of 'a' is 0 :

letter_map['a']

0

To go in the other direction, we can use list indexing. For
example, the letter at index 1 is 'b' :

letters[1]

'b'

We can use letter_map and letters to encode and decode
words using a Caesar cipher.

A Caesar cipher is a weak form of encryption that involves
shifting each letter by a fixed number of places in the alphabet,
wrapping around to the beginning if necessary. For example,
'a' shifted by 2 is 'c' , and 'z' shifted by 1 is 'a' .

Write a function called shift_word that takes as parameters a
string and an integer, and returns a new string that contains the
letters from the string shifted by the given number of places.

To test your function, confirm that “cheer” shifted by 7 is “jolly,”
and “melon” shifted by 16 is “cubed.”

Hint: use the modulus operator to wrap around from 'z' back
to 'a' . Loop through the letters of the word, shift each one,

and append the result to a list of letters. Then use join to
concatenate the letters into a string.

Exercise

Write a function called most_frequent_letters that takes a
string and prints the letters in decreasing order of frequency.

To get the items in decreasing order, you can use reversed
along with sorted or you can pass reverse=True as a
keyword parameter to sorted .

Exercise

In a previous exercise, we tested whether two strings are
anagrams by sorting the letters in both words and checking
whether the sorted letters are the same. Now let’s make the
problem a little more challenging.

We’ll write a program that takes a list of words and prints all
the sets of words that are anagrams. Here is an example of
what the output might look like:

['deltas', 'desalt', 'lasted', 'salted', 'slated

['retainers', 'ternaries']

['generating', 'greatening']

['resmelts', 'smelters', 'termless']

Hint: for each word in the word list, sort the letters and join
them back into a string. Make a dictionary that maps from this
sorted string to a list of words that are anagrams of it.

Exercise

Write a function called word_distance that takes two words
with the same length and returns the number of places where
the two words differ.

Hint: use zip to loop through the corresponding letters of the
words.

Exercise

“Metathesis” is the transposition of letters in a word. Two words
form a “metathesis pair” if you can transform one into the
other by swapping two letters, like converse and conserve .
Write a program that finds all of the metathesis pairs in the
word list.

Hint: the words in a metathesis pair must be anagrams of each
other.

Credit: this exercise is inspired by an example at
http://puzzlers.org.

http://puzzlers.org/

Chapter 12. Text Analysis and
Generation

At this point we have covered Python’s core data structures—
lists, dictionaries, and tuples—and some algorithms that use
them. In this chapter, we’ll use them to explore text analysis
and Markov generation:

Text analysis is a way to describe the statistical
relationships between the words in a document, like the
probability that one word is followed by another.
Markov generation is a way to generate new text with
words and phrases similar to the original text.

These algorithms are similar to parts of a large language model
(LLM), which is the key component of a chatbot.

We’ll start by counting the number of times each word appears
in a book. Then we’ll look at pairs of words and make a list of
the words that can follow each word. We’ll make a simple
version of a Markov generator, and as an exercise, you’ll have a
chance to make a more general version.

Unique Words

As a first step toward text analysis, let’s read a book—The
Strange Case of Dr. Jekyll and Mr. Hyde by Robert Louis
Stevenson—and count the number of unique words.
Instructions for downloading the book are in the notebook for
this chapter:

filename = 'dr_jekyll.txt'

We’ll use a for loop to read lines from the file and split to
divide the lines into words. Then, to keep track of unique
words, we’ll store each word as a key in a dictionary:

unique_words = {}

 for line in open(filename):

 seq = line.split()

 for word in seq:

 unique_words[word] = 1

len(unique_words)

6040

The length of the dictionary is the number of unique words—
about 6000 by this way of counting. But if we inspect them,
we’ll see that some are not valid words.

For example, let’s look at the longest words in unique_words .
We can use sorted to sort the words, passing the len
function as a keyword argument so the words are sorted by
length:

sorted(unique_words, key=len)[-5:]

['chocolate-coloured',

 'superiors—behold!”',

 'coolness—frightened',

 'gentleman—something',

 'pocket-handkerchief.']

The slice index, [-5:] , selects the last 5 elements of the
sorted list, which are the longest words.

The list includes some legitimately long words, like
“circumscription,” and some hyphenated words, like
“chocolate-coloured.” But some of the longest “words” are
actually two words separated by a dash. And other words
include punctuation like periods, exclamation points, and
quotation marks.

So, before we move on, let’s deal with dashes and other
punctuation.

Punctuation

To identify the words in the text, we need to deal with two
issues:

When a dash appears in a line, we should replace it with a
space—then when we use split , the words will be
separated.

After splitting the words, we can use strip to remove
punctuation.

To handle the first issue, we can use the following function,
which takes a string, replaces dashes with spaces, splits the
string, and returns the resulting list:

def split_line(line):

 return line.replace('—', ' ').split()

Notice that split_line only replaces dashes, not hyphens.

Here’s an example:

split_line('coolness—frightened')

['coolness', 'frightened']

Now, to remove punctuation from the beginning and end of
each word, we can use strip , but we need a list of characters
that are considered punctuation.

Characters in Python strings are in Unicode, which is an
international standard used to represent letters in nearly every
alphabet, numbers, symbols, punctuation marks, and more. The
unicodedata module provides a category function we can
use to tell which characters are punctuation. Given a letter, it
returns a string with information about what category the letter
is in:

import unicodedata

unicodedata.category('A')

'Lu'

The category string of 'A' is 'Lu' —the 'L' means it is a
letter and the 'u' means it is uppercase.

The category string of '.' is 'Po' —the 'P' means it is
punctuation, the 'o' means its subcategory is “other”:

unicodedata.category('.')

'Po'

We can find the punctuation marks in the book by checking for
characters with categories that begin with 'P' . The following
loop stores the unique punctuation marks in a dictionary:

punc_marks = {}

for line in open(filename):

 for char in line:

 category = unicodedata.category(char)

 if category.startswith('P'):

 punc_marks[char] = 1

To make a list of punctuation marks, we can join the keys of the
dictionary into a string:

punctuation = ''.join(punc_marks)

print(punctuation)

.’;,-“”:?—‘!()_

Now that we know which characters in the book are
punctuation, we can write a function that takes a word, strips
punctuation from the beginning and end, and converts it to
lowercase:

def clean_word(word):

 return word.strip(punctuation).lower()

Here’s an example:

clean_word('“Behold!”')

'behold'

Because strip removes characters from the beginning and
end, it leaves hyphenated words alone:

clean_word('pocket-handkerchief')

'pocket-handkerchief'

Now here’s a loop that uses split_line and clean_word to
identify the unique words in the book:

unique_words2 = {}

for line in open(filename):

 for word in split_line(line):

 word = clean_word(word)

 unique_words2[word] = 1

len(unique_words2)

4005

With this stricter definition of what a word is, there are about
four thousand unique words. And we can confirm that the list
of longest words has been cleaned up:

sorted(unique_words2, key=len)[-5:]

['circumscription',

 'unimpressionable',

 'fellow-creatures',

 'chocolate-coloured',

 'pocket-handkerchief']

Now let’s see how many times each word is used.

Word Frequencies

The following loop computes the frequency of each unique
word:

word_counter = {}

for line in open(filename):

 for word in split_line(line):

 word = clean_word(word)

 if word not in word_counter:

 word_counter[word] = 1

 else:

 word_counter[word] += 1

The first time we see a word, we initialize its frequency to 1 . If
we see the same word again later, we increment its frequency.

To see which words appear most often, we can use items to
get the key-value pairs from word_counter , and sort them by
the second element of the pair, which is the frequency. First
we’ll define a function that selects the second element:

def second_element(t):

 return t[1]

Now we can use sorted with two keyword arguments:

key=second_element

The items will be sorted according to the frequencies of
the words.

reverse=True

The items will be sorted in reverse order, with the most
frequent words first.

items = sorted(word_counter.items(), key=second_e

Here are the five most frequent words:

for word, freq in items[:5]:

 print(freq, word, sep='\t')

1614 the

972 and

941 of

640 to

640 i

In the next section, we’ll encapsulate this loop in a function.
And we’ll use it to demonstrate a new feature—optional
parameters.

Optional Parameters

We’ve used built-in functions that take optional parameters. For
example, round takes an optional parameter called ndigits
that indicates how many decimal places to keep:

round(3.141592653589793, ndigits=3)

3.142

But it’s not just built-in functions—we can write functions with
optional parameters, too. For example, the following function
takes two parameters, word_counter and num :

def print_most_common(word_counter, num=5):

 items = sorted(word_counter.items(), key=seco

 for word, freq in items[:num]:

 print(freq, word, sep='\t')

The second parameter looks like an assignment statement, but
it’s not—it’s an optional parameter.

If you call this function with one argument, num gets the
default value, which is 5 :

print_most_common(word_counter)

1614 the

972 and

941 of

640 to

640 i

If you call this function with two arguments, the second
argument gets assigned to num instead of the default value:

print_most_common(word_counter, 3)

1614 the

972 and

941 of

In that case, we would say the optional argument overrides the
default value.

If a function has both required and optional parameters, all of
the required parameters have to come first, followed by the
optional ones.

Dictionary Subtraction

Suppose we want to spellcheck a book—that is, find a list of
words that might be misspelled. One way to do that is to find
words in the book that don’t appear in a list of valid words. In
previous chapters, we’ve used a list of words that are
considered valid in word games like Scrabble. Now we’ll use
this list to spellcheck Robert Louis Stevenson’s work.

We can think of this problem as set subtraction—that is, we
want to find all the words from one set (the words in the book)
that are not in the other (the words in the list).

As we’ve done before, we can read the contents of words.txt and
split it into a list of strings:

word_list = open('words.txt').read().split()

Then we’ll store the words as keys in a dictionary so we can use
the in operator to check quickly whether a word is valid:

valid_words = {}

for word in word_list:

 valid_words[word] = 1

Now, to identify words that appear in the book but not in the
word list, we’ll use subtract , which takes two dictionaries as
parameters and returns a new dictionary that contains all the
keys from one that are not in the other:

def subtract(d1, d2):

 res = {}

 for key in d1:

 if key not in d2:

 res[key] = d1[key]

 return res

Here’s how we use it:

diff = subtract(word_counter, valid_words)

To get a sample of words that might be misspelled, we can print
the most common words in diff :

print_most_common(diff)

640 i

628 a

128 utterson

124 mr

98 hyde

The most common “misspelled” words are mostly names and a
few single-letter words (Mr. Utterson is Dr. Jekyll’s friend and
lawyer).

If we select words that only appear once, they are more likely to
be actual misspellings. We can do that by looping through the
items and making a list of words with a frequency of 1 :

singletons = []

for word, freq in diff.items():

 if freq == 1:

 singletons.append(word)

Here are the last few elements of the list:

singletons[-5:]

['gesticulated', 'abjection', 'circumscription',

Most of them are valid words that are not in the word list. But
'reindue' appears to be a misspelling of 'reinduce' , so at
least we found one legitimate error.

Random Numbers

As a step toward Markov text generation, next we’ll choose a
random sequence of words from word_counter . But first let’s
talk about randomness.

Given the same inputs, most computer programs are
deterministic, which means they generate the same outputs
every time. Determinism is usually a good thing, since we
expect the same calculation to yield the same result. For some
applications though, we want the computer to be unpredictable.
Games are one example, but there are more.

Making a program truly nondeterministic turns out to be
difficult, but there are ways to fake it. One is to use algorithms
that generate pseudorandom numbers. Pseudorandom
numbers are not truly random because they are generated by a
deterministic computation, but just by looking at the numbers it
is all but impossible to distinguish them from random.

The random module provides functions that generate
pseudorandom numbers—which I will simply call “random”
from here on. We can import it like this:

import random

The random module provides a function called choice that
chooses an element from a list at random, with every element
having the same probability of being chosen:

t = [1, 2, 3]

random.choice(t)

1

If you call the function again, you might get the same element
again, or a different one:

random.choice(t)

2

In the long run, we expect to get every element about the same
number of times.

If you use choice with a dictionary, you get a KeyError :

random.choice(word_counter)

KeyError: 422

To choose a random key, you have to put the keys in a list and
then call choice :

words = list(word_counter)

random.choice(words)

'posture'

If we generate a random sequence of words, it doesn’t make
much sense:

for i in range(6):

 word = random.choice(words)

 print(word, end=' ')

ill-contained written apocryphal nor busy spoke

Part of the problem is that we are not taking into account that
some words are more common than others. The results will be
better if we choose words with different “weights,” so that some
are chosen more often than others.

If we use the values from word_counter as weights, each
word is chosen with a probability that depends on its

frequency:

weights = word_counter.values()

The random module provides another function called
choices that takes weights as an optional argument:

random.choices(words, weights=weights)

['than']

And it takes another optional argument, k , that specifies the
number of words to select:

random_words = random.choices(words, weights=weig

random_words

['reach', 'streets', 'edward', 'a', 'said', 'to']

The result is a list of strings that we can join into something that
looks more like a sentence:

' '.join(random_words)

'reach streets edward a said to'

If you choose words from the book at random, you get a sense
of the vocabulary, but a series of random words seldom makes
sense because there is no relationship between successive
words. For example, in a real sentence you expect an article like
“the” to be followed by an adjective or a noun, and probably not
a verb or adverb. So the next step is to look at these
relationships between words.

Bigrams

Instead of looking at one word at a time, now we’ll look at
sequences of two words, which are called bigrams. A sequence
of three words is called a trigram, and a sequence with some
unspecified number of words is called an n-gram.

Let’s write a program that finds all of the bigrams in the book
and the number of times each one appears. To store the results,
we’ll use a dictionary where:

The keys are tuples of strings that represent bigrams, and
The values are integers that represent frequencies.

Let’s call it bigram_counter :

bigram_counter = {}

The following function takes a list of two strings as a parameter.
First it makes a tuple of the two strings, which can be used as a
key in a dictionary. Then it adds the key to bigram_counter , if
it doesn’t exist, or increments the frequency if it does:

def count_bigram(bigram):

 key = tuple(bigram)

 if key not in bigram_counter:

 bigram_counter[key] = 1

 else:

 bigram_counter[key] += 1

As we go through the book, we have to keep track of each pair
of consecutive words. So if we see the sequence “man is not
truly one,” we would add the bigrams “man is,” “is not,” “not
truly,” and so on.

To keep track of these bigrams, we’ll use a list called window ,
because it is like a window that slides over the pages of the
book, showing only two words at a time. Initially, window is
empty:

window = []

We’ll use the following function to process the words one at a
time:

def process_word(word):

 window.append(word)

 if len(window) == 2:

 count_bigram(window)

 window.pop(0)

The first time this function is called, it appends the given word
to window . Since there is only one word in the window, we
don’t have a bigram yet, so the function ends.

The second time it’s called—and every time thereafter—it
appends a second word to window . Since there are two words
in the window, it calls count_bigram to keep track of how
many times each bigram appears. Then it uses pop to remove
the first word from the window.

The following program loops through the words in the book
and processes them one at a time:

for line in open(filename):

 for word in split_line(line):

 word = clean_word(word)

 process_word(word)

The result is a dictionary that maps from each bigram to the
number of times it appears. We can use print_most_common
to see the most common bigrams:

print_most_common(bigram_counter)

178 ('of', 'the')

139 ('in', 'the')

94 ('it', 'was')

80 ('and', 'the')

73 ('to', 'the')

Looking at these results, we can get a sense of which pairs of
words are most likely to appear together. We can also use the
results to generate random text, like this:

bigrams = list(bigram_counter)

weights = bigram_counter.values()

random_bigrams = random.choices(bigrams, weights=

bigrams is a list of the bigrams that appear in the book.
weights is a list of their frequencies, so random_bigrams is a
sample where the probability a bigram is selected is
proportional to its frequency.

Here are the results:

for pair in random_bigrams:

 print(' '.join(pair), end=' ')

to suggest this preface to detain fact is above a

This way of generating text is better than choosing random
words, but still doesn’t make a lot of sense.

Markov Analysis

We can do better with Markov chain text analysis, which
computes, for each word in a text, the list of words that come
next. As an example, we’ll analyze these lyrics from the Monty
Python song “Eric, the Half a Bee”:

song = """

Half a bee, philosophically,

Must, ipso facto, half not be.

But half the bee has got to be

Vis a vis, its entity. D'you see?

"""

To store the results, we’ll use a dictionary that maps from each
word to the list of words that follow it:

successor_map = {}

As an example, let’s start with the first two words of the song:

first = 'half'

second = 'a'

If the first word is not in successor_map , we have to add a
new item that maps from the first word to a list containing the
second word:

successor_map[first] = [second]

successor_map

{'half': ['a']}

If the first word is already in the dictionary, we can look it up to
get the list of successors we’ve seen so far, and append the new
one:

first = 'half'

second = 'not'

successor_map[first].append(second)

successor_map

{'half': ['a', 'not']}

The following function encapsulates these steps:

def add_bigram(bigram):

 first, second = bigram

 if first not in successor_map:

 successor_map[first] = [second]

 else:

 successor_map[first].append(second)

If the same bigram appears more that once, the second word is
added to the list more than once. In this way, successor_map
keeps track of how many times each successor appears.

As we did in the previous section, we’ll use a list called window
to store pairs of consecutive words. And we’ll use the following
function to process the words one at a time:

def process_word_bigram(word):

 window.append(word)

 if len(window) == 2:

 add_bigram(window)

 window.pop(0)

Here’s how we use it to process the words in the song:

successor_map = {}

window = []

for word in song.split():

 word = clean_word(word)

 process_word_bigram(word)

And here are the results:

successor_map

{'half': ['a', 'not', 'the'],

 'a': ['bee', 'vis'],

 'bee': ['philosophically', 'has'],

 'philosophically': ['must'],

 'must': ['ipso'],

 'ipso': ['facto'],

 'facto': ['half'],

 'not': ['be'],

 'be': ['but', 'vis'],

 'but': ['half'],

 'the': ['bee'],

 'has': ['got'],

 'got': ['to'],

 'to': ['be'],

 'vis': ['a', 'its'],

 'its': ['entity'],

 'entity': ["d'you"],

 "d'you": ['see']}

The word 'half' can be followed by 'a' , 'not' , or 'the' .
The word 'a' can be followed by 'bee' or 'vis' . Most of
the other words appear only once, so they are followed by only
a single word.

Now let’s analyze the book:

successor_map = {}

window = []

for line in open(filename):

 for word in split_line(line):

 word = clean_word(word)

 process_word_bigram(word)

We can look up any word and find the words that can follow it:

successor_map['going']

['east', 'in', 'to', 'to', 'up', 'to', 'of']

In this list of successors, notice that the word 'to' appears
three times—the other successors only appear once.

Generating Text

We can use the results from the previous section to generate
new text with the same relationships between consecutive
words as in the original. Here’s how it works:

Starting with any word that appears in the text, we look up
its possible successors and choose one at random.
Then, using the chosen word, we look up its possible
successors and choose one at random.

We can repeat this process to generate as many words as we
want. As an example, let’s start with the word 'although' .
Here are the words that can follow it:

word = 'although'

successors = successor_map[word]

successors

['i', 'a', 'it', 'the', 'we', 'they', 'i']

We can use choice to choose from the list with equal
probability:

word = random.choice(successors)

word

'i'

If the same word appears more than once in the list, it is more
likely to be selected.

Repeating these steps, we can use the following loop to generate
a longer series:

for i in range(10):

 successors = successor_map[word]

 word = random.choice(successors)

 print(word, end=' ')

continue to hesitate and swallowed the smile with

The result sounds more like a real sentence, but it still doesn’t
make much sense.

We can do better using more than one word as a key in
successor_map . For example, we can make a dictionary that
maps from each bigram—or trigram—to the list of words that
come next. As an exercise, you’ll have a chance to implement
this analysis and see what the results look like.

Debugging

At this point we are writing more substantial programs, and
you might find that you are spending more time debugging. If

you are stuck on a difficult bug, here are a few things to try:

Reading

Examine your code, read it back to yourself, and check
that it says what you meant to say.

Running

Experiment by making changes and running different
versions. Often, if you display the right thing at the right
place in the program, the problem becomes obvious, but
sometimes you have to build scaffolding.

Ruminating

Take some time to think! What kind of error is it: syntax,
runtime, or semantic? What information can you get from
the error messages or from the output of the program?
What kind of error could cause the problem you’re
seeing? What did you change last, before the problem
appeared?

Rubberducking

If you explain the problem to someone else, you
sometimes find the answer before you finish asking the
question. Often you don’t need the other person; you

could just talk to a rubber duck. And that’s the origin of
the well-known strategy called rubber duck debugging. I
am not making this up.

Retreating

At some point, the best thing to do is back up—undoing
recent changes—until you get to a program that works.
Then you can start rebuilding.

Resting

If you give your brain a break, sometimes it will find the
problem for you.

Beginning programmers sometimes get stuck on one of these
activities and forget the others. Each activity comes with its
own failure mode.

For example, reading your code works if the problem is a
typographical error, but not if the problem is a conceptual
misunderstanding. If you don’t understand what your program
does, you can read it a hundred times and never see the error,
because the error is in your head.

Running experiments can work, especially if you run small,
simple tests. But if you run experiments without thinking or

https://en.wikipedia.org/wiki/Rubber_duck_debugging

reading your code, it can take a long time to figure out what’s
happening.

You have to take time to think. Debugging is like an
experimental science. You should have at least one hypothesis
about what the problem is. If there are two or more
possibilities, try to think of a test that would eliminate one of
them.

But even the best debugging techniques will fail if there are too
many errors, or if the code you are trying to fix is too big and
complicated. Sometimes the best option is to retreat, simplifying
the program until you get back to something that works.

Beginning programmers are often reluctant to retreat because
they can’t stand to delete a line of code (even if it’s wrong). If it
makes you feel better, copy your program into another file
before you start stripping it down. Then you can copy the pieces
back one at a time.

Finding a hard bug requires reading, running, ruminating,
retreating, and sometimes resting. If you get stuck on one of
these activities, try the others.

Glossary

default value: The value assigned to a parameter if no
argument is provided.

override: To replace a default value with an argument.

deterministic: A deterministic program does the same thing
each time it runs, given the same inputs.

pseudorandom: A pseudorandom sequence of numbers
appears to be random, but is generated by a deterministic
program.

bigram: A sequence of two elements, often words.

trigram: A sequence of three elements.

n-gram: A sequence of an unspecified number of elements.

rubber duck debugging: A way of debugging by explaining a
problem aloud to an inanimate object.

Exercises

Ask a Virtual Assistant

In add_bigram , the if statement creates a new list or
appends an element to an existing list, depending on whether
the key is already in the dictionary:

def add_bigram(bigram):

 first, second = bigram

 if first not in successor_map:

 successor_map[first] = [second]

 else:

 successor_map[first].append(second)

Dictionaries provide a method called setdefault that we can
use to do the same thing more concisely. Ask a virtual assistant
how it works, or copy add_word into a virtual assistant and
ask “Can you rewrite this using setdefault ?”

In this chapter we implemented Markov chain text analysis and
generation. If you are curious, you can ask a virtual assistant

for more information on the topic. One of the things you might
learn is that virtual assistants use algorithms that are similar in
many ways—but also different in important ways. Ask a virtual
assistant, “What are the differences between large language
models like ChatGPT and Markov chain text analysis?”

Exercise

Write a function that counts the number of times each trigram
(sequence of three words) appears. If you test your function
with the text of Dr. Jekyll and Mr. Hyde, you should find that the
most common trigram is “said the lawyer.”

Hint: write a function called count_trigram that is similar to
count_bigram . Then write a function called
process_word_trigram that is similar to process _ w o r d
_b i g r a m .

Exercise

Now let’s implement Markov chain text analysis with a
mapping from each bigram to a list of possible successors.
Starting with add_bigram , write a function called a d d _
t r i g r a m that takes a list of three words and either adds or

updates an item in successor_map , using the first two words
as the key and the third word as a possible successor.

Here’s a version of process_word_trigram that calls
add_trigram :

def process_word_trigram(word):

 window.append(word)

 if len(window) == 3:

 add_trigram(window)

 window.pop(0)

You can use the following loop to test your function with the
words from the book:

successor_map = {}

window = []

for line in open(filename):

 for word in split_line(line):

 word = clean_word(word)

 process_word_trigram(word)

In the next exercise, you’ll use the results to generate new
random text.

Exercise

For this exercise, we’ll assume that successor_map is a
dictionary that maps from each bigram to the list of words that
follow it. To generate random text, we’ll start by choosing a
random key from successor_map :

successors = list(successor_map)

bigram = random.choice(successors)

bigram

('doubted', 'if')

Now write a loop that generates 50 more words by following
these steps:

1. In successor_map , look up the list of words that can
follow bigram .

2. Choose one of them at random and print it.
3. For the next iteration, make a new bigram that contains the

second word from bigram and the chosen successor.

For example, if we start with the bigram ('doubted', 'if')
and choose 'from' as its successor, the next bigram is ('if',
'from') .

If everything is working, you should find that the generated text
is recognizably similar in style to the original, and some
phrases make sense, but the text might wander from one topic
to another.

As a bonus exercise, modify your solution to the last two
exercises to use trigrams as keys in successor_map , and see
what effect it has on the results.

Chapter 13. Files and Databases

Most of the programs we have seen so far are ephemeral in the
sense that they run for a short time and produce output, but
when they end, their data disappears. Each time you run an
ephemeral program, it starts with a clean slate.

Other programs are persistent: they run for a long time (or all
the time); they keep at least some of their data in long-term
storage; and if they shut down and restart, they pick up where
they left off.

A simple way for programs to maintain their data is by reading
and writing text files. A more versatile alternative is to store
data in a database. Databases are specialized files that can be
read and written more efficiently than text files, and they
provide additional capabilities.

In this chapter, we’ll write programs that read and write text
files and databases, and as an exercise you’ll write a program
that searches a collection of photos for duplicates. But before
you can work with a file, you have to find it, so we’ll start with
filenames, paths, and directories.

Filenames and Paths

Files are organized into directories, also called “folders.” Every
running program has a current working directory, which is
the default directory for most operations. For example, when
you open a file, Python looks for it in the current working
directory.

The os module provides functions for working with files and
directories (“os” stands for “operating system”). It provides a
function called getcwd that gets the name of the current
working directory:

import os

os.getcwd()

'/home/dinsdale'

The result in this example is the home directory of a user
named dinsdale . A string like '/home/dinsdale' that
identifies a file or directory is called a path.

A simple filename like 'memo.txt' is also considered a path,
but it is a relative path because it specifies a filename relative
to the current directory. In this example, the current directory
is /home/dinsdale, so 'memo.txt' is equivalent to the complete
path '/home/dinsdale/memo.txt' .

A path that begins with / does not depend on the current
directory—it is called an absolute path. To find the absolute
path to a file, you can use abspath :

os.path.abspath('memo.txt')

'/home/dinsdale/memo.txt'

The os module provides other functions for working with
filenames and paths. listdir returns a list of the contents of

the given directory, including files and other directories. Here’s
an example that lists the contents of a directory named photos:

os.listdir('photos')

['notes.txt', 'mar-2023', 'jan-2023', 'feb-2023']

This directory contains a text file named notes.txt and three
directories. The directories contain image files in the JPEG
format:

os.listdir('photos/jan-2023')

['photo3.jpg', 'photo2.jpg', 'photo1.jpg']

To check whether a file or directory exists, we can use
os.path.exists :

os.path.exists('photos')

True

os.path.exists('photos/apr-2023')

False

To check whether a path refers to a file or directory, we can use
isdir , which returns True if a path refers to a directory:

os.path.isdir('photos')

True

And isfile , which returns True if a path refers to a file:

os.path.isfile('photos/notes.txt')

True

One challenge of working with paths is that they look different
on different operating systems. On macOS and Unix systems
like Linux, the directory and filenames in a path are separated
by a forward slash, / . Windows uses a backward slash, \ . So,
if you you run these examples on Windows, you will see
backward slashes in the paths, and you’ll have to replace the
forward slashes in the examples.

Or, to write code that works on both systems, you can use
os.path.join , which joins directory and filenames into a
path using a forward or backward slash, depending on which
operating system you are using:

os.path.join('photos', 'jan-2023', 'photo1.jpg')

'photos/jan-2023/photo1.jpg'

Later in this chapter we’ll use these functions to search a set of
directories and find all of the image files.

f-strings

One way for programs to store data is to write it to a text file.
For example, suppose you are a camel spotter, and you want to
record the number of camels you have seen during a period of
observation. And suppose that in one and a half years, you have

spotted 23 camels. The data in your camel-spotting book might
look like this:

num_years = 1.5

num_camels = 23

To write this data to a file, you can use the write method,
which we saw in “Writing Files”. The argument of write has
to be a string, so if we want to put other values in a file, we have
to convert them to strings. The easiest way to do that is with the
built-in function str .

Here’s what that looks like:

writer = open('camel-spotting-book.txt', 'w')

writer.write(str(num_years))

writer.write(str(num_camels))

writer.close()

That works, but write doesn’t add a space or newline unless
you include it explicitly. If we read back the file, we see that the

two numbers are run together:

open('camel-spotting-book.txt').read()

'1.523'

At the very least, we should add whitespace between the
numbers. And while we’re at it, let’s add some explanatory text.

To write a combination of strings and other values, we can use
an f-string, which is a string that has the letter f before the
opening quotation mark, and contains one or more Python
expressions in curly braces. The following f-string contains one
expression, which is a variable name:

f'I have spotted {num_camels} camels'

'I have spotted 23 camels'

The result is a string where the expression has been evaluated
and replaced with the result. There can be more than one
expression:

f'In {num_years} years I have spotted {num_camels

'In 1.5 years I have spotted 23 camels'

And the expressions can contain operators and function calls:

line = f'In {round(num_years * 12)} months I have

line

'In 18 months I have spotted 23 camels'

So we could write the data to a text file like this:

writer = open('camel-spotting-book.txt', 'w')

writer.write(f'Years of observation: {num_years}\

writer.write(f'Camels spotted: {num_camels}\n')

writer.close()

Both f-strings end with the sequence \n , which adds a newline
character.

We can read the file back like this:

data = open('camel-spotting-book.txt').read()

print(data)

Years of observation: 1.5

Camels spotted: 23

In an f-string, an expression in curly braces is converted to a
string, so you can include lists, dictionaries, and other types:

t = [1, 2, 3]

d = {'one': 1}

f'Here is a list {t} and a dictionary {d}'

"Here is a list [1, 2, 3] and a dictionary {'one

YAML

One of the reasons programs read and write files is to store
configuration data, which is information that specifies what
the program should do, and how.

For example, in a program that searches for duplicate photos,
we might have a dictionary called config that contains the

name of the directory to search, the name of another directory
where it should store the results, and a list of file extensions it
should use to identify image files.

Here’s what it might look like:

config = {

 'photo_dir': 'photos',

 'data_dir': 'photo_info',

 'extensions': ['jpg', 'jpeg'],

}

To write this data in a text file, we could use f-strings, as in the
previous section. But it is easier to use a module called yaml
that is designed for just this sort of thing.

The yaml module provides functions to work with YAML files,
which are text files formatted to be easy for humans and
programs to read and write.

Here’s an example that uses the dump function to write the
config dictionary to a YAML file:

import yaml

config_filename = 'config.yaml'

writer = open(config_filename, 'w')

yaml.dump(config, writer)

writer.close()

If we read back the contents of the file, we can see what the
YAML format looks like:

readback = open(config_filename).read()

print(readback)

data_dir: photo_info

extensions:

- jpg

- jpeg

photo_dir: photos

Now, we can use safe_load to read back the YAML file:

reader = open(config_filename)

config_readback = yaml.safe_load(reader)

config_readback

{'data_dir': 'photo_info',

 'extensions': ['jpg', 'jpeg'],

 'photo_dir': 'photos'}

The result is new dictionary that contains the same information
as the original, but it is not the same dictionary:

config is config_readback

False

Converting an object like a dictionary to a string is called
serialization. Converting the string back to an object is called

deserialization. If you serialize and then deserialize an object,
the result should be equivalent to the original.

Shelve

So far we’ve been reading and writing text files—now let’s
consider databases. A database is a file that is organized for
storing data. Some databases are organized like a table with
rows and columns of information. Others are organized like a
dictionary that maps from keys to values; they are sometimes
called key-value stores.

The shelve module provides functions for creating and
updating a key-value store called a “shelf.” As an example, we’ll
create a shelf to contain captions for the figures in the photos
directory. We’ll use the config dictionary to get the name of
the directory where we should put the shelf:

config['data_dir']

'photo_info'

We can use os.makedirs to create this directory, if it doesn’t
already exist:

os.makedirs(config['data_dir'], exist_ok=True)

And use os.path.join to make a path that includes the name
of the directory and the name of the shelf file, captions:

db_file = os.path.join(config['data_dir'], 'capti

db_file

'photo_info/captions'

Now we can use shelve.open to open the shelf file. The
argument c indicates that the file should be created, if
necessary:

import shelve

db = shelve.open(db_file, 'c')

db

<shelve.DbfilenameShelf at 0x7f5a2021c310>

The return value is officially a DbfilenameShelf object, more
casually called a shelf object.

The shelf object behaves in many ways like a dictionary. For
example, we can use the bracket operator to add an item, which
is a mapping from a key to a value:

key = 'jan-2023/photo1.jpg'

db[key] = 'Cat nose'

In this example, the key is the path to an image file and the
value is a string that describes the image.

We also use the bracket operator to look up a key and get the
corresponding value:

value = db[key]

value

'Cat nose'

If you make another assignment to an existing key, dbm
replaces the old value:

db[key] = 'Close up view of a cat nose'

db[key]

'Close up view of a cat nose'

Some dictionary methods, like keys , values , and items ,
also work with database objects:

list(db.keys())

['jan-2023/photo1.jpg']

list(db.values())

['Close up view of a cat nose']

We can use the in operator to check whether a key appears in
the shelf:

key in db

True

And we can use a for statement to loop through the keys:

for key in db:

 print(key, ':', db[key])

jan-2023/photo1.jpg : Close up view of a cat nose

As with other files, you should close the database when you are
done:

db.close()

Now if we list the contents of the data directory, we see two
files:

os.listdir(config['data_dir'])

['captions.dir', 'captions.dat']

captions.dat contains the data we just stored. captions.dir
contains information about the organization of the database
that makes it more efficient to access. The suffix dir stands for
“directory,” but it has nothing to do with the directories we’ve
been working with that contain files.

Storing Data Structures

In the previous example, the keys and values in the shelf are
strings. But we can also use a shelf to contain data structures
like lists and dictionaries.

As an example, let’s revisit the anagram example from the
“Exercise”. Recall that we made a dictionary that maps from a
sorted string of letters to the list of words that can be spelled
with those letters. For example, the key 'opst' maps to the list
['opts', 'post', 'pots', 'spot', 'stop', 'tops'] .

We’ll use the following function to sort the letters in a word:

def sort_word(word):

 return ''.join(sorted(word))

And here’s an example:

word = 'pots'

key = sort_word(word)

key

'opst'

Now let’s open a shelf called anagram_map . The argument
'n' means we should always create a new, empty shelf, even if
one already exists:

db = shelve.open('anagram_map', 'n')

Now we can add an item to the shelf like this:

db[key] = [word]

db[key]

['pots']

In this item, the key is a string and the value is a list of strings.

Now suppose we find another word that contains the same
letters, like tops :

word = 'tops'

key = sort_word(word)

key

'opst'

The key is the same as in the previous example, so we want to
append a second word to the same list of strings. Here’s how we
would do it if db were a dictionary:

db[key].append(word) # INCORRECT

But if we run that and then look up the key in the shelf, it looks
like it has not been updated:

db[key]

['pots']

Here’s the problem: when we look up the key, we get a list of
strings, but if we modify the list of strings, it does not affect the
shelf. If we want to update the shelf, we have to read the old
value, update it, and then write the new value back to the shelf:

anagram_list = db[key]

anagram_list.append(word)

db[key] = anagram_list

Now the value in the shelf is updated:

db[key]

['pots', 'tops']

As an exercise, you can finish this example by reading the word
list and storing all of the anagrams in a shelf.

Checking for Equivalent Files

Now let’s get back to the goal of this chapter: searching for
different files that contain the same data. One way to check is to
read the contents of both files and compare.

If the files contain images, we have to open them with mode
'rb' , where 'r' means we want to read the contents and
'b' indicates binary mode. In binary mode, the contents are
not interpreted as text—they are treated as a sequence of bytes.

Here’s an example that opens and reads an image file:

path1 = 'photos/jan-2023/photo1.jpg'

data1 = open(path1, 'rb').read()

type(data1)

bytes

The result from read is a bytes object—as the name suggests,
it contains a sequence of bytes.

In general, the contents of an image file are not human
readable. But if we read the contents from a second file, we can
use the == operator to compare:

path2 = 'photos/jan-2023/photo2.jpg'

data2 = open(path2, 'rb').read()

data1 == data2

False

These two files are not equivalent.

Let’s encapsulate what we have so far in a function:

def same_contents(path1, path2):

 data1 = open(path1, 'rb').read()

 data2 = open(path2, 'rb').read()

 return data1 == data2

If we have only two files, this function is a good option. But
suppose we have a large number of files and we want to know
whether any two of them contain the same data. It would be
inefficient to compare every pair of files.

An alternative is to use a hash function, which takes the
contents of a file and computes a digest, which is usually a
large integer. If two files contain the same data, they will have
the same digest. If two files differ, they will almost always have
different digests.

The hashlib module provides several hash functions—the
one we’ll use is called md5 . We’ll start by using hashlib.md5
to create a HASH object:

import hashlib

md5_hash = hashlib.md5()

type(md5_hash)

_hashlib.HASH

The HASH object provides an update function that takes the
contents of the file as an argument:

md5_hash.update(data1)

Now we can use hexdigest to get the digest as a string of
hexadecimal digits that represent an integer in base 16:

digest = md5_hash.hexdigest()

digest

'aa1d2fc25b7ae247b2931f5a0882fa37'

The following function encapsulates these steps:

def md5_digest(filename):

 data = open(filename, 'rb').read()

 md5_hash = hashlib.md5()

 md5_hash.update(data)

 digest = md5_hash.hexdigest()

 return digest

If we hash the contents of a different file, we can confirm that
we get a different digest:

filename2 = 'photos/feb-2023/photo2.jpg'

md5_digest(filename2)

'6a501b11b01f89af9c3f6591d7f02c49'

Now we have almost everything we need to find equivalent
files. The last step is to search a directory and find all of the
image files.

Walking Directories

The following function takes as an argument the directory we
want to search. It uses listdir to loop through the contents of
the directory. When it finds a file, it prints its complete path.
When it finds a directory, it calls itself recursively to search the
subdirectory:

def walk(dirname):

 for name in os.listdir(dirname):

 path = os.path.join(dirname, name)

 if os.path.isfile(path):

 print(path)

 elif os.path.isdir(path):

 walk(path)

We can use it like this:

walk('photos')

photos/notes.txt

photos/mar-2023/photo2.jpg

photos/mar-2023/photo1.jpg

photos/jan-2023/photo3.jpg

photos/jan-2023/photo2.jpg

photos/jan-2023/photo1.jpg

photos/feb-2023/photo2.jpg

photos/feb-2023/photo1.jpg

The order of the results depends on details of the operating
system.

Here is a more general version of walk that takes as a second
parameter a function object. Instead of printing the path of the
files it discovers, it calls this function and passes the path as a
parameter:

def walk(dirname, visit_func):

 for name in os.listdir(dirname):

 path = os.path.join(dirname, name)

 if os.path.isfile(path):

 visit_func(path)

 else:

 walk(path, visit_func)

Here’s an example where we pass print as an argument, so
when walk calls visit_func , it prints the paths of the files it
discovers:

walk('photos', print)

photos/notes.txt

photos/mar-2023/photo2.jpg

photos/mar-2023/photo1.jpg

photos/jan-2023/photo3.jpg

photos/jan-2023/photo2.jpg

photos/jan-2023/photo1.jpg

photos/feb-2023/photo2.jpg

photos/feb-2023/photo1.jpg

The parameter is called visit_func because it suggests that
as we “walk” around the directory, we “visit” each file.

Debugging

When you are reading and writing files, you might run into
problems with whitespace. These errors can be hard to debug
because spaces, tabs, and newlines are normally invisible:

s = '1 2\t 3\n 4'

print(s)

1 2 3

 4

The built-in function repr can help. It takes any object as an
argument and returns a string representation of the object. For
strings, it represents whitespace characters with backslash
sequences:

print(repr(s))

'1 2\t 3\n 4'

This can be helpful for debugging.

One other problem you might run into is that different systems
use different characters to indicate the end of a line. Some
systems use a newline, represented as \n . Others use a return
character, represented as \r . Some use both. If you move files
between different systems, these inconsistencies can cause
problems.

Filename capitalization is another issue you might encounter if
you work with different operating systems. In macOS and Unix,
filenames can contain lowercase and uppercase letters, digits,
and most symbols. But many Windows applications ignore the
difference between lowercase and uppercase letters, and
several symbols that are allowed in macOS and Unix are not
allowed in Windows.

Glossary

ephemeral: An ephemeral program typically runs for a short
time and, when it ends, its data is lost.

persistent: A persistent program runs indefinitely and keeps at
least some of its data in permanent storage.

directory: A collection of files and other directories.

current working directory: The default directory used by a
program unless another directory is specified.

path: A string that specifies a sequence of directories, often
leading to a file.

relative path: A path that starts from the current working
directory, or some other specified directory.

absolute path: A path that does not depend on the current
directory.

f-string: A string that has the letter f before the opening
quotation mark, and contains one or more expressions in curly
braces.

configuration data: Data, often stored in a file, that specifies
what a program should do and how.

serialization: Converting an object to a string.

deserialization: Converting a string to an object.

database: A file whose contents are organized to perform
certain operations efficiently.

key-value stores: A database whose contents are organized like
a dictionary with keys that correspond to values.

binary mode: A way of writing a file so the contents are
interpreted as sequence of bytes rather than a sequence of
characters.

hash function: A function that takes an object and computes an
integer, which is sometimes called a digest.

digest: The result of a hash function, especially when it is used
to check whether two objects are the same.

Exercises

Ask a Virtual Assistant

There are several topics that came up in this chapter that I did
not explain in detail. Here are some questions you can ask a
virtual assistant to get more information:

“What are the differences between ephemeral and
persistent programs?”
“What are some examples of persistent programs?”
“What’s the difference between a relative path and an
absolute path?”
“Why does the yaml module have functions called load
and safe_load ?”
“When I write a Python shelf, what are the files with
suffixes dat and dir ?”
“Other than key-values stores, what other kinds of
databases are there?”
“When I read a file, what’s the difference between binary
mode and text mode?”
“What are the differences between a bytes object and a
string?”
“What is a hash function?”

“What is an MD5 digest?”

As always, if you get stuck on any of the following exercises,
consider asking a virtual assistant for help. Along with your
question, you might want to paste in the relevant functions
from this chapter.

Exercise

Write a function called replace_all that takes as arguments
a pattern string, a replacement string, and two filenames. It
should read the first file and write the contents into the second
file (creating it, if necessary). If the pattern string appears
anywhere in the contents, it should be replaced with the
replacement string.

To test your function, read the file photos/notes.txt, replace
'photos' with 'images' , and write the result to the file
photos/new_notes.txt.

Exercise

In “Storing Data Structures”, we used the shelve module to
make a key-value store that maps from a sorted string of letters
to a list of anagrams. To finish the example, write a function

called add_word that takes as arguments a string and a shelf
object.

It should sort the letters of the word to make a key, then check
whether the key is already in the shelf. If not, it should make a
list that contains the new word and add it to the shelf. If the key
is already in the shelf, it should append the new word to the
existing value.

Exercise

In a large collection of files, there may be more than one copy of
the same file, stored in different directories or with different
filenames. The goal of this exercise is to search for duplicates.
As an example, we’ll work with image files in the photos
directory.

Here’s how it will work:

We’ll use the walk function from “Walking Directories” to
search this directory for files that end with one of the
extensions in c o n f i g [' e x t e n s i o n s '] .
For each file, we’ll use md5_digest from “Checking for
Equivalent Files” to compute a digest of the contents.

Using a shelf, we’ll make a mapping from each digest to a
list of paths with that digest.
Finally, we’ll search the shelf for any digests that map to
multiple files.
If we find any, we’ll use same_contents to confirm that
the files contain the same data.

I’ll suggest some functions to write first, then we’ll bring it all
together:

1. To identify image files, write a function called is_image
that takes a path and a list of file extensions, and returns
True if the path ends with one of the extensions in the list.
Hint: use os.path.splitext —or ask a virtual assistant to
write this function for you.

2. Write a function called add_path that takes as arguments
a path and a shelf. It should use md5_digest to compute a
digest of the file contents. Then it should update the shelf,
either creating a new item that maps from the digest to a
list containing the path, or appending the path to the list if
it exists.

3. Write a function called process_path that takes a path,
uses is_image to check whether it’s an image file, and
uses add_path to add it to the shelf.

When everything is working, you can use the following
program to create the shelf, search the photos directory and
add paths to the shelf, and then check whether there are
multiple files with the same digest:

db = shelve.open('photos/digests', 'n')

walk('photos', process_path)

for digest, paths in db.items():

 if len(paths) > 1:

 print(paths)

You should find one pair of files that have the same digest. Use
same_contents to check whether they contain the same data.

Chapter 14. Classes and Functions

At this point you know how to use functions to organize code
and how to use built-in types to organize data. The next step is
object-oriented programming (OOP), which uses
programmer-defined types to organize both code and data.

Object-oriented programming is a big topic, so we will proceed
gradually. In this chapter, we’ll start with code that is not
idiomatic—that is, it is not the kind of code experienced
programmers write—but it is a good place to start. In the next
two chapters, we will use additional features to write more
idiomatic code.

Programmer-Defined Types

We have used many of Python’s built-in types—now we will
define a new type. As a first example, we’ll create a type called
Time that represents a time of day. A programmer-defined
type is also called a class. A class definition looks like this:

class Time:

 """Represents a time of day."""

The header indicates that the new class is called Time . The
body is a docstring that explains what the class is for. Defining a
class creates a class object.

The class object is like a factory for creating objects. To create a
Time object, you call Time as if it were a function:

lunch = Time()

The result is a new object whose type is __main__.Time ,
where __main__ is the name of the module where Time is
defined:

type(lunch)

__main__.Time

When you print an object, Python tells you what type it is and
where it is stored in memory (the prefix 0x means that the
following number is in hexadecimal):

print(lunch)

<__main__.Time object at 0x7fbf2c427280>

Creating a new object is called instantiation, and the object is
an instance of the class.

Attributes

An object can contain variables, which are called attributes
and pronounced with the emphasis on the first syllable, as “AT-
trib-ute,” rather than the second syllable, as “a-TRIB-ute.” We
can create attributes using dot notation:

lunch.hour = 11

lunch.minute = 59

lunch.second = 1

This example creates attributes called hour , minute , and
second , which contain the hours, minutes, and seconds of the
time 11:59:01 , which is lunchtime as far as I am concerned.

The following diagram shows the state of lunch and its
attributes after these assignments:

The variable lunch refers to a Time object, which contains
three attributes. Each attribute refers to an integer. A state
diagram like this—which shows an object and its attributes—is
called an object diagram.

You can read the value of an attribute using the dot operator:

lunch.hour

11

You can use an attribute as part of any expression:

total_minutes = lunch.hour * 60 + lunch.minute

total_minutes

719

And you can use the dot operator in an expression in an f-
string:

f'{lunch.hour}:{lunch.minute}:{lunch.second}'

'11:59:1'

But notice that the previous example is not in the standard
format. To fix it, we have to print the minute and second
attributes with a leading zero. We can do that by extending the
expressions in curly braces with a format specifier. In the
following example, the format specifiers indicate that minute
and second should be displayed with at least two digits and a
leading zero, if needed:

f'{lunch.hour}:{lunch.minute:02d}:{lunch.second:0

'11:59:01'

We’ll use this f-string to write a function that displays the value
of time objects. You can pass an object as an argument in the
usual way. For example, the following function takes a Time
object as an argument:

def print_time(time):

 s = f'{time.hour:02d}:{time.minute:02d}:{time

 print(s)

When we call it, we can pass lunch as an argument:

print_time(lunch)

11:59:01

Objects as Return Values

Functions can return objects. For example, make_time takes
parameters called hour , minute , and second , stores them as
attributes in a Time object, and returns the new object:

def make_time(hour, minute, second):

 time = Time()

 time.hour = hour

 time.minute = minute

 time.second = second

 return time

It might be surprising that the parameters have the same
names as the attributes, but that’s a common way to write a
function like this. Here’s how we use make_time to create a
Time object:

time = make_time(11, 59, 1)

print_time(time)

11:59:01

Objects Are Mutable

Suppose you are going to a screening of a movie, like Monty
Python and the Holy Grail, which starts at 9:20 P.M. and runs for
92 minutes, which is 1 hour and 32 minutes. What time will the
movie end?

First, we’ll create a Time object that represents the start time:

start = make_time(9, 20, 0)

print_time(start)

09:20:00

To find the end time, we can modify the attributes of the Time
object, adding the duration of the movie:

start.hour += 1

start.minute += 32

print_time(start)

10:52:00

The movie will be over at 10:52 P.M.

Let’s encapsulate this computation in a function and generalize
it to take the duration of the movie in three parameters:
hours , minutes , and seconds :

def increment_time(time, hours, minutes, seconds)

 time.hour += hours

 time.minute += minutes

 time.second += seconds

Here is an example that demonstrates the effect:

start = make_time(9, 20, 0)

increment_time(start, 1, 32, 0)

print_time(start)

10:52:00

The following stack diagram shows the state of the program just
before increment_time modifies the object:

Inside the function, time is an alias for start , so when time
is modified, start changes.

This function works, but after it runs, we’re left with a variable
named start that refers to an object that represents the end
time, and we no longer have an object that represents the start
time. It would be better to leave start unchanged and make a

new object to represent the end time. We can do that by copying
start and modifying the copy.

Copying

The copy module provides a function called copy that can
duplicate any object. We can import it like this:

from copy import copy

To see how it works, let’s start with a new Time object that
represents the start time of the movie:

start = make_time(9, 20, 0)

And make a copy:

end = copy(start)

Now start and end contain the same data:

print_time(start)

print_time(end)

09:20:00

09:20:00

But the is operator confirms that they are not the same object:

start is end

False

Let’s see what the == operator does:

start == end

False

You might expect == to yield True because the objects contain
the same data. But for programmer-defined classes, the default
behavior of the == operator is the same as the is operator—it
checks identity, not equivalence.

Pure Functions

We can use copy to write pure functions that don’t modify
their parameters. For example, here’s a function that takes a
Time object and a duration in hours, minutes, and seconds. It
makes a copy of the original object, uses increment_time to
modify the copy, and returns it:

def add_time(time, hours, minutes, seconds):

 total = copy(time)

 increment_time(total, hours, minutes, seconds

 return total

Here’s how we use it:

end = add_time(start, 1, 32, 0)

print_time(end)

10:52:00

The return value is a new object representing the end time of
the movie. And we can confirm that start is unchanged:

print_time(start)

09:20:00

add_time is a pure function because it does not modify any
of the objects passed to it as arguments and its only effect is to
return a value.

Anything that can be done with modifiers can also be done with
pure functions. In fact, some programming languages only
allow pure functions. Programs that use pure functions might
be less error prone than programs that use modifiers. But
modifiers are sometimes convenient and can be more efficient.

In general, I suggest you write pure functions whenever it is
reasonable and resort to modifiers only if there is a compelling
advantage. This approach might be called a functional
programming style.

Prototype and Patch

In the previous example, increment_time and add_time
seem to work, but if we try another example, we’ll see that they
are not quite correct.

Suppose you arrive at the theater and discover that the movie
starts at 9:40, not 9:20. Here’s what happens when we compute

the updated end time:

start = make_time(9, 40, 0)

end = add_time(start, 1, 32, 0)

print_time(end)

10:72:00

The result is not a valid time. The problem is that
increment_time does not deal with cases where the number
of seconds or minutes adds up to more than 60 .

Here’s an improved version that checks whether second
exceeds 60 —if so, it increments minute —then checks
whether minute exceeds 60 —if so, it increments hour :

def increment_time(time, hours, minutes, seconds)

 time.hour += hours

 time.minute += minutes

 time.second += seconds

 if time.second >= 60:

 time.second -= 60

 time.minute += 1

 if time.minute >= 60:

 time.minute -= 60

 time.hour += 1

Fixing increment_time also fixes add_time , which uses it.
So now the previous example works correctly:

end = add_time(start, 1, 32, 0)

print_time(end)

11:12:00

But this function is still not correct, because the arguments
might be bigger than 60 . For example, suppose we are given
the run time as 92 minutes, rather than 1 hour and 32
minutes. We might call add_time like this:

end = add_time(start, 0, 92, 0)

print_time(end)

10:72:00

The result is not a valid time. So let’s try a different approach,
using the divmod function. We’ll make a copy of start and
modify it by incrementing the minute field:

end = copy(start)

end.minute = start.minute + 92

end.minute

132

Now minute is 132 , which is 2 hours and 12 minutes. We
can use divmod to divide by 60 and return the number of
whole hours and the number of minutes left over:

carry, end.minute = divmod(end.minute, 60)

carry, end.minute

(2, 12)

Now minute is correct, and we can add the hours to hour :

end.hour += carry

print_time(end)

11:12:00

The result is a valid time. We can do the same thing with hour
and second , and encapsulate the whole process in a function:

def increment_time(time, hours, minutes, seconds)

 time.hour += hours

 time.minute += minutes

 time.second += seconds

 carry, time.second = divmod(time.second, 60)

 carry, time.minute = divmod(time.minute + car

 carry, time.hour = divmod(time.hour + carry,

With this version of increment_time , add_time works
correctly, even if the arguments exceed 60 :

end = add_time(start, 0, 90, 120)

print_time(end)

11:12:00

This section demonstrates a program development plan I call
prototype and patch. We started with a simple prototype that
worked correctly for the first example. Then we tested it with
more difficult examples—when we found an error, we modified
the program to fix it, like putting a patch on a tire with a
puncture.

This approach can be effective, especially if you don’t yet have a
deep understanding of the problem. But incremental
corrections can generate code that is unnecessarily complicated
—since it deals with many special cases—and unreliable, since
it is hard to know if you have found all the errors.

Design-First Development

An alternative plan is design-first development, which
involves more planning before prototyping. In a design-first
process, sometimes a high-level insight into the problem makes
the programming much easier.

In this case, the insight is that we can think of a Time object as
a 3-digit number in base 60—also known as sexagesimal. The
second attribute is the “ones column,” the minute attribute is
the “sixties column,” and the hour attribute is the “thirty-six

hundreds column.” When we wrote increment_time , we
were effectively doing addition in base 60, which is why we had
to carry from one column to the next.

This observation suggests another approach to the whole
problem—we can convert Time objects to integers and take
advantage of the fact that Python knows how to do integer
arithmetic.

Here is a function that converts from a Time to an integer:

def time_to_int(time):

 minutes = time.hour * 60 + time.minute

 seconds = minutes * 60 + time.second

 return seconds

The result is the number of seconds since the beginning of the
day. For example, 01:01:01 is 1 hour, 1 minute, and 1
second from the beginning of the day, which is the sum of
3600 seconds, 60 seconds, and 1 second:

time = make_time(1, 1, 1)

print_time(time)

time_to_int(time)

01:01:01

3661

And here’s a function that goes in the other direction—
converting an integer to a Time object—using the divmod
function:

def int_to_time(seconds):

 minute, second = divmod(seconds, 60)

 hour, minute = divmod(minute, 60)

 return make_time(hour, minute, second)

We can test it by converting the previous example back to a
Time :

time = int_to_time(3661)

print_time(time)

01:01:01

Using these functions, we can write a more concise version of
add_time :

def add_time(time, hours, minutes, seconds):

 duration = make_time(hours, minutes, seconds)

 seconds = time_to_int(time) + time_to_int(dur

 return int_to_time(seconds)

The first line converts the arguments to a Time object called
duration . The second line converts time and duration to
seconds and adds them. The third line converts the sum to a
Time object and returns it.

Here’s how it works:

start = make_time(9, 40, 0)

end = add_time(start, 1, 32, 0)

print_time(end)

11:12:00

In some ways, converting from base 60 to base 10 and back is
harder than just dealing with times. Base conversion is more
abstract; our intuition for dealing with time values is better.

But if we have the insight to treat times as base 60 numbers—
and invest the effort to write the conversion functions
time_to_int and int_to_time —we get a program that is
shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine
subtracting two Time objects to find the duration between
them. The naive approach is to implement subtraction with
borrowing. Using the conversion functions is easier and more
likely to be correct.

Ironically, sometimes making a problem harder—or more
general—makes it easier, because there are fewer special cases
and fewer opportunities for error.

Debugging

Python provides several built-in functions that are useful for
testing and debugging programs that work with objects. For
example, if you are not sure what type an object is, you can ask:

type(start)

__main__.Time

You can also use isinstance to check whether an object is an
instance of a particular class:

isinstance(end, Time)

True

If you are not sure whether an object has a particular attribute,
you can use the built-in function hasattr :

hasattr(start, 'hour')

True

To get all of the attributes, and their values, in a dictionary, you
can use vars :

vars(start)

{'hour': 9, 'minute': 40, 'second': 0}

The structshape module, which we saw in “Debugging”, also
works with programmer-defined types:

from structshape import structshape

t = start, end

structshape(t)

'tuple of 2 Time'

Glossary

object-oriented programming (OOP): A style of programming
that uses objects to organize code and data.

class: A programmer-defined type. A class definition creates a
new class object.

class object: An object that represents a class—it is the result of
a class definition.

instantiation: The process of creating an object that belongs to
a class.

instance: An object that belongs to a class.

attribute: A variable associated with an object, also called an
instance variable.

object diagram: A graphical representation of an object, its
attributes, and their values.

format specifier: In an f-string, a format specifier determines
how a value is converted to a string.

pure function: A function that does not modify its parameters
or have any effect other than returning a value.

functional programming style: A way of programming that
uses pure functions whenever possible.

prototype and patch: A way of developing programs by
starting with a rough draft and gradually adding features and
fixing bugs.

design-first development: A way of developing programs with
more careful planning than prototype and patch.

Exercises

Ask a Virtual Assistant

There is a lot of new vocabulary in this chapter. A conversation
with a virtual assistant can help solidify your understanding.
Consider asking:

“What is the difference between a class and a type?”
“What is the difference between an object and an
instance?”
“What is the difference between a variable and an
attribute?”
“What are the pros and cons of pure functions compared to
modifiers?”

Because we are just getting started with object-oriented
programming, the code in this chapter is not idiomatic—it is not
the kind of code experienced programmers write. If you ask a
virtual assistant for help with the exercises, you will probably
see features we have not covered yet. In particular, you are

likely to see a method called __init__ used to initialize the
attributes of an instance.

If these features make sense to you, go ahead and use them. But
if not, be patient—we will get there soon. In the meantime, see
if you can solve the following exercises using only the features
we have covered so far.

Also, in this chapter we saw one example of a format specifier.
For more information ask “What format specifiers can be used
in a Python f-string?”

Exercise

Write a function called subtract_time that takes two Time
objects and returns the interval between them in seconds—
assuming that they are two times during the same day.

Exercise

Write a function called is_after that takes two Time objects
and returns True if the second time is later in the day than the
first, and False otherwise:

def is_after(t1, t2):

 """Checks whether `t1` is after `t2`.

 >>> is_after(make_time(3, 2, 1), make_time(3,

 True

 >>> is_after(make_time(3, 2, 1), make_time(3,

 False

 >>> is_after(make_time(11, 12, 0), make_time

 True

 """

 return None

Exercise

Here’s a definition for a Date class that represents a date—that
is, a year, month, and day of the month:

class Date:

 """Represents a year, month, and day"""

1. Write a function called make_date that takes year ,
month , and day as parameters, makes a Date object,
assigns the parameters to attributes, and returns the result
as the new object. Create an object that represents June 22,
1933.

2. Write a function called print_date that takes a Date
object, uses an f-string to format the attributes, and prints
the result. If you test it with the Date you created, the
result should be 1933-06-22 .

3. Write a function called is_after that takes two Date
objects as parameters and returns True if the first comes
after the second. Create a second object that represents
September 17, 1933, and check whether it comes after the
first object.

Hint: you might find it useful to write a function called
date_to_tuple that takes a Date object and returns a tuple
that contains its attributes in year, month, day order.

Chapter 15. Classes and Methods

Python is an object-oriented language—that is, it provides
features that support object-oriented programming, which has
these defining characteristics:

Most of the computation is expressed in terms of operations
on objects.
Objects often represent things in the real world, and
methods often correspond to the ways things in the real
world interact.
Programs include class and method definitions.

For example, in the previous chapter we defined a Time class
that corresponds to the way people record the time of day, and
we defined functions that correspond to the kinds of things
people do with times. But there was no explicit connection
between the definition of the Time class and the function
definitions that follow. We can make the connection explicit by
rewriting a function as a method, which is defined inside a
class definition.

Defining Methods

In the previous chapter, we defined a class named Time and
wrote a function named print_time that displays a time of
day:

class Time:

 """Represents the time of day."""

def print_time(time):

 s = f'{time.hour:02d}:{time.minute:02d}:{time

 print(s)

To make print_time a method, all we have to do is move the
function definition inside the class definition. Notice the change
in indentation.

At the same time, we’ll change the name of the parameter from
time to self . This change is not necessary, but it is
conventional for the first parameter of a method to be named
self :

class Time:

 """Represents the time of day."""

 def print_time(self):

 s = f'{self.hour:02d}:{self.minute:02d}:{

 print(s)

To call this function, you have to pass a Time object as an
argument. Here’s the function we’ll use to make a Time object:

def make_time(hour, minute, second):

 time = Time()

 time.hour = hour

 time.minute = minute

 time.second = second

 return time

And here’s a Time instance:

start = make_time(9, 40, 0)

There are two ways to call print_time . The first (and less
common) way is to use function syntax:

Time.print_time(start)

09:40:00

In this version, Time is the name of the class, print_time is
the name of the method, and start is passed as a parameter.
The second (and more idiomatic) way is to use the method
syntax:

start.print_time()

09:40:00

In this version, start is the object the method is invoked on,
which is called the receiver, based on the analogy that
invoking a method is like sending a message to an object.

Regardless of the syntax, the behavior of the method is the
same. The receiver is assigned to the first parameter, so inside
the method, self refers to the same object as start .

Another Method

Here’s the time_to_int function from Chapter 14:

def time_to_int(time):

 minutes = time.hour * 60 + time.minute

 seconds = minutes * 60 + time.second

 return seconds

And here’s a version rewritten as a method:

%%add_method_to Time

 def time_to_int(self):

 minutes = self.hour * 60 + self.minute

 seconds = minutes * 60 + self.second

 return seconds

The first line uses the special command add_method_to ,
which adds a method to a previously defined class. This
command works in a Jupyter notebook, but it is not part of
Python, so it won’t work in other environments. Normally, all
methods of a class are inside the class definition, so they get
defined at the same time as the class. But for this book, it is
helpful to define one method at a time.

As in the previous example, the method definition is indented
and the name of the parameter is self . Other than that, the
method is identical to the function. Here’s how we invoke it:

start.time_to_int()

34800

It is common to say that we “call” a function and “invoke” a
method, but they mean the same thing.

Static Methods

As another example, let’s consider the int_to_time function.
Here’s the version from Chapter 14:

def int_to_time(seconds):

 minute, second = divmod(seconds, 60)

 hour, minute = divmod(minute, 60)

 return make_time(hour, minute, second)

This function takes seconds as a parameter and returns a new
Time object. If we transform it into a method of the Time
class, we have to invoke it on a Time object. But if we’re trying
to create a new Time object, what are we supposed to invoke it
on?

We can solve this chicken-and-egg problem using a static
method, which is a method that does not require an instance of

the class to be invoked. Here’s how we rewrite this function as a
static method:

%%add_method_to Time

 def int_to_time(seconds):

 minute, second = divmod(seconds, 60)

 hour, minute = divmod(minute, 60)

 return make_time(hour, minute, second)

Because it is a static method, it does not have self as a
parameter. To invoke it, we use Time , which is the class object:

start = Time.int_to_time(34800)

The result is a new object that represents 9:40 :

start.print_time()

09:40:00

Now that we have Time.from_seconds , we can use it to write
add_time as a method. Here’s the function from the previous
chapter:

def add_time(time, hours, minutes, seconds):

 duration = make_time(hours, minutes, seconds)

 seconds = time_to_int(time) + time_to_int(dur

 return int_to_time(seconds)

And here’s a version rewritten as a method:

%%add_method_to Time

 def add_time(self, hours, minutes, seconds):

 duration = make_time(hours, minutes, seco

 seconds = time_to_int(self) + time_to_int

 return Time.int_to_time(seconds)

add_time has self as a parameter because it is not a static
method. It is an ordinary method—also called an instance
method. To invoke it, we need a Time instance:

end = start.add_time(1, 32, 0)

print_time(end)

11:12:00

Comparing Time Objects

As one more example, let’s write is_after as a method. Here’s
the is_after function, which is a solution to an exercise in
Chapter 14:

def is_after(t1, t2):

 return time_to_int(t1) > time_to_int(t2)

And here it is as a method:

%%add_method_to Time

 def is_after(self, other):

 return self.time_to_int() > other.time_to

Because we’re comparing two objects, and the first parameter is
self , we’ll call the second parameter other . To use this
method, we have to invoke it on one object and pass the other
as an argument:

end.is_after(start)

True

One nice thing about this syntax is that it almost reads like a
question, “ end is after start ?”

The __str__ Method

When you write a method, you can choose almost any name
you want. However, some names have special meanings. For
example, if an object has a method named __str__ , Python
uses that method to convert the object to a string. For example,
here is a __str__ method for a Time object:

%%add_method_to Time

 def __str__(self):

 s = f'{self.hour:02d}:{self.minute:02d}:{

 return s

This method is similar to print_time from Chapter 14, except
that it returns the string rather than printing it.

You can invoke this method in the usual way:

end.__str__()

'11:12:00'

But Python can also invoke it for you. If you use the built-in
function str to convert a Time object to a string, Python uses
the __str__ method in the Time class:

str(end)

'11:12:00'

And it does the same if you print a Time object:

print(end)

11:12:00

Methods like __str__ are called special methods. You can
identify them because their names begin and end with two
underscores.

The __init__ Method

The most special of the special methods is __init__ , so-called
because it initializes the attributes of a new object. An
__init__ method for the Time class might look like this:

%%add_method_to Time

 def __init__(self, hour=0, minute=0, second=0

 self.hour = hour

 self.minute = minute

 self.second = second

Now when we instantiate a Time object, Python invokes
__init__ , and passes along the arguments. So we can create
an object and initialize the attributes at the same time:

time = Time(9, 40, 0)

print(time)

09:40:00

In this example, the parameters are optional, so if you call
Time with no arguments, you get the default values:

time = Time()

print(time)

00:00:00

If you provide one argument, it overrides hour :

time = Time(9)

print(time)

09:00:00

If you provide two arguments, they override hour and
minute :

time = Time(9, 45)

print(time)

09:45:00

And if you provide three arguments, they override all three
default values.

When I write a new class, I almost always start by writing
__init__ , which makes it easier to create objects, and
__str__ , which is useful for debugging.

Operator Overloading

By defining other special methods, you can specify the behavior
of operators on programmer-defined types. For example, if you
define a method named __add__ for the Time class, you can
use the + operator on Time objects.

Here is an __add__ method:

%%add_method_to Time

 def __add__(self, other):

 seconds = self.time_to_int() + other.time

 return Time.int_to_time(seconds)

We can use it like this:

duration = Time(1, 32)

end = start + duration

print(end)

11:12:00

There is a lot happening when we run these three lines of code:

When we instantiate a Time object, the __init__ method
is invoked.
When we use the + operator with a Time object, its
__add__ method is invoked.
And when we print a Time object, its __str__ method is
invoked.

Changing the behavior of an operator so that it works with
programmer-defined types is called operator overloading. For
every operator, like + , there is a corresponding special method,
like __add__ .

Debugging

A Time object is valid if the values of minute and second
are between 0 and 60 —including 0 but not 60 —and if
hour is positive. Also, hour and minute should be integer
values, but we might allow second to have a fraction part.
Requirements like these are called invariants because they
should always be true. To put it a different way, if they are not
true, something has gone wrong.

Writing code to check invariants can help detect errors and find
their causes. For example, you might have a method like
is_valid that takes a Time object and returns False if it
violates an invariant:

%%add_method_to Time

 def is_valid(self):

 if self.hour < 0 or self.minute < 0 or se

 return False

 if self.minute >= 60 or self.second >= 60

 return False

 if not isinstance(self.hour, int):

 return False

 if not isinstance(self.minute, int):

 return False

 return True

Then, at the beginning of each method you can check the
arguments to make sure they are valid:

%%add_method_to Time

 def is_after(self, other):

 assert self.is_valid(), 'self is not a va

 assert other.is_valid(), 'self is not a v

 return self.time_to_int() > other.time_to

The assert statement evaluates the expression that follows. If
the result is True , it does nothing; if the result is False , it
causes an AssertionError . Here’s an example:

duration = Time(minute=132)

print(duration)

00:132:00

start.is_after(duration)

AssertionError: self is not a valid Time

assert statements are useful because they distinguish code
that deals with normal conditions from code that checks for
errors.

Glossary

object-oriented language: A language that provides features to
support object-oriented programming, notably user-defined
types and inheritance.

method: A function that is defined inside a class definition and
is invoked on instances of that class.

receiver: The object a method is invoked on.

static method: A method that can be invoked without an object
as receiver.

instance method: A method that must be invoked with an
object as receiver.

special method: A method that changes the way operators and
some functions work with an object.

operator overloading: The process of using special methods to
change the way operators work with user-defined types.

invariant: A condition that should always be true during the
execution of a program.

Exercises

Ask a Virtual Assistant

For more information about static methods, ask a virtual
assistant:

“What’s the difference between an instance method and a
static method?”

“Why are static methods called static?”

If you ask a virtual assistant to generate a static method, the
result will probably begin with @staticmethod , which is a
“decorator” that indicates that it is a static method. Decorators
are not covered in this book, but if you are curious, you can ask
a virtual assistant for more information.

In this chapter we rewrote several functions as methods.
Virtual assistants are generally good at this kind of code
transformation. As an example, paste the following function
into a virtual assistant and ask it, “Rewrite this function as a
method of the Time class.”

def subtract_time(t1, t2):

 return time_to_int(t1) - time_to_int(t2)

Exercise

In Chapter 14, a series of exercises asked you to write a Date
class and several functions that work with Date objects. Now
let’s practice rewriting those functions as methods:

1. Write a definition for a Date class that represents a date—
that is, a year, month, and day of the month.

2. Write an __init__ method that takes year , month , and
day as parameters and assigns the parameters to
attributes. Create an object that represents June 22, 1933.

3. Write a __str__ method that uses a format string to
format the attributes and returns the result. If you test it
with the Date you created, the result should be 1933-06-
22 .

4. Write a method called is_after that takes two Date
objects and returns True if the first comes after the
second. Create a second object that represents September
17, 1933, and check whether it comes after the first object.

Hint: you might find it useful to write a method called
to_tuple that returns a tuple that contains the attributes of a
Date object in year-month-day order.

Chapter 16. Classes and Objects

At this point we have defined classes and created objects that
represent the time of day and the day of the year. And we’ve
defined methods that create, modify, and perform computations
with these objects.

In this chapter we’ll continue our tour of object-oriented
programming (OOP) by defining classes that represent
geometric objects, including points, lines, rectangles, and
circles. We’ll write methods that create and modify these
objects, and we’ll use the jupyturtle module to draw them.

I’ll use these classes to demonstrate OOP topics including object
identity and equivalence, shallow and deep copying, and
polymorphism.

Creating a Point

In computer graphics, a location on the screen is often
represented using a pair of coordinates in an x - y plane. By
convention, the point (0, 0) usually represents the upper-left
corner of the screen, and (x, y) represents the point x units
to the right and y units down from the origin. Compared to the

Cartesian coordinate system you might have seen in a math
class, the y-axis is upside down.

There are several ways we might represent a point in Python:

We can store the coordinates separately in two variables, x
and y .
We can store the coordinates as elements in a list or tuple.
We can create a new type to represent points as objects.

In object-oriented programming, it would be most idiomatic to
create a new type. To do that, we’ll start with a class definition
for Point :

class Point:

 """Represents a point in 2-D space."""

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __str__(self):

 return f'Point({self.x}, {self.y})'

The __init__ method takes the coordinates as parameters
and assigns them to attributes x and y . The __str__ method
returns a string representation of the Point .

Now we can instantiate and display a Point object like this:

start = Point(0, 0)

print(start)

Point(0, 0)

The following diagram shows the state of the new object:

As usual, a programmer-defined type is represented by a box
with the name of the type outside and the attributes inside.

In general, programmer-defined types are mutable, so we can
write a method like translate that takes two numbers, dx
and dy , and adds them to the attributes x and y :

%%add_method_to Point

 def translate(self, dx, dy):

 self.x += dx

 self.y += dy

This function translates the Point from one location in the
plane to another.

If we don’t want to modify an existing Point , we can use
copy to copy the original object and then modify the copy:

from copy import copy

end1 = copy(start)

end1.translate(300, 0)

print(end1)

Point(300, 0)

We can encapsulate those steps in another method called
translated :

%%add_method_to Point

 def translated(self, dx=0, dy=0):

 point = copy(self)

 point.translate(dx, dy)

 return point

In the same way that the built-in function sort modifies a list,
and the sorted function creates a new list, now we have a
translate method that modifies a Point , and a
translated method that creates a new one.

Here’s an example:

end2 = start.translated(0, 150)

print(end2)

Point(0, 150)

In the next section, we’ll use these points to define and draw a
line.

Creating a Line

Now let’s define a class that represents the line segment
between two points. As usual, we’ll start with an __init__
method and a __str__ method:

class Line:

 def __init__(self, p1, p2):

 self.p1 = p1

 self.p2 = p2

 def __str__(self):

 return f'Line({self.p1}, {self.p2})'

With those two methods, we can instantiate and display a
Line object we’ll use to represent the x-axis:

line1 = Line(start, end1)

print(line1)

Line(Point(0, 0), Point(300, 0))

When we call print and pass line as a parameter, print
invokes __str__ on line . The __str__ method uses an f-
string to create a string representation of the line .

The f-string contains two expressions in curly braces, self.p1
and self.p2 . When those expressions are evaluated, the
results are Point objects. Then, when they are converted to
strings, the __str__ method from the Point class gets
invoked.

That’s why, when we display a Line , the result contains the
string representations of the Point objects.

The following object diagram shows the state of this Line
object:

String representations and object diagrams are useful for
debugging, but the point of this example is to generate graphics,
not text! So we’ll use the jupyturtle module to draw lines on
the screen.

As we did in “The jupyturtle Module”, we’ll use make_turtle
to create a Turtle object and a small canvas where it can
draw. To draw lines, we’ll use two new functions from the
jupyturtle module:

jumpto

Takes two coordinates and moves the Turtle to the
given location without drawing a line

moveto

Moves the Turtle from its current location to the given
location, and draws a line segment between them

Here’s how we import them:

from jupyturtle import make_turtle, jumpto, movet

And here’s a method that draws a Line :

%%add_method_to Line

 def draw(self):

 jumpto(self.p1.x, self.p1.y)

 moveto(self.p2.x, self.p2.y)

To show how it’s used, I’ll create a second line that represents
the y-axis:

line2 = Line(start, end2)

print(line2)

Line(Point(0, 0), Point(0, 150))

And then draw the axes:

make_turtle()

line1.draw()

line2.draw()

As we define and draw more objects, we’ll use these lines again.
But first let’s talk about object equivalence and identity.

Equivalence and Identity

Suppose we create two points with the same coordinates:

p1 = Point(200, 100)

p2 = Point(200, 100)

If we use the == operator to compare them, we get the default
behavior for programmer-defined types—the result is True
only if they are the same object, which they are not:

p1 == p2

False

If we want to change that behavior, we can provide a special
method called __eq__ that defines what it means for two
Point objects to be equal:

%%add_method_to Point

def __eq__(self, other):

 return (self.x == other.x) and (self.y == oth

This definition considers two Points to be equal if their
attributes are equal. Now when we use the == operator, it
invokes the __eq__ method, which indicates that p1 and p2
are considered equal:

p1 == p2

True

But the is operator still indicates that they are different
objects:

p1 is p2

False

It’s not possible to override the is operator—it always checks
whether the objects are identical. But for programmer-defined
types, you can override the == operator so it checks whether
the objects are equivalent. And you can define what equivalent
means.

Creating a Rectangle

Now let’s define a class that represents and draws rectangles. To
keep things simple, we’ll assume that the rectangles are either
vertical or horizontal, not at an angle. What attributes do you
think we should use to specify the location and size of a
rectangle?

There are at least two possibilities:

You could specify the width and height of the rectangle and
the location of one corner.
You could specify two opposing corners.

At this point it’s hard to say whether one is better than the
other, so let’s implement the first one. Here is the class
definition:

class Rectangle:

 """Represents a rectangle.

 attributes: width, height, corner.

 """

 def __init__(self, width, height, corner):

 self.width = width

 self.height = height

 self.corner = corner

 def __str__(self):

 return f'Rectangle({self.width}, {sel

As usual, the __init__ method assigns the parameters to
attributes and the __str__ returns a string representation of
the object. Now we can instantiate a Rectangle object, using a
Point as the location of the upper-left corner:

corner = Point(30, 20)

box1 = Rectangle(100, 50, corner)

print(box1)

Rectangle(100, 50, Point(30, 20))

The following diagram shows the state of this object:

To draw a rectangle, we’ll use the following method to make
four Point objects to represent the corners:

%%add_method_to Rectangle

 def make_points(self):

 p1 = self.corner

 p2 = p1.translated(self.width, 0)

 p3 = p2.translated(0, self.height)

 p4 = p3.translated(-self.width, 0)

 return p1, p2, p3, p4

Then we’ll make four Line objects to represent the sides:

%%add_method_to Rectangle

 def make_lines(self):

 p1, p2, p3, p4 = self.make_points()

 return Line(p1, p2), Line(p2, p3), Line(p

Then we’ll draw the sides:

%%add_method_to Rectangle

 def draw(self):

 lines = self.make_lines()

 for line in lines:

 line.draw()

Here’s an example:

make_turtle()

line1.draw()

line2.draw()

box1.draw()

The figure includes two lines to represent the axes.

Changing Rectangles

Now let’s consider two methods that modify rectangles, grow
and translate . We’ll see that grow works as expected, but
translate has a subtle bug. See if you can figure it out before
I explain.

grow takes two numbers, dwidth and dheight , and adds
them to the width and height attributes of the rectangle:

%%add_method_to Rectangle

 def grow(self, dwidth, dheight):

 self.width += dwidth

 self.height += dheight

Here’s an example that demonstrates the effect by making a
copy of box1 and invoking grow on the copy:

box2 = copy(box1)

box2.grow(60, 40)

print(box2)

Rectangle(160, 90, Point(30, 20))

If we draw box1 and box2 , we can confirm that grow works
as expected:

make_turtle()

line1.draw()

line2.draw()

box1.draw()

box2.draw()

Now let’s see about translate . It takes two numbers, dx and
dy , and moves the rectangle the given distances in the x and
y directions:

%%add_method_to Rectangle

 def translate(self, dx, dy):

 self.corner.translate(dx, dy)

To demonstrate the effect, we’ll translate box2 to the right and
down:

box2.translate(30, 20)

print(box2)

Rectangle(160, 90, Point(60, 40))

Now let’s see what happens if we draw box1 and box2 again:

make_turtle()

line1.draw()

line2.draw()

box1.draw()

box2.draw()

It looks like both rectangles moved, which is not what we
intended! The next section explains what went wrong.

Deep Copy

When we use copy to duplicate box1 , it copies the
Rectangle object but not the Point object it contains. So
box1 and box2 are different objects, as intended:

box1 is box2

False

But their corner attributes refer to the same object:

box1.corner is box2.corner

True

The following diagram shows the state of these objects:

What copy does is create a shallow copy because it copies the
object but not the objects it contains. As a result, changing the
width or height of one Rectangle does not affect the other,
but changing the attributes of the shared Point affects both!
This behavior is confusing and error prone.

Fortunately, the copy module provides another function,
called deepcopy , that copies not only the object but also the
objects it refers to, and the objects they refer to, and so on. This
operation is called a deep copy.

To demonstrate, let’s start with a new Rectangle that contains
a new Point :

corner = Point(20, 20)

box3 = Rectangle(100, 50, corner)

print(box3)

Rectangle(100, 50, Point(20, 20))

And we’ll make a deep copy:

from copy import deepcopy

box4 = deepcopy(box3)

We can confirm that the two Rectangle objects refer to
different Point objects:

box3.corner is box4.corner

False

Because box3 and box4 are completely separate objects, we
can modify one without affecting the other. To demonstrate,
we’ll move box3 and grow box4 :

box3.translate(50, 30)

box4.grow(100, 60)

And we can confirm that the effect is as expected:

make_turtle()

line1.draw()

line2.draw()

box3.draw()

box4.draw()

Polymorphism

In the previous example, we invoked the draw method on two
Line objects and two Rectangle objects. We can do the same
thing more concisely by making a list of objects:

shapes = [line1, line2, box3, box4]

The elements of this list are different types, but they all provide
a draw method, so we can loop through the list and invoke
draw on each one:

make_turtle()

for shape in shapes:

 shape.draw()

The first and second time through the loop, shape refers to a
Line object, so when draw is invoked, the method that runs is
the one defined in the Line class.

The third and fourth time through the loop, shape refers to a
Rectangle object, so when draw is invoked, the method that
runs is the one defined in the Rectangle class.

In a sense, each object knows how to draw itself. This feature is
called polymorphism. The word comes from Greek roots that
mean “many shaped.” In object-oriented programming,
polymorphism is the ability of different types to provide the
same methods, which makes it possible to perform many
computations—like drawing shapes—by invoking the same
method on different types of objects.

As an exercise at the end of this chapter, you’ll define a new
class that represents a circle and provides a draw method.
Then you can use polymorphism to draw lines, rectangles, and
circles.

Debugging

In this chapter, we ran into a subtle bug that happened because
we created a Point that was shared by two Rectangle

objects, and then we modified the Point . In general, there are
two ways to avoid problems like this: you can avoid sharing
objects or you can avoid modifying them.

To avoid sharing objects, you can use deep copy, as we did in
this chapter.

To avoid modifying objects, consider replacing modifiers like
translate with pure functions like translated . For
example, here’s a version of translated that creates a new
Point and never modifies its attributes:

def translated(self, dx=0, dy=0):

 x = self.x + dx

 y = self.y + dy

 return Point(x, y)

Python provides features that make it easier to avoid modifying
objects. They are beyond the scope of this book, but if you are
curious, ask a virtual assistant, “How do I make a Python object
immutable?”

Creating a new object takes more time than modifying an
existing one, but the difference seldom matters in practice.

Programs that avoid shared objects and modifiers are often
easier to develop, test, and debug—and the best kind of
debugging is the kind you don’t have to do.

Glossary

identical: Being the same object (which implies equivalence).

equivalent: Having the same value.

shallow copy: A copy operation that does not copy nested
objects.

deep copy: A copy operation that also copies nested objects.

polymorphism: The ability of a method or operator to work
with multiple types of objects.

Exercises

Ask a Virtual Assistant

For all of the following exercises, consider asking a virtual
assistant for help. If you do, you’ll want include as part of the
prompt the class definitions for Point , Line , and

Rectangle —otherwise the virtual assistant will make a guess
about their attributes and functions, and the code it generates
won’t work.

Exercise

Write an __eq__ method for the Line class that returns
True if the Line objects refer to Point objects that are
equivalent, in either order.

Exercise

Write a Line method called midpoint that computes the
midpoint of a line segment and returns the result as a Point
object.

Exercise

Write a Rectangle method called midpoint that finds the
point in the center of a rectangle and returns the result as a
Point object.

Exercise

Write a Rectangle method called make_cross that does the
following:

1. Uses make_lines to get a list of Line objects that
represent the four sides of the rectangle.

2. Computes the midpoints of the four lines.
3. Makes and returns a list of two Line objects that represent

lines connecting opposite midpoints, forming a cross
through the middle of the rectangle.

Exercise

Write a definition for a class named Circle with attributes
center and radius , where center is a Point object and
radius is a number. Include special methods __init__ and a
__str__ , and a method called draw that uses jupyturtle
functions to draw the circle.

Chapter 17. Inheritance

The language feature most often associated with object-oriented
programming is inheritance. Inheritance is the ability to define
a new class that is a modified version of an existing class. In this
chapter I demonstrate inheritance using classes that represent
playing cards, decks of cards, and poker hands. If you don’t play
poker, don’t worry—I’ll tell you what you need to know.

Representing Cards

There are 52 playing cards in a standard deck—each of them
belongs to one of four suits and one of thirteen ranks. The suits
are Spades, Hearts, Diamonds, and Clubs. The ranks are Ace, 2,
3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Depending on which
game you are playing, an Ace can be higher than King or lower
than 2.

If we want to define a new object to represent a playing card, it
is obvious what the attributes should be: rank and suit . It is
less obvious what type the attributes should be. One possibility
is to use strings like 'Spade' for suits and 'Queen' for ranks.
A problem with this implementation is that it would not be easy
to compare cards to see which has a higher rank or suit.

An alternative is to use integers to encode the ranks and suits.
In this context, “encode” means that we are going to define a
mapping between numbers and suits, or between numbers and
ranks. This kind of encoding is not meant to be a secret (that
would be “encryption”).

For example, this table shows the suits and the corresponding
integer codes:

Suit Code

Spades 3

Hearts 2

Diamonds 1

Clubs 0

With this encoding, we can compare suits by comparing their
codes.

To encode the ranks, we’ll use the integer 2 to represent the
rank 2 , 3 to represent 3 , and so on up to 10 . The following
table shows the codes for the face cards:

Rank Code

Jack 11

Queen 12

King 13

And we can use either 1 or 14 to represent an Ace, depending
on whether we want it to be considered lower or higher than
the other ranks.

To represent these encodings, we will use two lists of strings,
one with the names of the suits and the other with the names of
the ranks.

Here’s a definition for a class that represents a playing card,
with these lists of strings as class variables, which are
variables defined inside a class definition, but not inside a
method:

class Card:

 """Represents a standard playing card."""

 suit_names = ['Clubs', 'Diamonds', 'Hearts',

 rank_names = [None, 'Ace', '2', '3', '4', '5

 '8', '9', '10', 'Jack', 'Queen

The first element of rank_names is None because there is no
card with rank zero. By including None as a place keeper, we
get a list with the nice property that the index 2 maps to the
string '2' , and so on.

Class variables are associated with the class, rather than an
instance of the class, so we can access them like this:

Card.suit_names

['Clubs', 'Diamonds', 'Hearts', 'Spades']

We can use suit_names to look up a suit and get the
corresponding string:

Card.suit_names[0]

'Clubs'

And use rank_names to look up a rank:

Card.rank_names[11]

'Jack'

Card Attributes

Here’s an __init__ method for the Card class—it takes
suit and rank as parameters and assigns them to attributes
with the same names:

%%add_method_to Card

 def __init__(self, suit, rank):

 self.suit = suit

 self.rank = rank

Now we can create a Card object like this:

queen = Card(1, 12)

We can use the new instance to access the attributes:

queen.suit, queen.rank

(1, 12)

It is also legal to use the instance to access the class variables:

queen.suit_names

['Clubs', 'Diamonds', 'Hearts', 'Spades']

But if you use the class, it is clearer that they are class variables,
not attributes.

Printing Cards

Here’s a __str__ method for Card objects:

%%add_method_to Card

 def __str__(self):

 rank_name = Card.rank_names[self.rank]

 suit_name = Card.suit_names[self.suit]

 return f'{rank_name} of {suit_name}'

When we print a Card , Python calls the __str__ method to
get a human-readable representation of the card:

print(queen)

Queen of Diamonds

The following is a diagram of the Card class object and the
Card instance. Card is a class object, so its type is type .
queen is an instance of Card , so its type is Card . To save
space, I didn’t draw the contents of suit_names and
rank_names :

Every Card instance has its own suit and rank attributes,
but there is only one Card class object, and only one copy of
the class variables suit_names and rank_names .

Comparing Cards

Suppose we create a second Card object with the same suit
and rank:

queen2 = Card(1, 12)

print(queen2)

Queen of Diamonds

If we use the == operator to compare them, it checks whether
queen and queen2 refer to the same object:

queen == queen2

False

They don’t, so it returns False . We can change this behavior
by defining a special method called __eq__ :

%%add_method_to Card

 def __eq__(self, other):

 return self.suit == other.suit and self.r

"Class 'Card' not found."

__eq__ takes two Card objects as parameters and returns
True if they have the same suit and rank, even if they are not
the same object. In other words, it checks whether they are
equivalent, even if they are not identical.

When we use the == operator with Card objects, Python calls
the __eq__ method:

queen == queen2

True

As a second test, let’s create a card with the same suit and a
different rank:

six = Card(1, 6)

print(six)

6 of Diamonds

We can confirm that queen and six are not equivalent:

queen == six

False

If we use the != operator, Python invokes a special method
called __ne__ , if it exists. Otherwise, it invokes __eq__ and
inverts the result—so if __eq__ returns True , the result of the
!= operator is False :

queen != queen2

False

queen != six

True

Now suppose we want to compare two cards to see which is
bigger. If we use one of the relational operators, we get a
TypeError :

queen < queen2

TypeError: '<' not supported between instances of

To change the behavior of the < operator, we can define a
special method called __lt__ , which is short for “less than.”
For the sake of this example, let’s assume that suit is more
important than rank—so all Spades outrank all Hearts, which
outrank all Diamonds, and so on. If two cards have the same
suit, the one with the higher rank wins.

To implement this logic, we’ll use the following method, which
returns a tuple containing a card’s suit and rank, in that order:

%%add_method_to Card

 def to_tuple(self):

 return (self.suit, self.rank)

We can use this method to write __lt__ :

%%add_method_to Card

 def __lt__(self, other):

 return self.to_tuple() < other.to_tuple()

Tuple comparison compares the first elements from each tuple,
which represent the suits. If they are the same, it compares the
second elements, which represent the ranks.

Now if we use the < operator, it invokes the __lt__ operator:

six < queen

True

If we use the > operator, it invokes a special method called
__gt__ , if it exists. Otherwise it invokes __lt__ with the
arguments in the opposite order:

queen < queen2

False

queen > queen2

False

Finally, if we use the <= operator, it invokes a special method
called __le__ :

%%add_method_to Card

 def __le__(self, other):

 return self.to_tuple() <= other.to_tuple

So we can check whether one card is less than or equal to
another:

queen <= queen2

True

queen <= six

False

If we use the >= operator, it uses __ge__ if it exists.
Otherwise, it invokes __le__ with the arguments in the
opposite order:

queen >= six

True

As we have defined them, these methods are complete in the
sense that we can compare any two Card objects, and
consistent in the sense that results from different operators
don’t contradict each other. With these two properties, we can
say that Card objects are totally ordered. And that means, as
we’ll see soon, that they can be sorted.

Decks

Now that we have objects that represent cards, let’s define
objects that represent decks. The following is a class definition
for Deck with an __init__ method that takes a list of Card
objects as a parameter and assigns it to an attribute called
cards :

class Deck:

 def __init__(self, cards):

 self.cards = cards

To create a list that contains the 52 cards in a standard deck,
we’ll use the following static method:

%%add_method_to Deck

 def make_cards():

 cards = []

 for suit in range(4):

 for rank in range(2, 15):

 card = Card(suit, rank)

 cards.append(card)

 return cards

In make_cards , the outer loop enumerates the suits from 0 to
3 . The inner loop enumerates the ranks from 2 to 14 —where
14 represents an Ace that outranks a King. Each iteration
creates a new Card with the current suit and rank, and
appends it to cards . Here’s how we make a list of cards and a
Deck object that contains it:

cards = Deck.make_cards()

deck = Deck(cards)

len(deck.cards)

52

It contains 52 cards, as intended.

Printing the Deck

Here is a __str__ method for Deck :

%%add_method_to Deck

 def __str__(self):

 res = []

 for card in self.cards:

 res.append(str(card))

 return '\n'.join(res)

This method demonstrates an efficient way to accumulate a
large string—building a list of strings and then using the string
method join .

We’ll test this method with a deck that only contains two cards:

small_deck = Deck([queen, six])

If we call str , it invokes __str__ :

str(small_deck)

'Queen of Diamonds\n6 of Diamonds'

When Jupyter displays a string, it shows the “representational”
form of the string, which represents a newline with the
sequence \n .

However, if we print the result, Jupyter shows the “printable”
form of the string, which prints the newline as whitespace:

print(small_deck)

Queen of Diamonds

6 of Diamonds

So the cards appear on separate lines.

Add, Remove, Shuffle, and Sort

To deal cards, we would like a method that removes a card from
the deck and returns it. The list method pop provides a
convenient way to do that:

%%add_method_to Deck

 def take_card(self):

 return self.cards.pop()

Here’s how we use it:

card = deck.take_card()

print(card)

Ace of Spades

We can confirm that there are 51 cards left in the deck:

len(deck.cards)

51

To add a card, we can use the list method append :

%%add_method_to Deck

 def put_card(self, card):

 self.cards.append(card)

As an example, we can put back the card we just popped:

deck.put_card(card)

len(deck.cards)

52

To shuffle the deck, we can use the shuffle function from the
random module:

import random

%%add_method_to Deck

 def shuffle(self):

 random.shuffle(self.cards)

If we shuffle the deck and print the first few cards, we can see
that they are in no apparent order:

deck.shuffle()

for card in deck.cards[:4]:

 print(card)

2 of Diamonds

4 of Hearts

5 of Clubs

8 of Diamonds

To sort the cards, we can use the list method sort , which sorts
the elements “in place”—that is, it modifies the list rather than
creating a new list:

%%add_method_to Deck

 def sort(self):

 self.cards.sort()

When we invoke sort , it uses the __lt__ method to compare
cards:

deck.sort()

If we print the first few cards, we can confirm that they are in
increasing order:

for card in deck.cards[:4]:

 print(card)

2 of Clubs

3 of Clubs

4 of Clubs

5 of Clubs

In this example, Deck.sort doesn’t do anything other than
invoke list.sort . Passing along responsibility like this is
called delegation.

Parents and Children

Inheritance is the ability to define a new class that is a modified
version of an existing class. As an example, let’s say we want a
class to represent a “hand,” that is, the cards held by one player:

A hand is similar to a deck—both are made up of a
collection of cards, and both require operations like adding
and removing cards.
A hand is also different from a deck—there are operations
we want for hands that don’t make sense for a deck. For
example, in poker we might compare two hands to see
which one wins. In bridge, we might compute a score for a
hand in order to make a bid.

This relationship between classes—where one is a specialized
version of another—lends itself to inheritance.

To define a new class that is based on an existing class, we put
the name of the existing class in parentheses:

class Hand(Deck):

 """Represents a hand of playing cards."""

This definition indicates that Hand inherits from Deck , which
means that Hand objects can access methods defined in Deck ,
like take_card and put_card .

Hand also inherits __init__ from Deck , but if we define
__init__ in the Hand class, it overrides the one in the Deck
class:

%%add_method_to Hand

 def __init__(self, label=''):

 self.label = label

 self.cards = []

This version of __init__ takes an optional string as a
parameter, and always starts with an empty list of cards. When
we create a Hand , Python invokes this method, not the one in
Deck —which we can confirm by checking that the result has a
label attribute:

hand = Hand('player 1')

hand.label

'player 1'

To deal a card, we can use take_card to remove a card from a
Deck , and put_card to add the card to a Hand :

deck = Deck(cards)

card = deck.take_card()

hand.put_card(card)

print(hand)

Ace of Spades

Let’s encapsulate this code in a Deck method called
move_cards :

%%add_method_to Deck

 def move_cards(self, other, num):

 for i in range(num):

 card = self.take_card()

 other.put_card(card)

This method is polymorphic—that is, it works with more than
one type: self and other can be either a Hand or a Deck .
So we can use this method to deal a card from Deck to a Hand ,
from one Hand to another, or from a Hand back to a Deck .

When a new class inherits from an existing one, the existing
one is called the parent and the new class is called the child. In
general:

Instances of the child class should have all of the attributes
of the parent class, but they can have additional attributes.
The child class should have all of the methods of the parent
class, but it can have additional methods.
If a child class overrides a method from the parent class,
the new method should take the same parameters and
return a compatible result.

This set of rules is called the “Liskov substitution principle”
after computer scientist Barbara Liskov.

If you follow these rules, any function or method designed to
work with an instance of a parent class, like a Deck , will also
work with instances of a child class, like Hand . If you violate
these rules, your code will collapse like a house of cards (sorry).

Specialization

Let’s make a class called BridgeHand that represents a hand in
bridge—a widely played card game. We’ll inherit from Hand
and add a new method called high_card_point_count that
evaluates a hand using a “high card point” method, which adds
up points for the high cards in the hand.

Here’s a class definition that contains as a class variable a
dictionary that maps from card names to their point values:

class BridgeHand(Hand):

 """Represents a bridge hand."""

 hcp_dict = {

 'Ace': 4,

 'King': 3,

 'Queen': 2,

 'Jack': 1,

 }

Given the rank of a card, like 12 , we can use
Card.rank_names to get the string representation of the rank,
and then use hcp_dict to get its score:

rank = 12

rank_name = Card.rank_names[rank]

score = BridgeHand.hcp_dict.get(rank_name, 0)

rank_name, score

('Queen', 2)

The following method loops through the cards in a
BridgeHand and adds up their scores:

%%add_method_to BridgeHand

 def high_card_point_count(self):

 count = 0

 for card in self.cards:

 rank_name = Card.rank_names[card.rank

 count += BridgeHand.hcp_dict.get(rank

 return count

To test it, we’ll deal a hand with five cards—a bridge hand
usually has thirteen, but it’s easier to test code with small
examples:

hand = BridgeHand('player 2')

deck.shuffle()

deck.move_cards(hand, 5)

print(hand)

4 of Diamonds

King of Hearts

10 of Hearts

10 of Clubs

Queen of Diamonds

And here is the total score for the King and Queen:

hand.high_card_point_count()

5

BridgeHand inherits the variables and methods of Hand and
adds a class variable and a method that are specific to bridge.
This way of using inheritance is called specialization because it
defines a new class that is specialized for a particular use, like
playing bridge.

Debugging

Inheritance is a useful feature. Some programs that would be
repetitive without inheritance can be written more concisely
with it. Also, inheritance can facilitate code reuse, since you can
customize the behavior of a parent class without having to
modify it. In some cases, the inheritance structure reflects the
natural structure of the problem, which makes the design
easier to understand.

On the other hand, inheritance can make programs difficult to
read. When a method is invoked, it is sometimes not clear
where to find its definition—the relevant code may be spread
across several modules.

Any time you are unsure about the flow of execution through
your program, the simplest solution is to add print
statements at the beginning of the relevant methods. If
Deck.shuffle prints a message that says something like
Running Deck.shuffle , then as the program runs it traces
the flow of execution.

As an alternative, you could use the following function, which
takes an object and a method name (as a string) and returns the
class that provides the definition of the method:

def find_defining_class(obj, method_name):

 """

 """

 for typ in type(obj).mro():

 if method_name in vars(typ):

 return typ

 return f'Method {method_name} not found.'

find_defining_class uses the mro method to get the list of
class objects (types) that will be searched for methods. “MRO”
stands for “method resolution order,” which is the sequence of
classes Python searches to “resolve” a method name—that is, to
find the function object the name refers to.

As an example, let’s instantiate a BridgeHand and then find
the defining class of shuffle :

hand = BridgeHand('player 3')

find_defining_class(hand, 'shuffle')

__main__.Deck

The shuffle method for the BridgeHand object is the one in
Deck .

Glossary

inheritance: The ability to define a new class that is a modified
version of a previously defined class.

encode: To represent one set of values using another set of
values by constructing a mapping between them.

class variable: A variable defined inside a class definition, but
not inside any method.

totally ordered: A set of objects is totally ordered if we can
compare any two elements and the results are consistent.

delegation: When one method passes responsibility to another
method to do most or all of the work.

parent class: A class that is inherited from.

child class: A class that inherits from another class.

specialization: A way of using inheritance to create a new class
that is a specialized version of an existing class.

Exercises

Ask a Virtual Assistant

When it goes well, object-oriented programming can make
programs more readable, testable, and reusable. But it can also
make programs complicated and hard to maintain. As a result,
OOP is a topic of controversy—some people love it, and some
people don’t.

To learn more about the topic, ask a virtual assistant:

“What are some pros and cons of object-oriented
programming?”
“What does it mean when people say ‘favor composition
over inheritance’?”
“What is the Liskov substitution principle?”
“Is Python an object-oriented language?”
“What are the requirements for a set to be totally ordered?”

And as always, consider using a virtual assistant to help with
the following exercises.

Exercise

In contract bridge, a “trick” is a round of play in which each of
four players plays one card. To represent those cards, we’ll
define a class that inherits from Deck :

class Trick(Deck):

 """Represents a trick in contract bridge."""

As an example, consider this trick, where the first player leads
with the 3 of Diamonds, which means that Diamonds are the
“led suit.” The second and third players “follow suit,” which
means they play a card with the led suit. The fourth player
plays a card of a different suit, which means they cannot win
the trick. So the winner of this trick is the third player, because
they played the highest card in the led suit:

cards = [Card(1, 3),

 Card(1, 10),

 Card(1, 12),

 Card(2, 13)]

trick = Trick(cards)

print(trick)

3 of Diamonds

10 of Diamonds

Queen of Diamonds

King of Hearts

Write a Trick method called find_winner that loops
through the cards in the Trick and returns the index of the
card that wins. In the previous example, the index of the
winning card is 2 .

Exercise

The next few exercises ask to you write functions that classify
poker hands. If you are not familiar with poker, I’ll explain
what you need to know. We’ll use the following class to
represent poker hands:

class PokerHand(Hand):

 """Represents a poker hand."""

 def get_suit_counts(self):

 counter = {}

 for card in self.cards:

 key = card.suit

 counter[key] = counter.get(key, 0) +

 return counter

 def get_rank_counts(self):

 counter = {}

 for card in self.cards:

 key = card.rank

 counter[key] = counter.get(key, 0) +

 return counter

PokerHand provides two methods that will help with the
exercises:

get_suit_counts

Loops through the cards in the PokerHand , counts the
number of cards in each suit, and returns a dictionary

that maps from each suit code to the number of times it
appears.

get_rank_counts

Does the same thing with the ranks of the cards, returning
a dictionary that maps from each rank code to the
number of times it appears.

All of the exercises that follow can be done using only the
Python features we have learned so far, but some of them are
more difficult than most of the previous exercises. I encourage
you to ask a virtual assistant for help.

For problems like this, it often works well to ask for general
advice about strategies and algorithms. Then you can either
write the code yourself or ask for code. If you ask for code, you
might want to provide the relevant class definitions as part of
the prompt.

As a first exercise, we’ll write a method called has_flush that
checks whether a hand has a “flush”—that is, whether it
contains at least five cards of the same suit.

In most varieties of poker, a hand contains either five or seven
cards, but there are some exotic variations where a hand
contains other numbers of cards. But regardless of how many

cards there are in a hand, the only ones that count are the five
that make the best hand.

Exercise

Write a method called has_straight that checks whether a
hand contains a straight, which is a set of five cards with
consecutive ranks. For example, if a hand contains ranks 5 , 6 ,
7 , 8 , and 9 , it contains a straight.

An Ace can come before a 2 or after a King, so Ace , 2 , 3 , 4 ,
5 is a straight and so is 10 , Jack , Queen , King , Ace . But a
straight cannot “wrap around,” so King , Ace , 2 , 3 , 4 is not
a straight.

Exercise

A hand has a straight flush if it contains a set of five cards that
are both a straight and a flush—that is, five cards of the same
suit with consecutive ranks. Write a PokerHand method that
checks whether a hand has a straight flush.

Exercise

A poker hand has a pair if it contains two or more cards with
the same rank. Write a PokerHand method that checks
whether a hand contains a pair.

You can use the following outline to get started.

To test your method, here’s a hand that has a pair:

pair = deepcopy(bad_hand)

pair.put_card(Card(1, 2))

print(pair)

2 of Clubs

3 of Clubs

4 of Hearts

5 of Spades

7 of Clubs

2 of Diamonds

pair.has_pair() # should return True

True

bad_hand.has_pair() # should return False

False

good_hand.has_pair() # should return False

False

Exercise

A hand has a full house if it contains three cards of one rank
and two cards of another rank. Write a PokerHand method
that checks whether a hand has a full house.

Exercise

This exercise is a cautionary tale about a common error that
can be difficult to debug. Consider the following class definition:

class Kangaroo:

 """A Kangaroo is a marsupial."""

 def __init__(self, name, contents=[]):

 """Initialize the pouch contents.

 name: string

 contents: initial pouch contents.

 """

 self.name = name

 self.contents = contents

 def __str__(self):

 """Return a string representation of this

 """

 t = [self.name + ' has pouch contents:'

 for obj in self.contents:

 s = ' ' + object.__str__(obj)

 t.append(s)

 return '\n'.join(t)

 def put_in_pouch(self, item):

 """Adds a new item to the pouch contents

 item: object to be added

 """

 self.contents.append(item)

__init__ takes two parameters: name is required, but
contents is optional—if it’s not provided, the default value is
an empty list. __str__ returns a string representation of the
object that includes the name and the contents of the pouch.
put_in_pouch takes any object and appends it to contents .

Now let’s see how this class works. We’ll create two Kangaroo
objects with the names Kanga and Roo:

kanga = Kangaroo('Kanga')

roo = Kangaroo('Roo')

To Kanga’s pouch we’ll add two strings and Roo:

kanga.put_in_pouch('wallet')

kanga.put_in_pouch('car keys')

kanga.put_in_pouch(roo)

If we print kanga , it seems like everything worked:

print(kanga)

Kanga has pouch contents:

 'wallet'

 'car keys'

 <__main__.Kangaroo object at 0x7f1f4f1a1330>

But what happens if we print roo ?

print(roo)

Roo has pouch contents:

 'wallet'

 'car keys'

 <__main__.Kangaroo object at 0x7f1f4f1a1330>

Roo’s pouch contains the same contents as Kanga’s, including a
reference to roo !

See if you can figure out what went wrong. Then ask a virtual
assistant, “What’s wrong with the following program?” and
paste in the definition of Kangaroo .

Chapter 18. Python Extras

One of my goals for this book has been to teach you as little
Python as possible. When there were two ways to do something,
I picked one and avoided mentioning the other. Or sometimes I
put the second one into an exercise.

Now I want to go back for some of the good bits that got left
behind. Python provides a number of features that are not
really necessary—you can write good code without them—but
with them you can write code that’s more concise, readable, or
efficient, and sometimes all three.

Sets

Python provides a class called set that represents a collection
of unique elements. To create an empty set, we can use the class
object like a function:

s1 = set()

s1

set()

We can use the add method to add elements:

s1.add('a')

s1.add('b')

s1

{'a', 'b'}

Or we can pass any kind of sequence to set :

s2 = set('acd')

s2

{'a', 'c', 'd'}

An element can only appear once in a set . If you add an
element that’s already there, it has no effect:

s1.add('a')

s1

{'a', 'b'}

Or if you create a set with a sequence that contains duplicates,
the result contains only unique elements:

set('banana')

{'a', 'b', 'n'}

Some of the exercises in this book can be done concisely and
efficiently with sets. For example, here is a solution to an
exercise in Chapter 11 that uses a dictionary to check whether
there are any duplicate elements in a sequence:

def has_duplicates(t):

 d = {}

 for x in t:

 d[x] = True

 return len(d) < len(t)

This version adds the element of t as keys in a dictionary, and
then checks whether there are fewer keys than elements. Using
sets, we can write the same function like this:

def has_duplicates(t):

 s = set(t)

 return len(s) < len(t)

An element can only appear in a set once, so if an element in t
appears more than once, the set will be smaller than t . If there

are no duplicates, the set will be the same size as t .

set objects provide methods that perform set operations. For
example, union computes the union of two sets, which is a
new set that contains all elements that appear in either set:

s1.union(s2)

{'a', 'b', 'c', 'd'}

Some arithmetic operators work with sets. For example, the -
operator performs set subtraction—the result is a new set that
contains all elements from the first set that are not in the
second set:

s1 - s2

{'b'}

In “Dictionary Subtraction” we used dictionaries to find the
words that appear in a document but not in a word list. We
used the following function, which takes two dictionaries and
returns a new dictionary that contains only the keys from the
first that don’t appear in the second:

def subtract(d1, d2):

 res = {}

 for key in d1:

 if key not in d2:

 res[key] = d1[key]

 return res

With sets, we don’t have to write this function ourselves. If
word_counter is a dictionary that contains the unique words
in the document and word_list is a list of valid words, we
can compute the set difference like this:

set(word_counter) - set(word_list)

The result is a set that contains the words in the document that
don’t appear in the word list.

The comparison operators work with sets. For example, <=
checks whether one set is a subset of another, including the
possibility that they are equal:

set('ab') <= set('abc')

True

With these operators, we can use sets to do some of the
exercises in Chapter 7. For example, here’s a version of
uses_only that uses a loop:

def uses_only(word, available):

 for letter in word:

 if letter not in available:

 return False

 return True

uses_only checks whether all letters in word are in
available . With sets, we can rewrite it like this:

def uses_only(word, available):

 return set(word) <= set(available)

If the letters in word are a subset of the letters in available ,
that means that word uses only the letters in available .

Counters

A Counter is like a set, except that if an element appears more
than once, the Counter keeps track of how many times it
appears. If you are familiar with the mathematical idea of a
“multiset,” a Counter is a natural way to represent a multiset.

The Counter class is defined in a standard module called
collections , so you have to import it. Then you can use the

class object as a function and pass as an argument a string, list,
or any other kind of sequence:

from collections import Counter

counter = Counter('banana')

counter

Counter({'a': 3, 'n': 2, 'b': 1})

from collections import Counter

t = (1, 1, 1, 2, 2, 3)

counter = Counter(t)

counter

Counter({1: 3, 2: 2, 3: 1})

A Counter object is like a dictionary that maps from each key
to the number of times it appears. As in dictionaries, the keys
have to be hashable.

Unlike dictionaries, Counter objects don’t raise an exception if
you access an element that doesn’t appear. Instead, they return
0 :

counter['d']

0

We can use Counter objects to solve one of the exercises from
Chapter 10, which asks for a function that takes two words and
checks whether they are anagrams—that is, whether the letters
from one can be rearranged to spell the other.

Here’s a solution using Counter objects:

def is_anagram(word1, word2):

 return Counter(word1) == Counter(word2)

If two words are anagrams, they contain the same letters with
the same counts, so their Counter objects are equivalent.

Counter provides a method called most_common that returns
a list of value-frequency pairs, sorted from most common to
least:

counter.most_common()

[('a', 3), ('n', 2), ('b', 1)]

They also provide methods and operators to perform set-like
operations, including addition, subtraction, union, and
intersection. For example, the + operator combines two
Counter objects and creates a new Counter that contains the
keys from both and the sums of the counts.

We can test it by making a Counter with the letters from
'bans' and adding it to the letters from 'banana' :

counter2 = Counter('bans')

counter + counter2

Counter({'a': 4, 'n': 3, 'b': 2, 's': 1})

You’ll have a chance to explore other Counter operations in
the exercises at the end of this chapter.

defaultdict

The collections module also provides defaultdict , which
is like a dictionary except that if you access a key that doesn’t
exist, it generates a new value automatically.

When you create a defaultdict , you provide a function that’s
used to create new values. A function that creates objects is

sometimes called a factory. The built-in functions that create
lists, sets, and other types can be used as factories.

For example, here’s a defaultdict that creates a new list
when needed:

from collections import defaultdict

d = defaultdict(list)

d

defaultdict(list, {})

Notice that the argument is list , which is a class object, not
list() , which is a function call that creates a new list. The
factory function doesn’t get called unless we access a key that
doesn’t exist:

t = d['new key']

t

[]

The new list, which we’re calling t , is also added to the
dictionary. So if we modify t , the change appears in d :

t.append('new value')

d['new key']

['new value']

If you are making a dictionary of lists, you can often write
simpler code using defaultdict .

In one of the exercises in Chapter 11, I made a dictionary that
maps from a sorted string of letters to the list of words that can
be spelled with those letters. For example, the string 'opst'

maps to the list ['opts', 'post', 'pots', 'spot',
'stop', 'tops'] .

Here’s the original code:

def all_anagrams(filename):

 d = {}

 for line in open(filename):

 word = line.strip().lower()

 t = signature(word)

 if t not in d:

 d[t] = [word]

 else:

 d[t].append(word)

 return d

And here’s a simpler version using a defaultdict :

def all_anagrams(filename):

 d = defaultdict(list)

 for line in open(filename):

 word = line.strip().lower()

 t = signature(word)

 d[t].append(word)

 return d

In the exercises at the end of the chapter, you’ll have a chance
to practice using defaultdict objects:

from collections import defaultdict

d = defaultdict(list)

key = ('into', 'the')

d[key].append('woods')

d[key]

['woods']

Conditional Expressions

Conditional statements are often used to choose one of two
values, like this:

if x > 0:

 y = math.log(x)

else:

 y = float('nan')

This statement checks whether x is positive. If so, it computes
its logarithm. If not, math.log would raise a ValueError . To
avoid stopping the program, we generate a NaN , which is a
special floating-point value that represents “Not a Number.”

We can write this statement more concisely using a conditional
expression:

y = math.log(x) if x > 0 else float('nan')

You can almost read this line like English: “ y gets log- x if x is
greater than 0; otherwise, it gets NaN .”

Recursive functions can sometimes be written concisely using
conditional expressions. For example, here is a version of
factorial with a conditional statement:

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n-1)

And here’s a version with a conditional expression:

def factorial(n):

 return 1 if n == 0 else n * factorial(n-1)

Another use of conditional expressions is handling optional
arguments. For example, here is class definition with an
__init__ method that uses a conditional statement to check a
parameter with a default value:

class Kangaroo:

 def __init__(self, name, contents=None):

 self.name = name

 if contents is None:

 contents = []

 self.contents = contents

Here’s a version that uses a conditional expression:

def __init__(self, name, contents=None):

 self.name = name

 self.contents = [] if contents is None else c

In general, you can replace a conditional statement with a
conditional expression if both branches contain a single
expression and no statements.

List Comprehensions

In previous chapters, we’ve seen a few examples where we
start with an empty list and add elements, one at a time, using
the append method. For example, suppose we have a string
that contains the title of a movie, and we want to capitalize all
of the words:

title = 'monty python and the holy grail'

We can split it into a list of strings, loop through the strings,
capitalize them, and append them to a list:

t = []

for word in title.split():

 t.append(word.capitalize())

' '.join(t)

'Monty Python And The Holy Grail'

We can do the same thing more concisely using a list
comprehension:

t = [word.capitalize() for word in title.split()]

' '.join(t)

'Monty Python And The Holy Grail'

The bracket operators indicate that we are constructing a new
list. The expression inside the brackets specifies the elements of
the list, and the for clause indicates what sequence we are
looping through.

The syntax of a list comprehension might seem strange, because
the loop variable— word in this example—appears in the
expression before we get to its definition. But you get used to it.

As another example, in “Making a Word List” we used this loop
to read words from a file and append them to a list:

word_list = []

for line in open('words.txt'):

 word = line.strip()

 word_list.append(word)

Here’s how we can write that as a list comprehension:

word_list = [line.strip() for line in open('words

A list comprehension can also have an if clause that
determines which elements are included in the list. For
example, here’s a for loop we used in “Accumulating a List” to
make a list of only the words in word_list that are
palindromes:

palindromes = []

for word in word_list:

 if is_palindrome(word):

 palindromes.append(word)

Here’s how we can do the same thing with a list
comprehension:

palindromes = [word for word in word_list if is_p

When a list comprehension is used as an argument to a
function, we can often omit the brackets. For example, suppose
we want to add up 1/2n for values of n from 0 to 9. We can use
a list comprehension like this:

sum([1/2**n for n in range(10)])

1.998046875

Or we can leave out the brackets like this:

sum(1/2**n for n in range(10))

1.998046875

In this example, the argument is technically a generator
expression, not a list comprehension, and it never actually
makes a list. But other than that, the behavior is the same.

List comprehensions and generator expressions are concise and
easy to read, at least for simple expressions. And they are
usually faster than the equivalent for loops, sometimes much
faster. So if you are mad at me for not mentioning them earlier,
I understand.

But, in my defense, list comprehensions are harder to debug
because you can’t put a print statement inside the loop. I
suggest you use them only if the computation is simple enough
that you are likely to get it right the first time. Or consider
writing and debugging a for loop and then converting it to a
list comprehension.

any and all

Python provides a built-in function, any , that takes a sequence
of boolean values and returns True if any of the values are
True :

any([False, False, True])

True

any is often used with generator expressions:

any(letter == 't' for letter in 'monty')

True

That example isn’t very useful because it does the same thing as
the in operator. But we could use any to write concise
solutions to some of the exercises in Chapter 7. For example, we
can write uses_none like this:

def uses_none(word, forbidden):

 """Checks whether a word avoids forbidden let

 return not any(letter in forbidden for letter

This function loops through the letters in word and checks
whether any of them are in forbidden . Using any with a
generator expression is efficient because it stops immediately if
it finds a True value, so it doesn’t have to loop through the
whole sequence.

Python provides another built-in function, all , that returns
True if every element of the sequence is True . We can use it
to write a concise version of uses_all :

def uses_all(word, required):

 """Check whether a word uses all required let

 return all(letter in word for letter in requi

Expressions using any and all can be concise, efficient, and
easy to read.

Named Tuples

The collections module provides a function called
namedtuple that can be used to create simple classes. For
example, the Point object in “Creating a Point” has only two
attributes, x and y .

Here’s how we defined it:

class Point:

 """Represents a point in 2-D space."""

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __str__(self):

 return f'({self.x}, {self.y})'

That’s a lot of code to convey a small amount of information.
namedtuple provides a more concise way to define classes like
this:

from collections import namedtuple

Point = namedtuple('Point', ['x', 'y'])

The first argument is the name of the class you want to create.
The second is a list of the attributes Point objects should have.
The result is a class object, which is why it is assigned to a
capitalized variable name.

A class created with namedtuple provides an __init__
method that assigns values to the attributes and a __str__
that displays the object in a readable form. So we can create
and display a Point object like this:

p = Point(1, 2)

p

Point(x=1, y=2)

Point also provides an __eq__ method that checks whether
two Point objects are equivalent—that is, whether their
attributes are the same:

p == Point(1, 2)

True

You can access the elements of a named tuple by name or by
index:

p.x, p.y

(1, 2)

p[0], p[1]

(1, 2)

You can also treat a named tuple as a tuple, as in this
assignment:

x, y = p

x, y

(1, 2)

But namedtuple objects are immutable. After the attributes
are initialized, they can’t be changed:

p[0] = 3

TypeError: 'Point' object does not support item a

p.x = 3

AttributeError: can't set attribute

namedtuple provides a quick way to define simple classes.
The drawback is that simple classes don’t always stay simple.
You might decide later that you want to add methods to a

named tuple. In that case, you can define a new class that
inherits from the named tuple:

class Pointier(Point):

 """This class inherits from Point"""

Or at that point you could switch to a conventional class
definition.

Packing Keyword Arguments

In “Argument Packing”, we wrote a function that packs its
arguments into a tuple:

def mean(*args):

 return sum(args) / len(args)

You can call this function with any number of positional
arguments:

mean(1, 2, 3)

2.0

But the * operator doesn’t pack keyword arguments. So calling
this function with a keyword argument causes an error:

mean(1, 2, start=3)

TypeError: mean() got an unexpected keyword argum

To pack keyword arguments, we can use the ** operator:

def mean(*args, **kwargs):

 print(kwargs)

 return sum(args) / len(args)

The keyword-packing parameter can have any name, but
kwargs is a common choice. The result is a dictionary that
maps from keywords to values:

mean(1, 2, start=3)

{'start': 3}

1.5

In this example, the value of kwargs is printed, but otherwise
is has no effect.

But the ** operator can also be used in an argument list to
unpack a dictionary. For example, here’s a version of mean that

packs any keyword arguments it gets and then unpacks them as
keyword arguments for sum :

def mean(*args, **kwargs):

 return sum(args, **kwargs) / len(args)

Now if we call mean with start as a keyword argument, it
gets passed along to sum , which uses it as the starting point of
the summation. In the next example, start=3 adds 3 to the
sum before computing the mean, so the sum is 6 and the result
is 3 :

mean(1, 2, start=3)

3.0

As another example, if we have a dictionary with keys x and
y , we can use it with the unpack operator to create a Point
object:

d = dict(x=1, y=2)

Point(**d)

Point(x=1, y=2)

Without the unpack operator, d is treated as a single positional
argument, so it gets assigned to x , and we get a TypeError
because there’s no second argument to assign to y :

d = dict(x=1, y=2)

Point(d)

TypeError: Point.__new__() missing 1 required pos

When you are working with functions that have a large number
of keyword arguments, it is often useful to create and pass

around dictionaries that specify frequently used options:

def pack_and_print(**kwargs):

 print(kwargs)

pack_and_print(a=1, b=2)

{'a': 1, 'b': 2}

Debugging

In previous chapters, we used doctest to test functions. For
example, here’s a function called add that takes two numbers
and returns their sum. In includes a doctest that checks
whether 2 + 2 is 4 :

def add(a, b):

 '''Add two numbers.

 >>> add(2, 2)

 4

 '''

 return a + b

This function takes a function object and runs its doctests:

from doctest import run_docstring_examples

def run_doctests(func):

 run_docstring_examples(func, globals(), name=

So we can test add like this:

run_doctests(add)

There’s no output, which means all tests passed.

Python provides another tool for running automated tests,
called unittest . It is a little more complicated to use, but
here’s an example:

from unittest import TestCase

class TestExample(TestCase):

 def test_add(self):

 result = add(2, 2)

 self.assertEqual(result, 4)

First, we import TestCase , which is a class in the unittest
module. To use it, we have to define a new class that inherits
from TestCase and provides at least one test method. The
name of the test method must begin with test and should
indicate which function it tests.

In this example, test_add tests the add function by calling it,
saving the result, and invoking assertEqual , which is
inherited from TestCase . assertEqual takes two arguments
and checks whether they are equal.

In order to run this test method, we have to run a function in
unittest called main and provide several keyword
arguments. The following function shows the details—if you are
curious, ask a virtual assistant to explain how it works:

import unittest

def run_unittest():

 unittest.main(argv=[''], verbosity=0, exit=Fa

run_unittest does not take TestExample as an argument—
instead, it searches for classes that inherit from TestCase .
Then it searches for methods that begin with test and runs
them. This process is called test discovery.

Here’s what happens when we call run_unittest :

run_unittest()

Ran 1 test in 0.000s

OK

unittest.main reports the number of tests it ran and the
results. In this case OK indicates that the tests passed. To see
what happens when a test fails, we’ll add an incorrect test
method to TestExample :

%%add_method_to TestExample

 def test_add_broken(self):

 result = add(2, 2)

 self.assertEqual(result, 100)

Here’s what happens when we run the tests:

run_unittest()

===

FAIL: test_add_broken (__main__.TestExample)

Traceback (most recent call last):

 File "/tmp/ipykernel_29273/3833266738.py", line

 self.assertEqual(result, 100)

AssertionError: 4 != 100

Ran 2 tests in 0.000s

FAILED (failures=1)

The report includes the test method that failed and an error
message showing where. The summary indicates that two tests
ran and one failed.

In the following exercises, I’ll suggest some prompts you can
use to ask a virtual assistant for more information about
unittest .

Glossary

factory: A function used to create objects, often passed as a
parameter to a function.

conditional expression: An expression that uses a conditional
to select one of two values.

list comprehension: A concise way to loop through a sequence
and create a list.

generator expression: Similar to a list comprehension except
that it does not create a list.

test discovery: A process used to find and run tests.

Exercises

Ask a Virtual Assistant

There are a few topics in this chapter you might want to learn
about. Here are some questions to ask a virtual assistant:

“What are the methods and operators of Python’s set
class?”
“What are the methods and operators of Python’s counter
class?”
“What is the difference between a Python list
comprehension and a generator expression?”
“When should I use Python’s namedtuple rather than
define a new class?”
“What are some uses of packing and unpacking keyword
arguments?”

“How does unittest do test discovery?”
“Along with assertequal , what are the most commonly
used methods in u n i t t e s t .TestCase ?”
“What are the pros and cons of doctest and unittest ?”

For the following exercises, consider asking a virtual assistant
for help, but as always, remember to test the results.

Exercise

One of the exercises in Chapter 7 asks for a function called
uses_none that takes a word and a string of forbidden letters,
and returns True if the word does not use any of the letters.
Here’s a solution:

def uses_none(word, forbidden):

 for letter in word.lower():

 if letter in forbidden.lower():

 return False

 return True

Write a version of this function that uses set operations
instead of a for loop. Hint: ask a virtual assistant “How do I

compute the intersection of Python sets?”

Exercise

Scrabble is a board game where the objective is to use letter
tiles to spell words. For example, if we have tiles with the letters
T , A , B , L , E , we can spell BELT and LATE using a subset of
the tiles—but we can’t spell BEET because we don’t have two
E s.

Write a function that takes a string of letters and a word, and
checks whether the letters can spell the word, taking into
account how many times each letter appears.

Exercise

In one of the exercises from Chapter 17, my solution to
has_straightflush uses the following method, which
partitions a PokerHand into a list of four hands, where each
hand contains cards of the same suit:

def partition(self):

 """Make a list of four hands, each containing

 hands = []

 for i in range(4):

 hands.append(PokerHand())

 for card in self.cards:

 hands[card.suit].add_card(card)

 return hands

Write a simplified version of this function using a
defaultdict .

Exercise

Here’s the function from Chapter 11 that computes Fibonacci
numbers:

def fibonacci(n):

 if n == 0:

 return 0

 if n == 1:

 return 1

 return fibonacci(n-1) + fibonacci(n-2)

Write a version of this function with a single return
statement that uses two conditional expressions, one nested
inside the other.

Exercise

The following is a function that recursively computes the
binomial coefficient:

def binomial_coeff(n, k):

 """Compute the binomial coefficient "n choose

 n: number of trials

 k: number of successes

 returns: int

 """

 if k == 0:

 return 1

 if n == 0:

 return 0

 return binomial_coeff(n-1, k) + binomial_coef

Rewrite the body of the function using nested conditional
expressions.

This function is not very efficient because it ends up computing
the same values over and over. Make it more efficient by
memoizing it, as described in “Memos”:

binomial_coeff(10, 4) # should be 210

210

Exercise

Here’s the __str__ method from the Deck class in “Printing
the Deck”:

%%add_method_to Deck

 def __str__(self):

 res = []

 for card in self.cards:

 res.append(str(card))

 return '\n'.join(res)

Write a more concise version of this method with a list
comprehension or generator expression.

Chapter 19. Final Thoughts

Learning to program is not easy, but if you made it this far, you
are off to a good start. Now I have some suggestions for ways
you can keep learning and apply what you have learned.

This book is meant to be a general introduction to
programming, so we have not focused on specific applications.
Depending on your interests, there are any number of areas
where you can apply your new skills.

If you are interested in data science, there are three books of
mine you might like:

Think Stats: Exploratory Data Analysis (O’Reilly, 2014)
Think Bayes: Bayesian Statistics in Python (O’Reilly, 2021)
Think DSP: Digital Signal Processing in Python (O’Reilly,
2016)

If you are interested in physical modeling and complex systems,
you might like:

Modeling and Simulation in Python: An Introduction for
Scientists and Engineers (No Starch Press, 2023)

Think Complexity: Complexity Science and Computational
Modeling (O’Reilly, 2018)

These use NumPy, SciPy, pandas, and other Python libraries for
data science and scientific computing.

This book tries to find a balance between general principles of
programming and details of Python. As a result, it does not
include every feature of the Python language. For more about
Python, and good advice about how to use it, I recommend
Fluent Python: Clear, Concise, and Effective Programming, second
edition by Luciano Ramalho (O’Reilly, 2022).

After an introduction to programming, a common next step is to
learn about data structures and algorithms. I have a work in
progress on this topic, called Data Structures and Information
Retrieval in Python. A free electronic version is available from
Green Tea Press.

As you work on more complex programs, you will encounter
new challenges. You might find it helpful to review the sections
in this book about debugging. In particular, remember the six
Rs of debugging from “Debugging”: reading, running,
ruminating, rubberducking, retreating, and resting.

https://greenteapress.com/

This book suggests tools to help with debugging, including the
print and repr functions, the
structshape function in “Debugging”, and the built-in

functions isinstance , hasattr , and
vars in “Debugging”.

It also suggests tools for testing programs, including the
assert statement, the d o c t e s t module, and the
unittest module. Including tests in your programs is

one of the best ways to prevent and detect errors, and save time
debugging.

But the best kind of debugging is the kind you don’t have to do.
If you use an incremental development process, as described in
“Incremental Development”, and test as you go, you will make
fewer errors and find them more quickly when you do. Also,
remember encapsulation and generalization from
“Encapsulation and Generalization”, which is particularly
useful when you are developing code in Jupyter notebooks.

Throughout this book, I’ve suggested ways to use virtual
assistants to help you learn, program, and debug. I hope you are
finding these tools useful.

In addition to virtual assistants like ChatGPT, you might also
want to use a tool like Copilot that autocompletes code as you
type. I did not recommend using these tools, initially, because
they can be overwhelming for beginners. But you might want to
explore them now.

Using AI tools effectively requires some experimentation and
reflection to find a flow that works for you. If you think it’s a
nuisance to copy code from ChatGPT to Jupyter, you might
prefer something like Copilot. But the cognitive work you do to
compose a prompt and interpret the response can be as
valuable as the code the tool generates, in the same vein as
rubber duck debugging.

As you gain programming experience, you might want to
explore other development environments. I think Jupyter
notebooks are a good place to start, but they are relatively new
and not as widely used as conventional integrated development
environments (IDEs). For Python, the most popular IDEs include
PyCharm and Spyder—and Thonny, which is often
recommended for beginners. Other IDEs, like Visual Studio
Code and Eclipse, work with other programming languages as
well. Or, as a simpler alternative, you can write Python
programs using any text editor you like.

As you continue your programming journey, you don’t have to
go alone! If you live in or near a city, there’s a good chance
there is a Python user group you can join. These groups are
usually friendly to beginners, so don’t be afraid. If there is no
group near you, you might be able to join events remotely. Also,
keep an eye out for regional Python conferences.

One of the best ways to improve your programming skills is to
learn another language. If you are interested in statistics and
data science, you might want to learn R. But I particularly
recommend learning a functional language like Racket or Elixir.
Functional programming requires a different kind of thinking,
which changes the way you think about programs.

Good luck!

Index

A

abs function, Arithmetic Functions
absolute paths, Filenames and Paths
accumulators, Accumulating a List
Ackermann function, writing function that evaluates,
Exercise
add method, Sets
__add__ method, Operator Overloading
addition operator (+), Arithmetic Operators

overloading, Operator Overloading
addition, Counter objects, Counters
add_method_to command, Another Method
aliasing, Aliasing

created by passing reference to object as function
argument, List Arguments

all function, any and all
anagrams, Storing Data Structures

anagram_map shelf, Storing Data Structures
checking for, using Counter object, Counters
defining all derived from group of letters using defaultdict,
defaultdict

writing function to find, Exercise
anaspeptic, Making a Word List
and operator, Logical Operators, Nested Conditionals
any function, any and all
apostrophe (') inside strings, Strings
append method, List Methods, Making a Word List, Add,
Remove, Shuffle, and Sort
arc function, Refactoring
argument packing, Argument Packing-Argument Packing

packing keyword arguments, Packing Keyword Arguments
arguments, Arguments

assignment to parameter in function call, Parameters
checking types for, Checking Types
extend method taking list as, List Methods
keyword, Encapsulation and Generalization
list, List Arguments
list comprehension used as function argument, List
Comprehensions
passing object as argument, Attributes
providing too many or too few in function call, Arguments
of wrong type, Arguments

arithmetic expressions
practice writing, Exercise
variable as part of, Variables

arithmetic functions, Arithmetic Functions-Arithmetic
Functions
arithmetic operators, Arithmetic Operators-Expressions,
Glossary

use with sets, Sets
assert statements, Debugging
assertEqual method, Debugging
AssertionError, Debugging
assignment operator (=), Encapsulation and Generalization
assignment statements, Variables

variable created by running, Variables
assignments

initializing variables with, Updating Variables
list elements, Lists Are Mutable
of tuples, Tuple Assignment-Tuple Assignment
updating variables with, Updating Variables

asterisk (*) operator, Arithmetic Operators
(see also multiplication operator)
packing and unpacking arguments into a tuple, Argument
Packing
repeating a list, List Operations
using ** to pack keyword arguments, Packing Keyword
Arguments

AttributeError, But Tuples Are Immutable

attributes, Debugging, Attributes-Objects as Return Values
Card class, Card Attributes
getting all attributes and values in a dictionary, Debugging
hasattr function, Debugging
inheritance of, Parents and Children
modifying on an object, Objects Are Mutable

B

backward slash (\) in file paths on Windows, Filenames and
Paths
base 60, Design-First Development

converting to base 10 and back, Design-First Development
bigrams, Bigrams-Bigrams

in Markov analysis, Markov Analysis
binary mode, Checking for Equivalent Files
bitwise XOR operator (^), Arithmetic Operators
blocks, if Statements
body (function), Defining New Functions

running in for statement, Repetition
boolean expressions, Boolean Expressions-Logical Operators

in if statements, if Statements
as operands of logical operators, Logical Operators

boolean functions, Boolean Functions
writing is_between function (exercise), Exercise

boolean values, The in Operator

bracket operator ([]), A String Is a Sequence, Strings Are
Immutable

constructing new list, List Comprehensions
creating empty list, A List Is a Sequence
creating lists with, A List Is a Sequence
indexing tuple elements, Tuples Are Like Lists
looking up dictionary item key and getting corresponding
value, A Dictionary Is a Mapping
omitting brackets for list comprehension used as function
argument, List Comprehensions
reading list element with, Lists Are Mutable
using with shelf object, Shelve

branches (conditional statements), The else Clause
nested conditionals in if statement branches, Nested
Conditionals

break statements, Writing Files
bugs, Debugging, Glossary

C

call graph for fibonacci function, Memos
canvas, The jupyturtle Module, Creating a Line
captions.dat file, Shelve
captions.dir file, Shelve
cards, representing, Representing Cards-Card Attributes,
Decks

(see also decks of cards)
accessing Card class variables, Representing Cards
Card attributes, Card Attributes
Card class definition, Representing Cards
comparing Card objects, Comparing Cards-Comparing
Cards
printing cards, Printing Cards
rank and suit attributes, Representing Cards

caret (^)
beginning of string matching in regular expressions,
Regular Expressions
bitwise XOR operator, Arithmetic Operators
indicating error found, Arithmetic Functions

Cartesian coordinates, Creating a Point
category function, Punctuation
chained conditionals, Chained Conditionals
characters, A String Is a Sequence

deciding whether they are punctuation, Punctuation
chatbots, asking questions about Python, Ask a Virtual
Assistant
child class, Parents and Children
choice function, Random Numbers, Generating Text

using with a dictionary, Random Numbers

choices function, weights and k optional arguments, Random
Numbers
circle, drawing, Approximating a Circle
class variables, Representing Cards, Printing Cards

BridgeHand class example, Specialization
classes, Programmer-Defined Types

Card, Printing Cards
creating simple classes with namedtuple, Named Tuples
defining class that represents and draws rectangles,
Creating a Rectangle
defining methods for, Defining Methods-Defining Methods
defining Point class, Creating a Point
inheritance, Parents and Children

parent and child class, Parents and Children
specialization, Specialization

methods of
static methods, Static Methods-Comparing Time Objects
time_to_int function rewritten as method, Another
Method

Rectangle class definition, Creating a Rectangle
close method, Writing Files
collections module, Counters
colon (:), slice operator (see slice operator; slices)

comma-separated list of values in tuples, Tuples Are Like
Lists
commas between groups of digits, Values and Types
comments, Comments

TODO in, if Statements
comparing and sorting tuples, Comparing and Sorting-
Comparing and Sorting
comparison operators, Boolean Expressions

(see also relational operators)
use with sets, Sets

compound data structures, Debugging
computer scientists, Programming as a Way of Thinking
concatenation, Glossary
concatenation operator (+), Strings, Exercise

concatenating lists, List Operations
concatenating tuples, Tuples Are Like Lists

conditional expressions, Conditional Expressions
handling optional arguments, Conditional Expressions

conditional statements, if Statements, Conditional
Expressions

boolean functions in, Boolean Functions
chained conditionals, Chained Conditionals
nested conditionals, Nested Conditionals
return values and, Return Values and Conditionals

config dictionary, YAML
writing to YAML file, YAML

configuration data, YAML
coordinates, Creating a Point
copy function, Copying, Pure Functions, Creating a Point

creating shallow copy, Deep Copy
making copy of rectangle and invoking grow on it,
Changing Rectangles

copy module, Copying
deepcopy function, Deep Copy

copying a dictionary, Creating Dictionaries
count method, Find and Replace
counters, Looping and Counting, Comparing and Sorting,
Counters

using dictionaries, A Collection of Counters
counts

updating variables for, Updating Variables
using loops to increment, Looping and Counting

curly braces ({})
enclosing dictionary items in creation of dictionary,
Creating Dictionaries
representing empty dictionary, A Dictionary Is a Mapping

current working directory, Filenames and Paths

D

data directory, listing contents, Shelve
data structures, Debugging

storing, using a shelf, Storing Data Structures
databases, Files and Databases

shelve module, Shelve-Shelve
datasets, large, debugging, Debugging
db.close function, Shelve
DbfilenameShelf object, Shelve
dead code, Return Values and Conditionals, Ask a Virtual
Assistant
debugging, Debugging, Glossary, Debugging, Debugging

avoiding modifying objects, Debugging
avoiding sharing objects, Debugging
checking invariants, Debugging
of data structures, Debugging
functions for testing and debugging programs containing
objects, Debugging
of functions that aren't working, Debugging
functions, pre- and postconditions, Debugging
of inheritance in programs, Debugging
of large datasets, Debugging
list comprehensions more difficult than loops, List
Comprehensions

of list method calls, Debugging
of more substantial programs, Debugging
reading and writing files, problems with whitespace,
Debugging
of reading and writing files, Debugging
of syntax or runtime errors, Debugging
testing function using doctest, Debugging
using assert statement, Debugging
using unittest, Debugging

decks of cards, Decks
adding, removing, shuffling, and sorting cards, Add,
Remove, Shuffle, and Sort-Add, Remove, Shuffle, and Sort
hand versus, Parents and Children
printing the deck, Printing the Deck

decrements, Updating Variables
deep copy, Deep Copy-Polymorphism
deepcopy function, Deep Copy
def keyword, Defining New Functions
default value, Optional Parameters
defaultdict, defaultdict-Conditional Expressions

creating dictionary of lists, defaultdict
definition (function), Defining New Functions
delay argument (make_turtle), Approximating a Circle
delegation, Add, Remove, Shuffle, and Sort

delimiters
using empty strings as, Lists and Strings, Sorting Lists
for word boundaries, Lists and Strings

deserialization, YAML
design-first development, Design-First Development-Design-
First Development
deterministic computer programs, Random Numbers
development plan, A Development Plan
dict function, Creating Dictionaries, Zip
dictionaries, Dictionaries, Tuple Assignment

attributes and their values in, Debugging
creating, Creating Dictionaries
creating dictionary of lists using defaultdict, defaultdict
creating using zip and dict, Zip
debugging, Debugging
debugging, using structshape, Debugging
defaultdict and, defaultdict
dictionary in BridgeHand class variable, Specialization
dictionary mapping from keywords to values, Packing
Keyword Arguments
dictionary with x and y keys, using unpack operator to
create Point object, Packing Keyword Arguments
in expressions in f-strings, f-strings

inverting to look up value and get corresponding key,
Inverting a Dictionary
of keyword arguments, Packing Keyword Arguments
lists and, Lists and Dictionaries
mapping from each bigram to number of times it appears,
Bigrams
mapping from each word to list of words following,
Markov Analysis
as mappings, A Dictionary Is a Mapping-A Dictionary Is a
Mapping
memos in, Memos
similarities and differences of Counter objects to, Counters
similarity of shelf objects to, Shelve
storing unique punctuation marks in a dictionary,
Punctuation
subtraction, Sets
tuples used as keys in, But Tuples Are Immutable
unique words stored as key in, Unique Words
using choice function with, Random Numbers
using for loop with, Looping and Dictionaries
using in operator on, The in Operator-A Collection of
Counters
using to build a list, Accumulating a List-Accumulating a
List

using to check for duplicates in a sequence, Sets
using with counters, A Collection of Counters
words stored as keys, subtracting invalid words,
Dictionary Subtraction

digests, Checking for Equivalent Files
directories

checking if path refers to directory, Filenames and Paths
current working directory, Filenames and Paths
listing contents of, Filenames and Paths
walking, Walking Directories

distance function, defining, Incremental Development-
Incremental Development
division operator (/), Arithmetic Operators
divmod function, Tuples as Return Values, Argument
Packing, Prototype and Patch, Design-First Development
docstrings, Docstrings
doctests, Doctest, Debugging
dollar sign ($)

end of string matching in regular expressions, Regular
Expressions

dot operator (.), The import Statement, Attributes
attribute creation with, Attributes
in method names, String Methods
reading attribute value using, Attributes

double asterisk (**) operator, Packing Keyword Arguments
double underscores (__) beginning and ending special
method names, The __str__ Method
draw method, Creating a Line, Creating a Rectangle

making list of objects for, Polymorphism
dump function, YAML
duplicates, Exercise, YAML

dictionary checking for duplicates in a sequence, Sets
searching for duplicate photos, Exercise

E

elements (list), A List Is a Sequence
nested list as single element, Lists Are Mutable

elements (set), uniqueness of, Sets
elif clause, Chained Conditionals
else clause (in if statements), The else Clause
empty lists, A List Is a Sequence

for loop over, Looping Through a List
empty strings

indicated by '', String Slices
using as delimiter, Lists and Strings, Sorting Lists

encapsulation, Encapsulation and Generalization, A
Development Plan
encoding, Representing Cards
end (keyword argument), Loops and Strings

endswith method, Writing Files
enumerate function, Zip
enumerate object, Zip
ephemeral programs, Files and Databases
__eq__ method, Equivalence and Identity, Comparing Cards

provided by Point class, Named Tuples
equality operator (==), Boolean Expressions, Boolean
Functions, Equivalence and Identity

comparing cards, Comparing Cards
overriding with __eq__ method, Equivalence and Identity
use with sets, Counters
using in string comparison, String Comparison
using with objects, Copying

equivalence, Equivalence and Identity, Comparing Cards
Counter objects, Counters

equivalent versus identical lists, Objects and Values
error messages, Debugging

including traceback, Tracebacks
learning about by making deliberate errors, Exercise

errors
recursion, Infinite Recursion
TypeError, Values and Types
types of, Debugging

evaluation of expressions, Expressions and Statements

exclamation point (!) preceding shell commands, Debugging
execution of statements, Expressions and Statements
exponentiation operator (**), Arithmetic Operators, The
import Statement
expressions, Expressions, Glossary, Expressions and
Statements

attributes in, Attributes
conditional, Conditional Expressions
in f-strings, f-strings
index in brackets, A String Is a Sequence
printing evaluation results, The print Function
in statements, Variables
using in return statement, And Some Have None
using return value as part of, Some Functions Have Return
Values
writing arithmetic expressions, Exercise

extend method, List Methods
extra features in Python, Python Extras

F

f-strings, f-strings-YAML
dot operator in an expression in f-string, Attributes
using to create string representation of a line, Creating a
Line

using to write function displaying value of time objects,
Attributes

factorial function, Recursion with Return Values
with error checking, Checking Types
with print statements, Debugging
version with conditional expression, Conditional
Expressions
version with conditional statement, Conditional
Expressions

factory functions, defaultdict
fibonacci function, Fibonacci, Memos

memoized version, Memos
file object, Reading the Word List

using in for loop, Reading the Word List
files

checking for equivalent files, Checking for Equivalent
Files-Checking for Equivalent Files
filenames and paths, Filenames and Paths-Filenames and
Paths
programs reading and writing text to, Files and Databases
reading and writing text files, Writing Files-Writing Files
reading and writing, debugging of, Debugging, Debugging
reading file into a string, Making a Word List
writing to text files using f-strings, f-strings-YAML

YAML files storing configuration data, YAML
file_object.readline method, Reading the Word List
filtering, Accumulating a List
find and replace, Find and Replace
find_defining_class function, Debugging
float function, Values and Types

converting string with digits and decimal point to floating-
point number, Values and Types

float type, Values and Types
variable or function named float, Ask a Virtual Assistant

floating-point numbers, Glossary
converting integers to, Values and Types
printing value of, The print Function
rounding off, Arithmetic Functions

floor division, Arithmetic Operators, Integer Division and
Modulus
flow of execution, Recursion with Return Values, Debugging
for keyword, Repetition
for loops

exercise with, Exercise
identifying unique words in a book, Punctuation
looping through keys in shelf object, Shelve
looping through lists, Looping Through a List

storing unique punctuation marks in a dictionary,
Punctuation
tuple assignment in, Tuple Assignment
using file object in, Reading the Word List
using in making square, Making a Square
using instead of recursive functions, Recursion
using to display letters in a string, Loops and Strings
using to make a word list, Making a Word List
using to read lines from file, Unique Words
using with dictionaries, Looping and Dictionaries

for statement, Repetition
formal languages, Formal and Natural Languages, Glossary

versus natural languages, Formal and Natural Languages
format specifiers, Attributes
forward function, The jupyturtle Module
forward slash (/) separating directory and filenames in path
on macOS and Unix systems, Filenames and Paths
frames, Stack Diagrams
function calls, Arithmetic Functions, Glossary

in expressions in f-strings, f-strings
variables in, Variables

function name as expression, Arithmetic Functions
function object, Defining New Functions, Walking Directories
functional programming style, Pure Functions

functions, Glossary, Functions
adding parameters or generalization, Encapsulation and
Generalization
advantages of, Why Functions?
arguments, Arguments
asking virtual assistant to write and debug, Ask a Virtual
Assistant
assuming they work correctly and return right results,
Leap of Faith
boolean, Boolean Functions
calling, Calling Functions
calling other functions, Calling Functions
debugging, pre- and postconditions, Debugging
defining new functions, Defining New Functions
design of, interface and implementation, A Development
Plan
docstring explaining the interface, Docstrings
drawing a circle, Approximating a Circle
encapsulating code in, Encapsulation and Generalization
encapsulating loop in a function, Loops and Strings
encapsulation and generalization, A Development Plan,
Exercise
for loop inside of, Repetition

having no return values, And Some Have None-And Some
Have None
having return values, Return Values-Some Functions Have
Return Values, Return Values and Conditionals

(see also return values)
with infinite recursion, Infinite Recursion
local variables and parameters in, Variables and
Parameters Are Local
in math module, The import Statement
optional parameters, Optional Parameters
parameters, Parameters
pure, Pure Functions
recursive, Recursion
refactoring circle function, Refactoring
repetition using for statement, Repetition
stack diagrams of, Stack Diagrams

circle, arc, and polyline functions, Stack Diagram
testing with doctest, Debugging
tracebacks of runtime errors, Tracebacks

G

__ge__ method, Comparing Cards
generalization (functions), Encapsulation and Generalization,
Refactoring, A Development Plan
generator expressions, List Comprehensions

use of any function with, any and all
getcwd function, Filenames and Paths
greater than operator (>), Boolean Expressions, Comparing
Cards
greater than or equal to operator (>=), Boolean Expressions,
Comparing Cards
greatest common divisor (GCD), writing function for, Exercise
group function, Regular Expressions
grow method, Changing Rectangles
__gt__ method, Comparing Cards

H

hand of cards, Parents and Children
BridgeHand inheriting from Hand class, Specialization
Hand class inheriting from Deck, Parents and Children

hasattr function, Debugging
hash functions, Checking for Equivalent Files
HASH object, Checking for Equivalent Files
hash tables, The in Operator
hashes, Lists and Dictionaries
hashlib module, Checking for Equivalent Files
has_duplicates function, Sets
!head command, Debugging
header (function), Defining New Functions

looping back to in for statement, Repetition

hexadecimal numbers, Programmer-Defined Types
hexdigest function, Checking for Equivalent Files
hyphen (-), word boundary delimiter, Lists and Strings
hypotenuse of right triangle, writing function for length of
(exercise), Exercise

I

identical versus equivalent lists, Objects and Values
identity, Equivalence and Identity
if keyword, if Statements
if statements, Conditionals and Recursion, if Statements, The
in Operator

elif clause, Chained Conditionals
else clause, The else Clause
if clause in list comprehensions, List Comprehensions
nested conditionals in, Nested Conditionals

immutability
of namedtuple objects, Named Tuples
of strings, Strings Are Immutable
of tuples, But Tuples Are Immutable

implementation (function), A Development Plan
import statements, The import Statement, Expressions and
Statements

importing functions from jupyturtle module, Creating a
Line

importing jupyturtle module, The jupyturtle Module
in keyword, Repetition
in operator, The in Operator

checking if key appears in shelf object, Shelve
checking if string appears in a list, Making a Word List
checking validity of words, Dictionary Subtraction
finding a sequence in a string, Find and Replace
regular expressions and, Regular Expressions
using on dictionaries, The in Operator-A Collection of
Counters
using with lists, Lists Are Mutable

incremental development, Incremental Development-
Incremental Development

defining factorial function, Recursion with Return Values
key aspects of, Incremental Development

increments, Updating Variables
IndentationError, Debugging
IndexError, A String Is a Sequence, Lists Are Mutable
indexes, A String Is a Sequence

in brackets as variables, A String Is a Sequence
list, Lists Are Mutable

negative value in, Lists Are Mutable
negative index, using to get last letter in a string, A String
Is a Sequence

infinite recursion, Infinite Recursion, Checking Types
inheritance, Inheritance

advantages and disadvantages of, Debugging
Card attributes, Card Attributes
comparing Card objects, Comparing Cards-Comparing
Cards
debugging programs that use, Debugging
deck of cards, adding, removing, shuffling, and sorting
cards, Add, Remove, Shuffle, and Sort-Add, Remove,
Shuffle, and Sort
defining objects representing decks of cards, Decks
demonstrating using classes representing playing cards,
Representing Cards-Card Attributes
parents and children, Parents and Children-Parents and
Children
printing Card objects, Printing Cards
printing the deck, Printing the Deck
specialization, Bridgehand inheriting from Hand class,
Specialization

__init__ method, The __init__ Method, Operator Overloading,
Creating a Line, Creating a Rectangle, Card Attributes

classes created with namedtuple, Named Tuples
Deck class, Decks
defining for Hand class, Parents and Children

using conditional expression to check parameter with
default value, Conditional Expressions
using conditional statement to check parameter with
default value, Conditional Expressions

initializing variables, Updating Variables
input function, Keyboard Input
input validation, Checking Types
instance methods, Static Methods
instances, Programmer-Defined Types, Printing Cards
instantiation, Programmer-Defined Types
int function, Values and Types, Keyboard Input

argument, Arguments
converting string of digits to an integer, Values and Types

int type, Values and Types
variable or function named int, Ask a Virtual Assistant

integer division, Arithmetic Operators, Integer Division and
Modulus
integer division (//) operator, Arithmetic Operators, Glossary
integers, Glossary

comma-separated sequence of, Values and Types
converting Time objects to, Design-First Development
converting to floating-point values, Values and Types
converting to Time objects, Design-First Development
value of index in brackets, A String Is a Sequence

interface design, A Development Plan, Glossary
interpreter, using as calculator, Exercise
intersection, Counters
invariants, Debugging
invocation (method), String Methods
is operator, Objects and Values, Copying

showing Point objects not identical, Equivalence and
Identity

isdir function, Filenames and Paths
isfile function, Filenames and Paths
isinstance function, Checking Types, Debugging
items (dictionary), A Dictionary Is a Mapping
items method, Tuple Assignment, Word Frequencies, Shelve

J

join method, Lists and Strings, Exercise
converting list to a string, Sorting Lists

jumpto function, Creating a Line
Jupyter

displaying return value, Some Functions Have Return
Values
representational and printable versions of strings, Printing
the Deck

Jupyter notebooks, Another Method

jupyturtle module, Functions and Interfaces-The jupyturtle
Module

exercise with, Exercise
exercise with drawing Sierpiński triangle, Exercise
making a square, Making a Square
more turtle functions, Exercises
using to draw lines on screen, Creating a Line

K

key-value pairs in dictionary items, A Dictionary Is a
Mapping, Creating Dictionaries

choosing a random key, Random Numbers
finding using in operator and values method, The in
Operator
inverting, Inverting a Dictionary
looking up key and getting corresponding value, A
Dictionary Is a Mapping
printing keys and values, Looping and Dictionaries
requirement for keys to be hashable, Lists and Dictionaries

key-value pairs in shelf objects, Shelve, Storing Data
Structures
key-value stores, Shelve
keyboard input, Keyboard Input
KeyError, A Dictionary Is a Mapping
keys method, Shelve

keyword arguments, Encapsulation and Generalization
packing into a tuple, Packing Keyword Arguments

keywords, Variable Names, Ask a Virtual Assistant
Koch curve, Exercise
kwargs parameter, Packing Keyword Arguments

L

Large Language Model (LLM), Text Analysis and Generation
__le__ method, Comparing Cards
leap of faith, Leap of Faith

with fibonacci function, Fibonacci
left function, The jupyturtle Module
len function, Strings, Exercise, A String Is a Sequence

getting length of lists, A List Is a Sequence
returning number of dictionary items, A Dictionary Is a
Mapping
using with sorted in text analysis, Unique Words

less than operator (<), Boolean Expressions, Comparing and
Sorting, Comparing Cards
less than or equal to operator (<=), Boolean Expressions,
Comparing Cards

checking if one set is subset of another, Sets
Line class, Creating a Line
Line objects

instantiating and displaying to represent x-axis, Creating a
Line
making to represent rectangle sides, Creating a Rectangle
state of, Creating a Line

linear search, Search
lines, Writing Files

creating line segment between two points, Creating a Line-
Creating a Line

Liskov substitution principle, Parents and Children
Liskov, Barbara, Parents and Children
list comprehensions, List Comprehensions-List
Comprehensions

if clause determining elements to include in list, List
Comprehensions
reading words from file and appending them to list, List
Comprehensions
used as argument to a function, List Comprehensions
using to capitalize words in strings, List Comprehensions

list function, List Slices, Lists and Strings, Exercise
listdir function, Filenames and Paths, Walking Directories
lists, Lists

aliasing, Aliasing
building, using a dictionary, Accumulating a List-
Accumulating a List

converting to strings, Sorting Lists
creating dictionary of lists using defaultdict, defaultdict
debugging list method calls, Debugging
debugging, using structshape, Debugging
defaultdict creating new list, defaultdict
in dictionaries, Lists and Dictionaries
in expressions in f-strings, f-strings
list of pairs using zip and list, Zip
looping through, Looping Through a List
making a word list, Making a Word List
methods of, List Methods
mutability of, Lists Are Mutable
objects and values, Objects and Values
operators used with, List Operations
as sequences, A List Is a Sequence
similarity of tuples to, Tuples Are Like Lists-Tuples Are
Like Lists
slices of, List Slices
sorting, Sorting Lists
strings and, Lists and Strings
of strings, concatenating into single string, Lists and
Strings
use as function arguments, List Arguments
window list of bigrams, Bigrams

LLM (Large Language Model), Text Analysis and Generation
local variables, Variables and Parameters Are Local, Some
Functions Have Return Values
logical operators, Logical Operators

using to simplify nested conditional statements, Nested
Conditionals

loop variable, Loops and Strings, List Comprehensions
loops, Repetition

encapsulating loop in a function, Loops and Strings
list comprehensions and generator expressions,
advantages over, List Comprehensions
looping and counting, Looping and Counting
looping and dictionaries, Looping and Dictionaries
looping through lists, Looping Through a List
and strings, Loops and Strings-Reading the Word List

lower method, The in Operator
lowercase and uppercase letters, handling by Python, String
Comparison
__lt__ method, Comparing Cards, Add, Remove, Shuffle, and
Sort

M

main function, running for unittest, Debugging
makedirs function, Shelve
make_cards static method, Decks

make_turtle function, The jupyturtle Module, Creating a
Rectangle
mapping, A Dictionary Is a Mapping
Markov chain text analysis, Markov Analysis-Markov
Analysis

using results to generate text, Generating Text
Markov text generation, Text Analysis and Generation,
Random Numbers
Match objects, Regular Expressions
math module, The import Statement
math.pow function, The import Statement

arguments, Arguments
math.sqrt function, Incremental Development

return value, Some Functions Have Return Values
max function, Comparing and Sorting

using to find largest list element, List Operations
md5 function, Checking for Equivalent Files
md5_digest function, Checking for Equivalent Files
mean function, Argument Packing, Packing Keyword
Arguments
memos, Memos
method resolution order (mro) method, Debugging
methods, Reading the Word List

child class method overriding parent method, Parents and
Children
defining, Defining Methods-Defining Methods
defining translate method and adding to Point, Creating a
Point
inheritance of, Parents and Children, Parents and Children

problems finding their definitions, Debugging
invocation, String Methods
list, List Methods
special

__add__ method, Operator Overloading
__init__ method, The __init__ Method
__str__ method, The __str__ Method

static, Static Methods-Comparing Time Objects
string, String Methods
time_to_int function rewritten as method, Another Method
translated method, defining and adding to Point, Creating
a Point

min function, Comparing and Sorting
using to find smallest list element, List Operations

min_max function, Tuples as Return Values, Argument
Packing
modules, The import Statement

importing doctest module and running function, Doctest

modulus operator (%), Integer Division and Modulus
most_common method, Counters
moveto function, Creating a Line
move_cards method, Parents and Children
mro (method resolution order) method, Debugging
multiline strings, Docstrings
multiplication operator (*), Arithmetic Operators

duplicating tuples with, Tuples Are Like Lists
repeating a list, List Operations
using to make multiple copies of string and concatenating
them, Strings

mutability
of lists, Lists Are Mutable
of objects, Objects Are Mutable
of programmer-defined types, Creating a Point

N

n-grams, Bigrams
named arguments (see keyword arguments)
named tuples, Named Tuples-Named Tuples

accessing elements of, Named Tuples
creating simple classes with, Named Tuples
defining class that inherits from, Named Tuples
immutability of, Named Tuples
treating as a tuple, Named Tuples

natural languages, Formal and Natural Languages, Glossary
versus formal languages, Formal and Natural Languages

__ne__ method, Comparing Cards
negative numbers, absolute value of, Arithmetic Functions
nested conditionals, Nested Conditionals
nested lists, A List Is a Sequence

counting as single element, Lists Are Mutable
newline character (\n), Keyboard Input, Reading the Word
List

ending f-strings, f-strings
newlines, Glossary, f-strings, Debugging

differences in operating systems, Debugging
nondeterministic computer programs, Random Numbers
None value, And Some Have None, Regular Expressions

return value from remove, List Methods
returned by list methods, Debugging

NoneType object, Debugging
not equal operator (!=), Boolean Expressions, Comparing
Cards
not operator, Logical Operators
number sequence, enclosing in quotes, Values and Types

O

object diagrams, Attributes
object-oriented languages, Classes and Methods

object-oriented programming (OOP), Classes and Functions,
Classes and Objects

inheritance, Inheritance
(see also inheritance)

objects, Programmer-Defined Types
aliased, Aliasing
avoiding sharing and modification of, Debugging
comparing Time objects, Comparing Time Objects
converting to strings, The __str__ Method
copying, Copying
debugging programs that work with, Debugging
equivalence and identity, Equivalence and Identity
as function arguments, Attributes
initializing attributes of new object using __init__, The
__init__ Method
methods, Reading the Word List
mutability of, Objects Are Mutable
passed to pure functions as arguments, Pure Functions
Point object, instantiating and displaying, Creating a Point
polymorphism, Polymorphism
receiver of method invocations, Defining Methods
references to, Aliasing
as return values, Objects as Return Values
serializing and deserializing, YAML

string, Strings Are Immutable
values and, Objects and Values

open function, Reading the Word List
mode, Writing Files

operands, Values and Types, Glossary
operating systems

differences in file paths on, Filenames and Paths
filename differences in, Debugging

operators
contained by index in brackets, A String Is a Sequence
in expressions in f-strings, f-strings
list, List Operations
overloading, Operator Overloading

optional arguments, handling using conditional expressions,
Conditional Expressions
optional parameters, Optional Parameters
or operator, Logical Operators
order of operations, Expressions

semantic error with, Debugging
os module, Filenames and Paths
os.getcwd function, Filenames and Paths
os.listdir function, Filenames and Paths, Walking Directories
os.makedirs function, Shelve
os.path.exists function, Filenames and Paths

os.path.isdir function, Filenames and Paths
os.path.isfile function, Filenames and Paths
os.path.join function, Shelve

P

packing arguments into a tuple, Argument Packing
packing keyword arguments, Packing Keyword Arguments

pairs of values in sequences, looping through using zip
object, Zip
palindromes, Exercise

finding, Exercise
looping through words in dictionary and making list of,
Accumulating a List-Accumulating a List
making list of, using list comprehension, List
Comprehensions

parameters, Parameters
adding to function, Encapsulation and Generalization
checking for right types and values, Checking Types
local, in a function, Variables and Parameters Are Local
optional, Optional Parameters

parent class, Parents and Children
parentheses ()

enclosing tuples in, Tuples Are Like Lists
in function calls, Arithmetic Functions
grouping in regular expressions, String Substitution

using to change order of operations, Expressions
pass statements, if Statements
patching code, Prototype and Patch-Prototype and Patch
paths, Filenames and Paths

checking whether path refers to directory or file,
Filenames and Paths
differences on different operating systems, Filenames and
Paths
making path that includes directory name and shelf file
name, Shelve
walking directories and printing paths of files, Walking
Directories

pattern matching, Regular Expressions
(see also regular expressions)

patterns, Regular Expressions
pendown function, Exercises
penup function, Exercises
persistent programs, Files and Databases
Point objects

defining equality for, Equivalence and Identity
making four Point objects to represent rectangle corners,
Creating a Rectangle
representing corners of rectangle, Creating a Rectangle
string representation of, Creating a Line

points
creating line segment between two points, Creating a Line-
Creating a Line
creating Point object using dictionary with x and y keys
and unpack operator, Packing Keyword Arguments
defining Point class, Creating a Point
defining Point class using namedtuple, Named Tuples
defining translated method for Point, Creating a Point
instantiating Point object, Creating a Point
representing in Python, Creating a Point
translate method for Point object, Creating a Point

polygon function, Approximating a Circle
polyline function, Refactoring
polymorphism, Polymorphism, Parents and Children
pop method, List Methods, Add, Remove, Shuffle, and Sort
positive numbers, absolute value of, Arithmetic Functions
postconditions, Debugging
pound symbol (#), comments beginning with, Comments
pow function, The import Statement
pprint function, Debugging
preconditions, Debugging
print function, The print Function, Debugging

arguments, Arguments
printing a line, Creating a Line

question mark for unknown parameter, Stack Diagrams
print statements

using to debug functions, Debugging
programmer-defined types

using structshape with, Debugging
programming, Programming as a Way of Thinking
programming languages, Formal and Natural Languages
prompt (>>>), Doctest
prototype and patch, Prototype and Patch-Prototype and
Patch
pseudorandom numbers, Random Numbers
punctuation, identifying and removing from text,
Punctuation-Punctuation
pure functions, And Some Have None, Incremental
Development, Pure Functions
Pythagorean theorem, Incremental Development

Q

question mark (?)
matching optional character in regular expressions, String
Substitution

quotation marks, double ("")
""" enclosing triple-quoted docstrings, Docstrings
enclosing strings, Strings

quotation marks, single ('')

enclosing number sequence in, Values and Types
enclosing strings, Strings

quotient, Tuples as Return Values
R

random module, Random Numbers, Add, Remove, Shuffle,
and Sort
random sequence of words, generating, Random Numbers
range function, Loops and Strings
raw strings, Glossary
re (regular expressions) module, Regular Expressions
read method, Making a Word List
readers, Writing Files
readline function, Reading the Word List
receiver, Defining Methods
rectangles

changing, Changing Rectangles-Changing Rectangles
creating, Creating a Rectangle-Creating a Rectangle
making deep copies of, Deep Copy-Polymorphism

recursion, Recursion
infinite, Infinite Recursion, Checking Types

RecursionError, Infinite Recursion
recursive functions, Recursion

assuming they work correctly, Leap of Faith
fibonacci, Fibonacci

with return values, Recursion with Return Values-
Recursion with Return Values
stack diagrams for, Stack Diagrams for Recursive
Functions

redirect operator (>), Debugging
refactoring code, Refactoring
references, Aliasing

passing reference to object as function argument, List
Arguments

regular expressions, Regular Expressions-String Substitution
using for string substitution, String Substitution

relational operators, Boolean Expressions
comparing Card objects, Comparing Cards-Comparing
Cards
use in string comparisons, String Comparison
use with tuples, Comparing and Sorting

relative paths, Filenames and Paths
remainder, Integer Division and Modulus, Tuples as Return
Values
remove method, List Methods, Debugging, Argument Packing
repetition operator (*), Exercise
repetition, using for statement, Repetition
replace method, Find and Replace
repr function, Debugging

return character (\r), Debugging
return statements, Some Functions Have Return Values

adding print statement before each, Debugging
using with conditionals, Return Values and Conditionals

return values
and conditionals, Return Values and Conditionals
example, circle_area returning a value, Some Functions
Have Return Values
functions having, Some Functions Have Return Values-
Some Functions Have Return Values
functions not having, And Some Have None-And Some
Have None
incorrect functions ending without, Ask a Virtual Assistant
objects as, Objects as Return Values
recursion with, Recursion with Return Values-Recursion
with Return Values
tuples as, Tuples as Return Values

reverse order, sorting in, Word Frequencies
reversed function, Exercise

using with tuples, Tuples Are Like Lists
right function, The jupyturtle Module
round function, Arithmetic Functions

arguments, Arguments
exercise with, Exercise

ndigits, optional parameter, Optional Parameters
rubber duck debugging, Debugging
runtime errors, Debugging

debugging, Debugging
tracebacks of, Tracebacks

run_doctests function, Doctest
run_unittest function, Debugging

S

scaffolding, Incremental Development
searches

looking for letters in a string, Search
using search function and pattern matching, Regular
Expressions

self parameter, Defining Methods, Another Method, Static
Methods
semantic errors, Debugging
sequences, Strings and Regular Expressions

lists as, A List Is a Sequence
passing to sets, Sets
sorted function working with all, Sorting Lists
strings as, A String Is a Sequence-A String Is a Sequence
in tuple assignments, Tuple Assignment

serialization, YAML
set subtraction, Dictionary Subtraction

sets, Sets-Sets
sexagesimal numbers, Design-First Development
shallow copy, Deep Copy
shapes, Polymorphism
shelf object, Shelve

using to store data structures, Storing Data Structures
shell commands, !tail and !head, Debugging
shelve module, Shelve-Shelve
shelve.open function, Shelve
shuffle function, Add, Remove, Shuffle, and Sort
Sierpiński triangle, Exercise
slice operator (:), List Slices

using with tuples, Tuples Are Like Lists
slices

list, List Slices
slice index of sorted list, Unique Words
string, String Slices

sort key, Comparing and Sorting
sort method, Add, Remove, Shuffle, and Sort
sorted function, Sorting Lists, Comparing and Sorting, Unique
Words

sorting key-value pairs by frequency, Word Frequencies
sorting letters in a string, Sorting Lists
using with tuples, Tuples Are Like Lists

space characters controlling indentation of output,
Debugging
spaces, Debugging
span function, Regular Expressions
special methods, The __str__ Method
specialization, Specialization
spellcheck, Dictionary Subtraction
split method, Lists and Strings, Looping Through a List

dividing lines of text into words, Unique Words
splitting string into list of words, Making a Word List

sqrt function, Incremental Development
return value, Some Functions Have Return Values

square brackets ([]), A List Is a Sequence
(see also bracket operator)
using to add items to dictionary, A Dictionary Is a Mapping

square, creating using make_turtle, Making a Square
stack diagrams, Stack Diagrams

circle, arc, and polyline functions, Stack Diagram
drawing, exercise with recurse function, Exercise
of recursive factorial program, Recursion with Return
Values
of recursive functions, Stack Diagrams for Recursive
Functions

startswith method, Writing Files

state diagrams, State Diagrams
for dictionary example, A Dictionary Is a Mapping

statements, Variables, Expressions and Statements
static methods, Static Methods-Comparing Time Objects
str function, Values and Types, f-strings
str type, Values and Types

variable or function named str, Ask a Virtual Assistant
__str__ method, The __str__ Method, Operator Overloading,
Creating a Line, Creating a Rectangle, Printing Cards

classes created with namedtuple, Named Tuples
Deck class, Printing the Deck
using f-string to create string representation of a line,
Creating a Line

string substitution, String Substitution
strings, Strings, Glossary

checking if character appears in, The in Operator
comparisons of, String Comparison
converting letters in to lowercase, The in Operator
converting lists to, Sorting Lists
f-string expressions converted to, f-strings
finding and replacing character sequences in, Find and
Replace
finding character sequences in using regular expressions,
Regular Expressions-String Substitution

for loop displaying letters in, Loops and Strings
getting last letter of, A String Is a Sequence
immutability of, Strings Are Immutable
lists and, Lists and Strings
lists of, A List Is a Sequence
lists of, concatenating into single string, Lists and Strings
methods of, String Methods
multiline, enclosed in triple quotes, Docstrings
objects and values, Objects and Values
operators and methods, reading and writing files with,
Writing Files-Writing Files
printing value of, The print Function
reading a file into a string, Making a Word List
returned by readline function, Reading the Word List
searching for letters in, Search
selecting a character from, A String Is a Sequence
slices of, String Slices
sorting letters in, using sorted function, Sorting Lists
string methods versus list methods, Debugging
stripping newline and whitespace from words, Reading
the Word List
writing combination of strings and other values using f-
string, f-strings

strip method , Reading the Word List

removing punctuation from beginning and end of words,
Punctuation

structshape function, Debugging
structshape module, Debugging
sub function, String Substitution
subtract function, Dictionary Subtraction
subtraction operator (-), Arithmetic Operators

set subtraction, Sets
subtraction, Counter objects, Counters
sum function, List Operations
syntax errors, Arithmetic Functions, Glossary, Debugging,
Debugging

T

tabs, Debugging
!tail command, Debugging
test discovery, Debugging
test failing in unittest, Debugging
TestCase class, Debugging
testing

in incremental development, Incremental Development-
Incremental Development
testing function using doctest, Doctest

text analysis
counting number of unique words, Unique Words

dealing with punctuation in identifying words,
Punctuation-Punctuation
frequency of each unique word, Word Frequencies
identifying bigrams and their frequency, Bigrams
Markov analysis, Markov Analysis-Markov Analysis
optional parameters for functions, Optional Parameters
spellchecking a book, Dictionary Subtraction

text generation
random sequence of words, Random Numbers
using bigrams, Bigrams
using results of Markov analysis, Generating Text

thinking, programming as way of, Programming as a Way of
Thinking
time function, Exercise
TODO (in comments), if Statements
total, initializing and incrementing, Looping and Counting
totally ordered, Comparing Cards
tracebacks, Tracebacks

for infinitely recursive function, Infinite Recursion
(see also infinitely)

translate method, Changing Rectangles
defining and adding to Rectangle, Changing Rectangles

trigrams, Bigrams
trimmed mean, Argument Packing

True and False values (bool type), Boolean Expressions
tuple function, Tuples Are Like Lists
tuples, Tuples

argument packing, Argument Packing-Argument Packing
assignment, Tuple Assignment-Tuple Assignment
comparing and sorting, Comparing and Sorting-Comparing
and Sorting
comparisons of, Comparing Cards
debugging, using structshape, Debugging
immutability of, But Tuples Are Immutable
namedtuple, Named Tuples-Named Tuples
packing arguments into, Packing Keyword Arguments
as return values, Tuples as Return Values
similarity to lists, Tuples Are Like Lists-Tuples Are Like
Lists
using zip with, Zip-Comparing and Sorting

Turing complete, Recursion with Return Values
Turtle object, Creating a Line
type function, Values and Types

exercise with, Exercise
TypeError, Arguments
types, Values and Types-Formal and Natural Languages,
Glossary

argument of type function can't handle, Arguments

checking for function arguments, Checking Types
list elements, A List Is a Sequence
programmer-defined, Programmer-Defined Types
using operator with unsupported type, Debugging

U

underscores (_)
using in large numbers, Values and Types
in variable names, Variable Names
__ double underscores beginning and ending special
method names, The __str__ Method

unicodedata module, Punctuation
union method, Sets, Counters
unittest module, Debugging
unpack operator (**), Packing Keyword Arguments
unpacking arguments in tuples, Argument Packing
update function (HASH), Checking for Equivalent Files
updates, updating variables with assignments, Updating
Variables
upper method, String Methods
uppercase and lowercase letters, handling by Python, String
Comparison
UTC (Coordinated Universal Time), Exercise

V

value-frequency pairs, Counters
ValueError, Keyboard Input, Debugging

returned when element is not in list, List Methods
values, Glossary

objects and, Objects and Values
in tuple assignments, Tuple Assignment
and types, Values and Types-Formal and Natural
Languages
value of an expression, Expressions

values method, The in Operator, Looping and Dictionaries,
Shelve
variables, Variables

association with an object (reference), Aliasing
class, Representing Cards
contained by index in brackets, A String Is a Sequence
created by running statements, Variables
index in brackets, A String Is a Sequence
initializing, Updating Variables
local variables in a function, Variables and Parameters Are
Local
names of, comments and, Comments
naming, Variable Names
representing with state diagrams, State Diagrams

returned values assigned to, Some Functions Have Return
Values
in tuple assignments, Tuple Assignment
updating, Updating Variables
use as function arguments, Parameters

vars function, Debugging
vertical bar (|) in regular expressions, Regular Expressions,
String Substitution
virtual assistants

asking questions about incorrect functions, Ask a Virtual
Assistant
asking questions about Python, Ask a Virtual Assistant
assigning a role, Ask a Virtual Assistant
writing and debugging functions, Ask a Virtual Assistant

W

walk function, Walking Directories
weights

list of bigram frequencies, Bigrams
of words, Random Numbers

whitespace, f-strings
problems with in reading and writing files, Debugging

word list, reading, Reading the Word List
word.upper method, String Methods
words

frequency of each unique word in a book, Word
Frequencies
making a word list, Making a Word List
unique, counting number in a book, Unique Words

write function, f-strings
writers, Writing Files

Y

y-axis, line representing, Creating a Line
YAML, YAML

Z

zip function and zip object, Zip-Comparing and Sorting

About the Author

Allen Downey is a staff producer at Brilliant and professor
emeritus at Olin College of Engineering. He has taught
computer science at Wellesley College, Colby College, and UC
Berkeley. He has a Ph.D. in computer science from UC Berkeley
and a master’s degree from MIT.

Colophon

The animal on the cover of Think Python is a plum-headed
parakeet (Psittacula cyanocephala), a vibrant bird native to the
Indian subcontinent.

This medium-sized parrot is known for the male’s dazzling
plum-colored head, while females have a grayish-blue head,
with both sexes with different shades of green on their chest,
belly, wings, and back. Their long tails are a cool bluish-green
tipped with white, adding a touch of elegance. As seen in the
cover image, males have a black chin stripe and a narrow black
band around their neck, bordered by a vibrant turquoise, with
a distinctive red shoulder patch. Females lack these markings
and often have a yellow collar instead.

These social birds flit through well-wooded areas in large
flocks, their flight patterns a flurry of twists and turns
accompanied by high-pitched calls. They are also acrobatic
climbers, adept at navigating branches and using their strong
beaks to explore nooks and crannies for food; their diet consists
mainly of fruits, seeds, and blossoms.

The plum-headed parakeet’s population is considered Least
Concern by the IUCN but with a decreasing trend, highlighting

the need for conservation efforts. Many of the animals on
O’Reilly covers are endangered; all of them are important to the
world.

The color illustration is by Karen Montgomery, based on an
antique line engraving from a loose plate, source unknown. The
series design is by Edie Freedman, Ellie Volckhausen, and Karen
Montgomery. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

	Preface
	Who Is This Book For?
	Goals of the Book
	Navigating the Book
	What’s New in the Third Edition?
	Getting Started
	Resources for Teachers
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Programming as a Way of Thinking
	Arithmetic Operators
	Expressions
	Arithmetic Functions
	Strings
	Values and Types
	Formal and Natural Languages
	Debugging
	Glossary
	Exercises

	2. Variables and Statements
	Variables
	State Diagrams
	Variable Names
	The import Statement
	Expressions and Statements
	The print Function
	Arguments
	Comments
	Debugging
	Glossary
	Exercises

	3. Functions
	Defining New Functions
	Parameters
	Calling Functions
	Repetition
	Variables and Parameters Are Local
	Stack Diagrams
	Tracebacks
	Why Functions?
	Debugging
	Glossary
	Exercises

	4. Functions and Interfaces
	The jupyturtle Module
	Making a Square
	Encapsulation and Generalization
	Approximating a Circle
	Refactoring
	Stack Diagram
	A Development Plan
	Docstrings
	Debugging
	Glossary
	Exercises

	5. Conditionals and Recursion
	Integer Division and Modulus
	Boolean Expressions
	Logical Operators
	if Statements
	The else Clause
	Chained Conditionals
	Nested Conditionals
	Recursion
	Stack Diagrams for Recursive Functions
	Infinite Recursion
	Keyboard Input
	Debugging
	Glossary
	Exercises

	6. Return Values
	Some Functions Have Return Values
	And Some Have None
	Return Values and Conditionals
	Incremental Development
	Boolean Functions
	Recursion with Return Values
	Leap of Faith
	Fibonacci
	Checking Types
	Debugging
	Glossary
	Exercises

	7. Iteration and Search
	Loops and Strings
	Reading the Word List
	Updating Variables
	Looping and Counting
	The in Operator
	Search
	Doctest
	Glossary
	Exercises

	8. Strings and Regular Expressions
	A String Is a Sequence
	String Slices
	Strings Are Immutable
	String Comparison
	String Methods
	Writing Files
	Find and Replace
	Regular Expressions
	String Substitution
	Debugging
	Glossary
	Exercises

	9. Lists
	A List Is a Sequence
	Lists Are Mutable
	List Slices
	List Operations
	List Methods
	Lists and Strings
	Looping Through a List
	Sorting Lists
	Objects and Values
	Aliasing
	List Arguments
	Making a Word List
	Debugging
	Glossary
	Exercises

	10. Dictionaries
	A Dictionary Is a Mapping
	Creating Dictionaries
	The in Operator
	A Collection of Counters
	Looping and Dictionaries
	Lists and Dictionaries
	Accumulating a List
	Memos
	Debugging
	Glossary
	Exercises

	11. Tuples
	Tuples Are Like Lists
	But Tuples Are Immutable
	Tuple Assignment
	Tuples as Return Values
	Argument Packing
	Zip
	Comparing and Sorting
	Inverting a Dictionary
	Debugging
	Glossary
	Exercises

	12. Text Analysis and Generation
	Unique Words
	Punctuation
	Word Frequencies
	Optional Parameters
	Dictionary Subtraction
	Random Numbers
	Bigrams
	Markov Analysis
	Generating Text
	Debugging
	Glossary
	Exercises
	Exercise

	13. Files and Databases
	Filenames and Paths
	f-strings
	YAML
	Shelve
	Storing Data Structures
	Checking for Equivalent Files
	Walking Directories
	Debugging
	Glossary
	Exercises

	14. Classes and Functions
	Programmer-Defined Types
	Attributes
	Objects as Return Values
	Objects Are Mutable
	Copying
	Pure Functions
	Prototype and Patch
	Design-First Development
	Debugging
	Glossary
	Exercises

	15. Classes and Methods
	Defining Methods
	Another Method
	Static Methods
	Comparing Time Objects
	The __str__ Method
	The __init__ Method
	Operator Overloading
	Debugging
	Glossary
	Exercises

	16. Classes and Objects
	Creating a Point
	Creating a Line
	Equivalence and Identity
	Creating a Rectangle
	Changing Rectangles
	Deep Copy
	Polymorphism
	Debugging
	Glossary
	Exercises

	17. Inheritance
	Representing Cards
	Card Attributes
	Printing Cards
	Comparing Cards
	Decks
	Printing the Deck
	Add, Remove, Shuffle, and Sort
	Parents and Children
	Specialization
	Debugging
	Glossary
	Exercises

	18. Python Extras
	Sets
	Counters
	defaultdict
	Conditional Expressions
	List Comprehensions
	any and all
	Named Tuples
	Packing Keyword Arguments
	Debugging
	Glossary
	Exercises

	19. Final Thoughts
	Index
	About the Author

